/
Weak-interaction studies Weak-interaction studies

Weak-interaction studies - PowerPoint Presentation

WeirdoWonder
WeirdoWonder . @WeirdoWonder
Follow
342 views
Uploaded On 2022-08-03

Weak-interaction studies - PPT Presentation

with nuclear beta decay Bertram Blank CEN BordeauxGradignan Germanium detector calibration experimental studies 0 0 b decay mirror b decay future ID: 933586

detector decay 10c kev decay detector kev 10c 19ne measurements transitions mirror precision calibration results measurement germanium decays pile

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Weak-interaction studies" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Weak-interaction studieswith nuclear beta decay

Bertram Blank

CEN Bordeaux-Gradignan

Germanium detector calibration

experimental studies: 0+ - 0+ b decay mirror b decay future work

Top Row CKM Unitarity WorkshopJanuary 7- 8, 2019The Mitchell Institute, Texas A&M University, College Station, Texas, USA

Slide2

Experimental ft measurements

T

1/2

Q

EC

BR

0

+0

+

Nuclear beta decay

in general:

for

0

+

 0

+

transitions

: only vector current due to

selection

rules

experimental quantities

: precise measurements of

masses of parent and daughter, half-life, branching

ratio

correct for other interactions: for T=1 many transitions: validate corrections, test CVC, determine Vud matrix element, test CKM matrix unitarity, test scalar contributions…

Slide3

Germanium detector calibration

Slide4

Super-allowed Fermi transitions for

T

z

= -1

many

decay channels open strong non-analog transitions low decay energies high precision of g efficiency needed

 0.1%

Slide5

Derel = 0.1%, De

abs

= 0.15%

calibration programme of a

HP Ge detector: - x-ray

photography of detector - scan of the

crystal at CSNSM - source measurements - MC simulations: CYLTRAN, GEANT4•

• • Calibration of germanium detector

Scan at

CSNSM:

137

Cs

strongly

collimated

Relative

detection

efficiency

:

24

Na

,

27

Mg

,

48

Cr

,

56

Co

, 60Co, 66Ga, 75Se, 88Y, (109Cd), 133Ba,

134Cs,

137

Ce, 152

Eu,

169Yb

, 180Hf

, 207Bi

Peak/total: 22

Na, 38K

, 41

Ar

,

51

Cr,

54

Mn,

57

Co,

58

Co

,

60

Co,

65

Zn

,

85

Sr,

137

Cs

…ISOLDE, IPNO sources

X-rayphotography

B.

Blank et al., NIMA776 (2015) 34

…trigger by John’s

work

Slide6

• • • Additional c

alibration

of germanium detector: preliminary

Newly added:

38

K,

169Yb, 48Cr 24Na, 48Cr(add. meas.), 207Bi (new analysis)Still to come: 109CdHigher-statistics calculations:

75Se, 133Ba, 137Cs, 152Eu, 180Hf  0.15 % precision for E < 100keV

Slide7

• • • Peak-to-total

Slide8

• • • Escape peaks

and simulation

Slide9

• • • Long-term

stability of

germanium detector

Slide10

0+ - 0+ b

decay

: 38Ca

Slide11

Super-allowed Fermi transitions for

T

z

= -1

many

decay channels open strong non-analog transitions high precision of g efficiency needed  0.1%

Slide12

Primary Beam: 40

Ca @

50 MeV/A

Production Target :

natNi 90 m

mLISE3 SpectrometerGANIL / LISE3 experimentsDetection

Set-up

38

Ca production at GANIL/LISE3

10

4

38

Ca / s

99.5 %

purity

Contaminants:

37

K: 0.12 %

36Ar (stable): 0.11 %

35Cl (stable): 0.09 % 34S (stable):

0.14 %

Slide13

38Ca branching ratios and half-life

Present work and Anderson et al.B. Blank et al., EPJA 51 (2015) 8

(443.6

3 ± 0

.35)

Slide14

38Ca: result

half-life: BR (0+ — 0+): present: 77.09(35) % Park et al.: 77.28(16) % Q value: Eronen et al.: 6612.11(7) keV

ft = 3063.3(62) s Ft = 3077.5(67) s

 443.70(25) ms

 77.25(15) %

B.

Blank

et al., EPJA 51 (2015) 8

Slide15

38

Ca: result…. 14 nucleiBR for all Tz = -1nuclei largest error

Slide16

0+ - 0+ b

decay

: 30S

Slide17

Super-allowed Fermi transitions for

T

z

= -1

Slide18

Primary Beam: 32

S @

50 MeV/A

Production Target :

natNi 90

mmLISE3 SpectrometerGANIL / LISE3 experiments

DetectionSet-up• • •

30

S production at GANIL/LISE3

10

4

30

S / s

T

1/2

= 1176.2(16) ms

99.0 %

purity

Contaminants:

29

P: T

1/2

= 4.142(15) s

28Si: stable 27

Al: stable 26Mg: stable

Slide19

• • • 30S: very preliminary result

analysis

in

progress

Slide20

0+ - 0+ b

decay

: 22Mg

Slide21

Super-allowed Fermi transitions for

T

z

= -1

Slide22

22Mg measurement at ISOLDE

ISOL: lots of

22

Na LIST technique no measurable

22Natrigger - less DAQProton

beam at 1.4 GeV and 2

mATarget: SiC

Source: LIST

Slide23

• • • 22Mg: very preliminary result

also

data on

branching

ratios

…to be analysed

Slide24

0+ - 0+ b

decay

: 58Zn

Z

Slide25

Implantation set-up

 WAS3ABI DSSSD set-up

 EURICA

g

-ray array

78Kr at 345 MeV/u with 250 pnA•

Two

-proton

radioactivity

of

67

Kr at

BigRIPS

/RIKEN

Slide26

• • •

Two-proton

radioactivity of 67

Kr at BigRIPS

/RIKEN

A/Z

58ZnZ

Slide27

T1/2 = 86(8) ms↓T

1/2

= 84.79(20)

ms

8

(2)

%

72(7)%

58

Zn

58

Cu

<20

%

1

+

848

0

+

1051

203

3257

3460

3474

1

+

0

+

1

+

1

+

T

1/2

= 3.204(7)

s

S

p

=

2873

keV

5.7(1)%

73.10%*

14.4(2)%

0.76(6)%

0.86(7)%

Time (

ms

)

Counts / 1

ms

Data Plot

Fitting Curve

58

Zn Decay Curve

58

Cu Decay Curve

Background

Counts / 2

keV

Gamma Energy (

keV

)

203

848

1051

3257

3473

3460

2747

Branching Ratio

Q

EC

=9364(50)

keV

* This value is assumed

by using the

average

ft

value of

0

+

0

+

decays.

Preliminary

511

Previous

Present

Decay

of

58

Zn

at

BigRIPS

/RIKEN

D.

Nishimura

, RCNP Osaka

Slide28

0+ - 0+ b

decay

: 10C at ISOLDE

Slide29

• • • 0+

 0

+ decays

: 10

C error budget

BR by far largest error

two precise measurements: Savard et al.: 1.4625(25)% (PRL 74 (1995) 1521) Fujikawa et al.: 1.4665(38)%

(PLB 449 (1999) 6)

measurements with Ge

multi-detector array

our approach:

re-doing the

Fujikawa

/

Savard

experiment by improving

on the systematic errors

Slide30

• • •

0

+ 

0+

decays

: limits on exotic

currents

standard model assumption: only vector current limit on scalar current from term in f function:

(1+bf * g

1 / <E>)

from

b

decay:

b

F

= - 0.0028 ± 0.0026

 improve on low-Z nuclei

limit on scalar currents:

b

F

= Re( (C

s

+ C’

s

) /

C

v

) = 0.0026(42) (90% CL)

Severijns

et al.

Hardy &

Towner, 2015

Slide31

• • • 0+

 0

+ decays

: limits

on exotic

currents

32

Ar:

Adelberger

et

al

., PRL 83 (1999) 1299

B. R. Holstein, J.

Phys

.

G 41

(

2014) 114001

Hardy &

Towner,

Phys. Rev. C 91 (2015) 025501

38m

K: Gorelov, Behr et al

., PRL

94 (2005) 142501

with:

Slide32

Super-allowed Fermi transitions for

T

z

= -1

Slide33

10C

measurement at ISOLDE

catcher

profiler

Proton beam at 1.4 GeV

and 2mA

Target: CaOSource: VADIS

Slide34

• • • 10C/

19

Ne decay

scheme

to

determine the BR

10Cto evaluate pile-up 

19

Ne

Slide35

• • •

10C experimental

set-up

and analysis

procedure

19

Ne: similar T1/2 similar QECno 1022 keV

peak, only 511-511

pile-up

10

C

:

1022

keV

line + 511+511 pile-up

p

ile-up

shape

and

intensity

adjusted

with

511keV

peak

, 19Ne +

sim.

Slide36

• • • 10C and

19

Ne release

Release time

much longer for 10C160Contaminants: 13N2, 14O12C

 use 19Ne to study pile-up conditionsuse MC simulations for 19Ne and

10C to

determine pile-up contribution

Run

= 94

Run

= 118

10

C

19

Ne

Slide37

• • • 19Ne simulation

results

+ time

d

istribution

sim

.

spectrum

Slide38

• • • 10C

: very preliminary result

…to

be

fully

analysedglobal correction, not yet run by run

Slide39

0+ - 0+ b

decay

: 10C at ALTO/Orsay

Slide40

• • • 10C

measurement at ALTO/

Orsay

Scientific Manager:

M.

Lebois

Technical Manager: B. Genolini

100 Ge

crystals

: 5.5% @ 1 MeV

18 LaBr

3

: 1.5% @ 1 MeV

Slide41

• • • 10C

measurement at ALTO/

Orsay

Multi-detector

array

Ge detectors versus

scintilators

Basically no pile-up with plastics…. lets see once the analysis

is done

Slide42

• • • 10C

decay

scheme

Decay of interest Calibration reaction

additional

measurement of 19Ne decay

Slide43

• • • 10C

decay

data

Measurements

:10

C (11B [300-400 mg/cm2] on 4 mg Au backing

): 511 keV: 1.4 e9 718 keV: 1.2 e81022 keV: 1.6 e610B (11B [300-400 mg/cm2] on 4 mg Au backing):

414 keV: 8.5 e7 718 keV: 4.5 e61022 keV: 3.5 e619Ne (CaF

[400-500 mg/cm2] &

PbF on 4 mg Au backing)

):

511

keV

: 4.6 e8



expected

overall

statistical

precision

:

< 0.1 %

Slide44

Future measurements at GANIL

Slide45

• • • Heavy T

z

= 0 nuclei

test CVC on a

much

larger basis

Slide46

• • • Heavy T

z

= 0 nuclei: production at S3-LEB

T

z

= 0

isotopehalf-life (ms)production rate (

pps)66As95.77(23)5000070

Br79 .1(8)

35000

74

Rb

64.776(30)

30000

78

Y

54(5)

1500

82

Nb

50(5)

300

86

Tc

55(6)

250

90

Rh

15(7)

200

94

Ag

37(18)40098In37(5)0.3 test CVC over a larger range of Z

Slide47

• •

S3-LEB + DESIR

S3

beams

into DESIRneed of fast gas cellpurification with HRS + MR-TOF-MS or PIPERADEbest place world-wide

to do this

Slide48

Mirror b decays

Slide49

Experimental ft measurements•

• •

Nuclear

mirror beta decay

in general:

for

mirror transitions: vector and axial-vector currents experimental quantities: precise measurements of masses of parent and daughter, half-life, branching ratio, mixing ratio correct for other interactions:

many transitions: validate corrections, test

CVC

, determine

V

ud

matrix

element, test

CKM

matrix unitarity…

T

1/2

Q

EC

BR

1/2

+

1/2

+

Slide50

Mirror b decays: 23Mg,

27

Si, 37

K

Slide51

51 / 25 

Experiment JYFL2013: 23Mg & 27Si

Slide52

temps (s)coups

• Results of 23

Mg and 27Si

C. Magron et al., EPJA 53 (2017) 55T1/2 = 11.303(3) s

coups

440 keV

511 keV

40

K

1461 keV

canaux

23

Mg:

T

1/2

= 11.303(3)

s Lit. = 11.330(8)

s

BR = 7.81(8) % Lit. = 8.13(12) %

BR

sa

= 92.07(14) %

27

Si:T1/2 =

4.112(2) s Lit. = 4.135(15)

s

BR = 0.164(28) % Lit. = 0.151(9) %

 BRsa

=

99.74(2) %BR = 7.81(8) %

23

Mg23

Mg

23Mg

Slide53

• • • 37

K decay

at ISOLDE

Proton

beam

at 1.4

GeV

and 2mATarget: CaOSource: VADIS

Slide54

• • • Nuclear mirror beta decay:

37

K at ISOLDE

T

1/2

= 1.23635(88) s

BR = 97.96(14) %…to be published

T. Kurtukian Nieto et al.

37

K

37

K

Slide55

• • • Nuclear mirror beta decay: improvements

Recent

measurements

at GANIL:

T

1/2: 17F, 19Ne, 21Na, 33Clr: 19Ne, 35Ar

Slide56

High-precision Germanium detector is availableTz = -1 nuclei have be addressed:

10

C,

22Mg,

30

S Multi-detector array: 140 Ge and LaBr3 detector

Branching ratio measurement of 10C Potential for nuclear mirror decays:

23Mg, 27Si, 37K

 need for high-precision GT-F mixing ratio measurements

SPIRAL2/S3-LEB/DESIR

: heaviest N=Z odd-odd nuclei

CVC tests over much broader

range

Theoretical

corrections

…. work on-going at CENBG

(N.

Smirnova

et al.)

Conclusions

Slide57

N. Smirnova, Y. Lam, L. Xayavong et al.

Theoretical corrections (sd shell)

Slide58

High-precision Germanium detector is availableTz = -1 nuclei have be addressed:

10

C,

22Mg,

30

S Multi-detector array: 140 Ge and LaBr3 detector

Branching ratio measurement of 10C Potential for nuclear mirror decays:

23Mg, 27Si, 37K

 need for high-precision GT-F mixing ratio measurements

SPIRAL2/S3-LEB/DESIR

: heaviest N=Z odd-odd nuclei

CVC tests over much broader

range

Theoretical

corrections

…. work on-going at CENBG

(N.

Smirnova

et al.)

Conclusions

Slide59

Thanks for your attention

Collaborations: CENBG, GANIL, IPNO, LPC Caen,

TRIUMF, Univ. of Guelph, JYFL

Slide60

Slide61

• • • 42Ti

heaviest

T

z

= -1 nucleus accessible

with high statisticsup to factor of 3 difference in dC

only feasible at GANIL

Slide62

• • • 18Ne

Light nucleus important for

physics

beyond

the standard model

up to factor of 3 difference in dC

easily feasible at SPIRAL1

Slide63

Calibration

Procedure

X-ray

radiography

g

-ray detector scans source measurements MC simulations (GEANT4 or CYLTRAN) develop a model of the detector to calculate efficiencies

at any energy at a fixed

distance of 15 cm

Slide64

X-ray

photography

of detector

rough size of

crystal

tilt of

crystal with respect to detector housing of 1° according

to GEANT4 simulations no influence on results

Slide65

AGATA scan table at CSNSM: strongly collaminated 137

Cs source

HPGe

X-Y table

137

Cs (477MBq)

A.

Korichi

et al.

Gamma-ray scan of detector

Slide66

Longitudinal scan: 662

keV

excellent full-

energy

peak spectrum

good total-energy spectrum

Slide67

Front

scan: 662

keV

effect

of detector tilt

clearly visible reasonable overall agreementtotalfull energy

Slide68

Perpendicular

scan: 662

keV

effect

of detector tilt clearly visible reasonable overall agreementfull energytotal

Slide69

Calibration sources

peak

-to-total sources:

close to « one single g ray with

100% branching ratio » standard sources: 22Na, 51Cr, 54Mn, 57Co, 60Co, 65Zn, 85Sr, 137Cs short-lived online sources

at ISOLDE: 38K, 41Ar, 58Co relative efficiency sources:  a few well-known branches (BR error <1%)

at largely different

energies standard sources

:

60

Co,

88

Y

, (

109

Cd),

133

Ba,

134

Cs,

137

Cs,

152

Eu, 207Bi short-lived online sources at

ISOLDE and IPN Orsay: 24

Na, 27Mg, 48Cr, 56Co,

66Ga, 75Se, 169

Yb, 180mHf

absolute efficiency:

60

Co with activity precision of 0.7‰ g-g coincidences

Slide70

• • •

Calibration of germanium detector: peak-to-total

T/P (

exp

)

sim

: no backscatter materialsim: with backscatter material

Slide71

Calibration of germanium detector: absolute efficiency

relative measurement: all sourcesabsolute measurement:

60Co

Slide72

Fit 1: P

0 =

-0.016 ± 0.061; 

2 = 0.85

 <

0.6 ‰

precisionFit 2: P0 = -0.09 ± 0.48 P1 = 0.02 ± 0.16; 2 = 0.86

• • • Calibration of germanium detector: absolute efficiency

60

Co

De

< 5

De

< 1.5

B.

Blank

et al., NIMA 776 (2015) 34

Slide73

sourceXGe

E

g

1

, Br1 = 99.85 %

 I1

Eg2, BR2 = 99.99826 %  I2 three unknowns: A0, e1, e

2 three equations  e1, e

2

Condition:

g-g

cascade with large BR

no « cross-over »  transition

60

Co (et

24

Na)

standard pile-up is same for all peaks

but: necessity to correct pile-up between

two events (1173

1

+ 1332

2

et vice-versa)

I1 = A0 *

e

1

* BR1 * (1.-

e

t2

* w12()) I2 = A0 * e2 * BR2 * (1.-et1 * w12()) I12 = A0 * e1 * e2 * BR12 * w12() I12 = I12’ – I12_11 – I12_22 I12_11 = I11 * e

2 / e

1 * BR2 / BR1

I12_22 = I22 * e1

/ e

2 * BR1 / BR2

e

t2 : from other measurements

w12(): from calculations

E

g1 + Eg2 , BR12 

I12

Absolute efficiency calibration with

g-g

coincidences

X

4+

2+

0+

Slide74

e1 (g-g) = (

0.

2186 ±

0.0007) %

e1

(source act.) = (

0.2175 ± 0.0003) % e2 (g-g) = (0.1996

± 0.0007) % e2 (source act.) =

(0.1996 ± 0.0003) %

Absolute efficiency with

g-g

coincidences:

60

Co

1173 + 1173

1332 + 1332

1173 1332

1173+1332

1173+1332

… do

24

Na at

ISOLDE?

Slide75

Primary Beam:28Si,

32S,

46Ti @ 50

MeV/A

Production Target :

natNi

90 mmLISE3 SpectrometerGANIL / LISE3 experiments

DetectionSet-up

Super-allowed emitter production at GANIL/LISE3

26

Si

30

S

42

Ti

30

S

Slide76

Phase 1

Phase 2

NFS and S3 experiments

for DESIR:

SPIRAL1

(light nuclei from beam/target fragmentation)

SPIRAL2 (n-rich fission fragments, transfer and fusion-evaporation products) at earliest 2020

S3 (fusion-evaporation, refractory elements) SPIRAL2 beam accelerated by CIME

SPIRAL2 facility

Phase 1+

Slide77

T

1/2

Q

EC

BR

0

+

0+

Nuclear beta decay

0

+

0

+

:

Ft = ft (1 +

d

R

) (1 –

d

c

+

dNS ) = = cnstK2

F

2

V

M

g

(1 +

D

R)

T

1/2

Q

EC

BR

1/2

+

1/2

+

Ft = ft (1 +

d

R

) (1 –

d

c

+

d

NS

) =

K

2

F

2

V

M

g

(1 +

D

R

)

x

1

(1 + f

a

/f

v

)

r

2

Precision measurements required: 10

-3

Q

EC

mass measurements:

f ~ Q

EC

5

T

1/2

, BR

b

-decay studies:

t = T

1/2

/ BR

r

2

b

-decay angular correlation studies

f(weak interaction) ~ 2.4%

f(nucl. structure)

~ 0.3-1.5%

f(Z, Q

EC

)

~ 1.5%

additional measurement

needed

mirror decays:

= cnst

Slide78

Double Penning trap for high-resolution separation

at

DESIR facility of SPIRAL2

Requirements

Purify large samples (>104

ions) Mass resolution > 105 Fast separation methods•

• • PIPERADE at DESIR

Test

set-up

at

CENBG

Bordeaux

P.

Ascher

et al., EPJ Web of

Conf

. 66, 11002 (2014)

Collaboration:

CEN Bordeaux-Gradignan

MPIK Heidelberg

CSNSM Orsay

GANIL Caen

LPC Caen

Slide79

• • • 0+

 0

+ decays

: d

c corrections

large discrepancy between different models

particular effects around shell closure: 18Ne, 30S, 42Ti

Courtesy G.F.

Grinyer

for

18

Ne (N=8), for

30

S (N=14), and for

42

Ti (N=20): closed neutron shell

daughters

18

F (

17

F+n),

30

P (

29

P+n) , and

42

Sc (41Sc+n): 

neutron added by the decay populates a neutron orbital that was empty at the N=8 and N=20 "magic numbers" maybe not too surprising

but even stronger effect at the sub-shell closure N=14

 needs experimental confirmation

Slide80



V

ud

= 0.9717(17

)

(10 times

less

precise

than

0

+

-0

+

)

Results: mirror beta decay world data

N. Sewerjins, O. Naviliat Cuncic

Slide81

Super-allowed Fermi transitions for

T

z

=

0

close to 100% g.s. to g.s. transition low precision needed for non-analog transitions

Slide82

• • • 19Ne simulation

results

Slide83

• • • 19Ne simulation

results

Slide84

• • • 19Ne simulation

results

Slide85

• • • 10C and

19

Ne release

Release time

much longer for 10C160Contaminants: 13N2, 14O12C

 use 19Ne to study pile-up conditionsuse MC simulations for 19Ne and

10C to

determine pile-up contribution

Slide86

• • • 19Ne simulation

results

+ time

d

istribution

sim

. spectrum

Slide87

• • • 19Ne simulation

results

Slide88

• • • 19Ne simulation

results

Slide89

• • • 19Ne simulation

results

Slide90

2p

known cases

BigRIPS (+ZDS)

78

Kr at 345 MeV/

u

– 250 pnA

setting on

51

Ni (10.5 h)

setting on

65

Br (115 h)

setting on

64

Se (50 h)

setting on

62

Se (48 h)

BigRIPS

ZDS

WAS3AB

i

3 DSSSD

β

veto

+ EURICA (Ge array)

BigRIPS experiment May-June 2015

Slide91

Particle Identificationregion of2p and new

isotopes

Z

A/Q

Ni

Zn

GeSe

Tz = -5/2 -2 -3/2 -1 -1/2 063Se

59Ge

58Zn

60Ge

64Se

Kr

Br

As

Ga

Cu

67Kr

78Kr