/
observethatwhenthinkingaboutadrawingwheretheedgesaredrawnmostlyvertica observethatwhenthinkingaboutadrawingwheretheedgesaredrawnmostlyvertica

observethatwhenthinkingaboutadrawingwheretheedgesaredrawnmostlyvertica - PDF document

alida-meadow
alida-meadow . @alida-meadow
Follow
368 views
Uploaded On 2016-08-21

observethatwhenthinkingaboutadrawingwheretheedgesaredrawnmostlyvertica - PPT Presentation

alinearcost bpropernarrow cproperwide dnonpropwideFig1Exampledrawingsregardingverticalitymaximizationaequivalentqualitywithrespecttoalinearobjectivefunctionbddi erentdrawingpar ID: 453464

(a)linearcost (b)proper narrow (c)proper wide (d)non-prop. wideFig.1.Exampledrawingsregardingverticalitymaximization:(a)equivalentqualitywithrespecttoalinearobjectivefunction (b){(d)di erentdrawingpar

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "observethatwhenthinkingaboutadrawingwher..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

observethatwhenthinkingaboutadrawingwheretheedgesaredrawnmostlyvertical,wewillusuallyalsohavealownumberofcrossings.Furthermore,edgestendtocrossonlyonaverylocalscale(i.e.,edgeswillusuallynotcrossoveralargehorizontaldistance),increasingthedrawing'sreadability[21].Hence,perhapsthecombinationofmaximumverticalityandlowcrossingnumberleadsto(qualitatively)betterdrawingsthanthetraditionalminimumcrossingnumberinconjunctionwithhighverticality.Theassumptionthathighverticalityleadstofewcrossingsandgooddraw-ingsisalsosupportedbythefollowingobservation:Thebarycenterheuristicisoneoftheearliest,andstillprobablythemostcommonheuristictoquicklysolvethelayeredcrossingminimizationprobleminpractice,especiallyforlarge-scalegraphs.Yet,theheuristicdoesactuallynotactivelytrytominimizecrossings,butiterativelydecidesonpositionspofverticesonlayeri,suchthatpliesat(orcloseto)thebarycenterofthepositionsofitsadjacentnodesonleveli�1.So,theheuristicisinfactmainlytryingtooptimizeourverticalityproblem!Itscrossingminimizationpropertiesariseonlyinthewakeofthisoptimizationgoal.Aswewillbrie ydiscussbelow,ourproblemisaspecialformofanorderingproblem,whichalsoarisesinareasunrelatedtographdrawing.Assuch,wecalltheproblemMulti-levelVerticalOrdering(MLVO).Whenspeci callytalkingaboutthegraphdrawingapplication,i.e., ndingorderingsofthenodesontheirlevelssuchthattheedgesaredrawnasverticalaspossible(seeaprecisede nitionbelow)weusethetermMulti-levelVerticalityOptimization,which,nicelyenough,givesrisetothesameabbreviation.Aswewillsee,MLVOisanaturalquadraticorderingproblem(QOP).OfcourseMLVOisNP-hard(seeAppendixA.1)andcloselyrelatedtothetradi-tionalproblemofmulti-levelcrossingminimization(MLCM),whereoneseeksnodeorderssuchthatthenumberofcrossingsinmulti-leveldrawingsismini-mized.MLCMhasreceivedalotofattentionnotonlywithinthegraphdraw-ingcommunity,butincombinatorialoptimizationingeneral;see,e.g.,[2,5]foroverviewsonstrongheuristicsandexactalgorithmstotackletheproblem.MLVOisalsorelatedtotheproblemofmulti-levelplanarization(MLP)[19,10],i.e., ndnodeorderswhichminimizethenumberofedgesthathavetoberemovedinordertoobtainaplanar(sub)drawing.ThisproblemhasbeenproposedasapossiblesubstituteforMLCM,suggestingthatitcanresultinmoreaestheticallypleasingdrawings.1.1FocusandContributionThefocusofthispaperistopresenttheconceptandspeci cationofMLVOinitsnativegraphdrawingsetting,discussitsrelativemeritsandchallenges,showitssolvabilityviavariousalgorithmicstrategies,andgiveanoverviewonpossiblefurtherextensions.Therefore,itisbeyondthescopeofthispapertogivein-depthdetailsofinnerworkingoftherathercomplexexactalgorithmstotackletheproblem.Forsuchadiscussionsee[4],whereweconsiderILP-,QP-,andSDP-basedalgorithmstotacklethebaseproblemofMLVO.Althoughgraphdrawingisthemain(andmostdeveloped)applicationarea,MLVOcan2 (a)linearcost (b)proper,narrow (c)proper,wide (d)non-prop.,wideFig.1.Exampledrawingsregardingverticalitymaximization:(a)equivalentqualitywithrespecttoalinearobjectivefunction,(b){(d)di erentdrawingparadigms,cf.text.Originalnodesaredrawnaslargegraycircles,LEDsasblacksmallcircles,PDs(ontheemptygridpoints)areomittedforreadability.linkedbilevelQOPs(oneforeachpairofadjacentlevels).WewillseethatMLVOcannotonlybeappliedinsuchasetting(resultinginproperdrawings),butalsodirectlytonon-propergraphs(resultinginnon-properdrawings):thisgivesriseto\true"multi-levelQOPsasalllevelscandirectlyinteractwitheachother.2.1VerticalityWede nethecolloquialtermverticalityviaitsinverse,non-verticality:Thenon-verticalityd(e)ofastraight-lineedgeeisthesquareofthedi erenceinthehorizontalcoordinatesofitsendnodes.Then,d(E):=Pe2Ed(e)denotestheoverallnon-verticalityofasolution.Usingonlythisnotion,wecouldarbitrarilyoptimizeadrawingbyscalingthehorizontalcoordinates.Henceweconsidergriddrawings,i.e.,thenodes'positionsaremappedtointegralcoordinates,therebyrelatingverticalitytothedrawing'swidth.Clearly,weonlyconsideradjacentintegralsforthey-coordinates.Itremainstoarguewhynon-verticalityhastobeaquadraticterm:assumewewouldonlyconsideralinearfunction,thenevenasmallexampleastheonedepictedinFig.1(a)wouldresultinmultiplesolutionsthatareequivalentw.r.t.theirobjectivevalues,eventhoughthebottomoneisclearlypreferablefromthereadabilitypointofview.Intuitively,weprefermultipleslightlynon-vertical4 edges,overfewbutverynon-verticaledges.Infact,thisargumentbringsourmodelinlinewiththeargumentofobservingcrossingsonlyonalocalscale.2.2ProperDrawingSchemeWecanconsidertwodistinctalignmentschemes,duetothefactthatthenodepartitionsV0ihavedi erentcardinalities.Let!0:=max1ipjV0ijdenotethewidthofthewidestlevel.Inthenarrowalignmentschemes,werequirethenodesonthelevelstolieondirectlyadjacentx-coordinates(Fig.1(b)).Then,wewouldusuallyliketocenterthedistinctlevelsw.r.t.eachother,i.e,alevelimayonlyusethex-coordinatesf0i;:::;0i+jV0ij�1g,withthelevel'swidtho set0i:=b(!0�jV0ij)=2c.Thebene tofthisalignmentschemeisthatasimplelinearorderofthenodesperlayeralreadyfullydescribesthesolution.Yet,notethatinmostcasessuchanalignmentschemewillnotresultinaestheticallypleasingdrawings.Inthewidealignmentscheme(Fig.1(c)),nodesarenotrestrictedtolieonhorizontallyneighboringgridcoordinates.Inordertomodelthis,weonlyneedtoexpandthegraphbyaddingpositionaldummynodes(PDs)toeachlevelsuchthatalllevelshave!0manynodes.AllPDshavedegree0.Inthefollowing,wewillsimplyconsiderany(proper)levelgraphG(G0,respectively),whichmayormaynotbeaugmentedwithPDs.Ingraphdrawingpractice,wewillusuallyonlyusethiswidealignmentscheme.Monotonousdrawings.Consideringdrawingsoptimalw.r.t.MLVO,wemaywanttoforceanadditionalmonotonicityproperty.WithintheSugiyamaframework,eachedgeisdrawnusingonlystronglymonotonouslyincreasingy-coordinates.Itwouldbenicetohaveasimilarpropertyalongthex-axisoveralledgesegmentscorrespondingtoanoriginaledge.Wesayadrawingismonotonous,ifalloriginaledgesareweaklymonotonousalongthex-axis.Moreformally,lete=(u;v)2Ebeanyedgeinthe(non-proper)levelgraphG,e1=(u=u0;u1);e2=(u1;u2);:::;ek=(uk�1;uk=v)thecorrespondingchainofedgesinG0,andx:V0!Nthemappingofnodestox-coordinatesinthe naldrawing.Thenadrawingismonotonous,ifx(u)()x(v)impliesx(ui)()x(ui+1)forall0ik.Eventhoughthismightbecounterintuitiveat rst,anoptimalMLVOso-lutiondoesnotinducethisproperty.Wemay,however,explicitlyaskforthispropertytohold,givingrisetothemonotonousMLVOproblem.3Non-ProperDrawingSchemeWhenlookingattypicalSugiyama-styledrawings,weoftenobservethatLEDs|eventhoughtheyareneverexplicitlydrawn|aregiventoomuchspace:Objec-tively,itisunreasonableforLEDstorequireasmuchhorizontalspaceasarealnode.Therefore,currentdrawingalgorithmstryhardto\bundle"multiplelong5 3.1HypotheticalandshiftedroutingThey-andx-coordinatesofthenodesare xedbythelayering(`)andnodeorderperlayer,respectively.Asageneralidea|calledthehypotheticalrouting|wewanttodraweachedgeverticallyuptotheleveldirectlybelowthetargetnode.Onlythere,theedgebendstobedrawnasalinewiththecomputednon-verticality.Clearly,thereareproblemswiththissimpleconcept:Firstly,routingedgesstrictlyverticalmayrequiretodrawthemthroughothernodes.Secondly,verticalsegmentsofmultipleedgeswouldcoincide.Toavoidtheseissues,wehavetorelaxthehypotheticalroutingsuchthatwerouteanedgee=(u;v)vertically\closeto"thex-coordinateofthesourcenode(i.e.,shiftedbysomesmalls(e)).Moreformally,theedgestartsatthecoordinate(x(u);`(u)),hasa rstbendpointat(x(u)s(e);`(u)+1)shiftingtheedgeeithertotheleftortotheright(dependingontheedge'soveralldirection),andisroutedverticallyuntilthepoint(x(u)s(e);`(v)�1)whereitbendstogostraighttotheendpoint(x(v);`(v)).Forshortedgesors(e)=0,somebendpointsmayvanishintheobviousway.Whens(e)isassumedsmallenough,theoverallnon-verticalityofthisroutingisroughlyequivalenttotheverticalityachievedbythehypotheticalrouting.Observethatverticaledges(i.e.,x(u)=x(v))aresomehowspecialasitisnotperseclear,whethers(e)shouldbeaddedorsubtracted;wewilldiscussthisuncertaintylater.Ouroverallgoalisthatthecrossingsinducedbythisshiftedroutingsatisfythefollowingproperties:(P1)adjacentedgesdonotcross,allotheredgepairscrossatmostonce;(P2)averticaledgee1mayonlycrossanotheredgee2(butisnotrequiredto!)whenexactlyoneendnodeofe2isverticallybetweentheendnodesofe1;and(P3)twonon-verticaledgescrossexactlyiftheirhypotheticalroutingscross.Inordertoachievetheseproperties,theshiftvaluess(e)fortheedgeshavetobechosencarefully.Monotonousdrawings.Clearly,thehypotheticaldrawingismonotonousinthex-andy-coordinates,aswellasstrictlymonotonous(i.e.,intheirgeneraldirection).Duetoourshifting,thisproperty(necessarily)getsslightlyviolatedforedgesdrawnstrictlyverticalinthehypotheticalrouting.Wemaysayadrawingis -monotonousforsome ,ifedgeswithidenticalsourceandtargetx-coordinatesdeviatefromthiscoordinatebyatmost atanypoint,andallotheredgesaredrawnmonotonously.3.2ComputingShiftsLetV�Vdenotetheoriginalvertices(incontrasttopossiblePDs).Largery(x)coordinatesarehigher(moreright,respectively)inthedrawing.Weit-erativelyconsiderallnodesv2V�,indecreasingorderoftheiry-coordinate.Foralledgese2Ev:=f(v;u)2E:`(u)�`(v)gthathavevastheirsource7 therespectivel,r-partitionsoftheverticaledges,i.e.,thepartitionsofE=vintoE=;lv;E=;rv,forallv2V�.Lemma2.Fixingalll,r-partitions,theabovedrawingalgorithmrequirestheminimumpossiblenumberofcrossings.Yet,evenwhengiventhenodeordersperlevel,obtainingl,r-partitionsthatleadtotheoverallminimumnumberofcrossingsisNP-hard.Proof.The rstpartfollowsfromthealgorithmicdescription.TheNP-hardnessfollowsfromthefactthatalreadyasinglecolumnofverticallyarrangedverticesconstitutestheNP-hard xedlinearcrossingnumberproblem[17].Inpractice,thepartitionproblemisusuallynotcritical:thenumberofcross-ingsbetweenpairsofverticaledgesisusuallydominatedbythecrossingsin-volvingnon-verticaledges.Infact,inourimplementationwesettleonaverysimple,yetseeminglysucient,heuristic:duringthealgorithm,wegreedilypickthesidewheretheedgeattainsthesmallerlabel;webreaktiesbyclassifyingedgeswhosesourcenodevisontheleft(right)halfofthedrawingasE=;lv(E=;rv,resp.).Thistiebreakingisreasonablesince,consideringanodevontheleftsideofthedrawing,itwillusuallyhavemoreadjacentnodestoitsrightthantoitsleftside,andhencethedecisionusuallyleadstofewercrossings.Basedonthefactthatallsortingisdoneonintegralvalues,wecanconclude:Theorem1.Theabovedrawingalgorithmgeneratesanon-properdrawingofalevelgraphG=(V;E)withspeci ednodeordersperlevelinO(jVj+jEj)time.Theedges'routingsaremonotonousintheiry-coordinates, -monotonousintheirx-coordinate,andrealizetheminimalnumberofcrossings(w.r.t.thegivennodeordersandl,r-partitions).4SolvingMLVO4.1BarycenterandMedianWealreadynotedintheintroductionthattraditionalMLCMheuristicsinfactoftenoptimizethedrawings'verticality(inanarrowalignmentschemesetting).Inparticular,wecanusethetraditionalapproachofcomputingthebarycenterormedianforthenodes,byonlylookingat xedpositionsofthenodesonelevelbelow/above(incaseofproperdrawings),oronanylevelbelow/above(incaseofnon-properdrawings),andsortthemaccordingly.Iteratingthisprocedureforalllayersbothintheupwardanddownwarddirection(i.e.,alternatinglyconsiderthelevelsbeloworabove)untilnomoreimprovementispossibleminimizesthenumberofcrossingsonlyindirectly,buttheedges'verticalitydirectly.Whenconsideringthewidealignmentscheme,weobservethatwecannotcomputereasonablevaluesforPDsastheyhavenoincidentedges.Therefore,we rstonlycomputethebarycenter/medianfortheoriginalnodes|wecallthesevaluesthedesiredlocationsofthenodes|andsortthemaccordingly.Then,wetrytodispersethePDs(necessarytoachievethelayerwidth!0)intothislist9 feasiblesolutions,i.e.,upperbounds.Weiteratethisprocessuntilthegapscoin-cide(afterroundingthelowerboundtothenextintegerabove),oraniterationlimitisreached.MLVOafterMLCM(MLVAC).OurMLVOSDPcannotonlybeuseddirectlyaftertheSugiyama's rststage,butwecanalsoapplyitafterasecondstagecrossingminimization,i.e.,aftersolvinganMLCMproblem.By xingtheorderoftheoriginalnodes(non-PDs),theSDPbecomesanexactquadraticcompactorforSugiyama'sthirdstage.Sucha xingcanbeachievedeitherbydroppingthe xedvariablesaltogetherandcorrespondingmodi cationstotheconstraintmatrix,orbyintroducingequalityconstraintsontherespectivevariables.Inourexperiments,weusedthelatterapproachduetocodesimplicity.Implementingthereductionstrategywouldassuminglyleadtofurtherimprovedrunningtimes.Letp:V!f0;1;:::;!gbetherelativepositionfunction,wherep(u)=0meansthattherelativepositionofnodeuisnot xed.Weaskforthefollowingconstrainttoholdfortwonodesu_2Vmwithp(u)&#xv]TJ;&#x/F14;&#x 9.9;ئ ;&#xTf 1;.70; 0 ;&#xTd [;0;p(v)&#xv]TJ;&#x/F14;&#x 9.9;ئ ;&#xTf 1;.70; 0 ;&#xTd [;0yuv=1;ifp(u)p(v),yuv=�1;ifp(u)&#x-278;p(v).(1)Wecanfurtherstrengthenthesemide niterelaxationbyadding�1linear-quadraticconstraintsthatwegetfrommultiplying(1)withanarbitraryorderingvariableyst;s_2Vn.WealsohavetoadapttheSDPheuristic.We xtheorderingofthe\real"nodesandLEDsbeforehyperplaneroundingandthenonlyallowto ipsignsofvariablesinvolvingPDs.5ComputationalExperienceWecomparetherelativebene tsofthedi erentdrawingschemesandsolutionmethodsdiscussedaboveandshowcasetheirvisualresults.ThereforeweapplytheexactSDPapproachandtheheuristicsproposedintheprevioussectiontosolveMLVOonavarietyoftestsets.Theaimistoinvestigatetheirgeneralap-plicability,notsomuchanin-depthanalysisandmeritevaluation,whichwouldbebeyondthescopeofthispaper.AllcomputationswereconductedonanIn-telXeonE5160(Dual-Core)with24GBRAM,runningDebian5.0in32bitmode.TheSDPalgorithmrunsontopofMatLab7.7,whereastheheuristicsareimplementedinC++.TheSDPapproachleavessomeroomforfurtherin-crementalimprovementaswerestrictthenumberofiterationstocontroltheoverallcomputationale ort.Fortheheuristic,wegivethetotalrunningtimeandbestfoundsolution,considering500independentruns.Weobservethatwhile(forlargergraphs)thisisbene cialtofewerruns,therearenearlynomoreimprovementsinthesolutionqualitywhenfurtherincreasingthisnumber.Allgraphsconsideredinthissection(includingtheiroptimalsolutions,whereavailable),aswellasanimplementationofthenon-planardrawingstyle,areonlineathttp://www.ae.uni-jena.de/Research_Pubs/MLVO.html.11 SDP Heuristic Instance dtime d50d500time500 Proper Polyt. Octahedron 239+50:03:28 2442440.70 Dodecahedron 1815+8129:55:48 1837183410.78 Cube4 5279+12180:49:47 5364536033.74 Gr.viz unix 58+51:19:41 74691.73 world 331+9554:30:21 48647914.84 pro le 876+16995:45:58 96295921.57 Other MS88 155+20:52:17 1571572.62 Worldcup86 349+261:44:46 3683562.60 Worldcup02 385+157:19:38 4053996.44 SM96-full 658+36137:21:07 80975839.78 Non-proper Gr.viz unix 30+30:10:11 34330.28 world 103+70:43:50 1141090.62 pro le 254+53:11:43 2662601.87 Other Worldcup86 113+30:31:30 1161160.44 Worldcup02 150+10:36:42 1561510.73 SM96-full 408+92:16:06 4354213.54 Table2.Di erentapproachesforproperandnon-properMLVOwithwidealignmentscheme.Thetimeissuitablygiveneitherinsecondsorashh:mm:ss.d=X+Ygivesthe nallowerboundXandupperboundX+Yoftheverticality.Theheuristicusesarandominitialorderandbothlocaloptimizationschemes(startingwith2-opt)alternatingly.Wegivethebestresultsafter50and500independentruns;thetimeisspeci edasthetotalfor500independentruns.Motivatedbytheseresults,wenowinvestigateouralgorithmsontwowell-knownlargerbenchmarksets,whichwerealsoconsideredinthecontextof(ex-act)multi-levelcrossingminimization[5].TheRomegraphs[7]contain11,528instanceswith10{100verticesand,althoughoriginallyundirected,canbeunam-biguouslyinterpretedasdirectedacyclicgraphs,asproposedin[8].TheNorthDAGs[6]contain1,158DAGs,with10{99arcs.Consistentwith[5],weconsidertwodi erentwaysoflayeringthegraphsofbothbenchmarksets:theoptimalLP-basedalgorithmby[11]andthelayeringresultingfromcompactinganup-wardplanarization[3].BothyieldsimilarresultsintermsofMLVOrunningtimeandsolvability.Ourmain ndingisthattheoverallobservationw.r.t.theheuristicvariantshold.Yet,asthelayeringsintroducemanymoreLEDsthanthegraphsconsideredbefore,theadvantageofnotrequiringLEDsbecomesevenmorepronounced:consideringthelargestgraphsoftheNorthDAGs(Romegraphs)withoriginallymorethan90edges(nodes),asinglerunoftheheuristicrequiresonly6ms(2ms)onaverage,whereasthepropergraphsrequire1.8sec(0.8sec,resp.).Similarly,theSDPapproachisapplicabletoallRomeandnearlyallNorthgraphs(98%)inthenon-propersetting,astheapproachworkswellupto5000.Ityieldsaveragegapsrangingfrom5%to80%withgrowing13 MLCM MLVO MLVAC Instance zdtime zdtime d(z)time Polyt. Octahedron 8026410.66 81261+10:02:37 243+10:11:49 Dodecahedron 393+130964:40:09 3993051+273:31:58 1851+157:57:00 Cube4 1192+365947:10:19 12476336+867:57:46 5414+3236:23:34 Gr.viz unix 01410.25 71110:04:27 86+51:01:46 world 468471:13:49 83620+416:33:10 459+2917:46:48 pro le 3727670:53:34 751303+97:09:51 1363+38178:54:16 Other MS88 913002.79 1092490:01:27 154+40:48:26 Worldcup86 4976225.3 725590:05:43 506+52:01:36 Worldcup02 457900:01:33 63501+11:24:56 520+93:17:16 SM96-full 16214910:53:29 2221212+138:47:37 711+6761:30:45 Table3.ComparingProperMLVOwithnarrowalignmentschemewithMLCM,andcombiningthemtoMLVAC.Thecolumnszanddgivetheoptimalsolutions(or nalbounds)ofMLCMandMLVO,respectively.Thecolumnsz,dgivethecrossingnumberandnon-verticalityofthefoundsolution.d(z)givesboundsontheoptimalnon-verticalitywithassuredminimalcrossingnumber.Thetimeissuitablygiveneitherinsecondsorashh:mm:ss.15 6.3NodesizesInmanyreal-worldscenarios,itcanbeinterestingtoconsidernodesofvary-ingsize.Before,anynoderequiredexactlyonegridpoint;generally,wemayintroducenodesrequiringdxdygridpoints.Ahorizontalstretchiseasytoincorporate:whenconsideringtheabsolutegridpositionofanodewenotonlycomputethenumberofnodestoitsleft,butthesumoftheirhorizontalstretches.Toincorporateverticalstretches,wecopythenodeonallitsrespectivelevelsandconnectthemfromleveltolevelwithdummyedges.Now,weonlygeneratesolutionswherethesedummyedgesarestrictlyverticalandnotcrossed,bothofwhichcanbeachievedintheSDPstraight-forwardly:Fortheformer,wesimplyaddcorrespondingequalities.Forthelatter,letubeanodeverticallystretchedbetweenlayers`0and`1,x(u)itsx-coordinate,and(w0;w1)anyotheredgewith`0`(w1)`1(i.e.,apotentiallycrossingedge).Werequire[x(w0)�x(u)][x(w1)�x(u)]0:7ConclusionsandFurtherThoughtsWesuggestedtheconceptofverticalityasanovelexplicitoptimizationgoal.Weshowed rstapproachestotackletheprobleminpracticeandderivedanewdrawingstylebasedonthisconcept;thelatterallowstomeaningfullyabon-donthegraph-enlargingedgesubdivisionintrinsictothetraditionalSugiyamascheme.Ourconcepto ersinterestingfurthertopicsforresearch:{Inourtestset,verticality-wiseoptimaldrawingsaretypicallyverygoodw.r.t.thecrossingnumber,andviceversa.Yet,itisanopen(graphtheoretic)question,howmuchthesetwomeasurescandeviateintheirrespectivelyoptimaldrawings.Inotherwords,howbad(intermsofcrossingnumber)canaverticality-wiseoptimaldrawingbecome,andviceversa?{Itseemsworthwhiletoinvestigatefurther,moreinvolved,algorithmsthatclosethegapbetweenoursimpleheuristicsandthecomputationallyexpen-siveSDPapproach.Can,e.g.,sifting-basedalgorithmslike[2]beadoptedtoecientlyworkforverticalityoptimization?Quitegenerally,MLVOseemstobeaninterestingplaygroundtostudyhowtoadopttheextendedresearchonMLCMalgorithmstoanewbutrelated eld.{Intentionally,thisarticleleavesonecentralquestionunanswered:Isaverticality-optimaldrawing\better"intermsofperceptionthanacrossingminimumdrawing.Answeringthisquestiongoeswellbeyondthescopeofthispaper:ontheonehanditwouldrequireawell-constructeduserstudy.Ontheotherhand,suchastudyisnotyetfeasible:Asnotedabove,wearestillmissingal-gorithmstoobtainpracticallynear-optimalsolutionsforgraphstoolargeforourSDP.Onlythen,wecancomparesuchresultsto(near-)optimalMLCMsolutionsinameaningfulway.17 21.H.C.Purchase.Whichaesthetichasthegreateste ectonhumanunderstanding?InGD'1997,LNCS1353,pages248{259,1997.22.F.ShiehandC.McCreary.Directedgraphsdrawingbyclan-baseddecomposition.InGD'95,LNCS1027,pages472{482,1996.23.K.Sugiyama,S.Tagawa,andM.Toda.Methodsforvisualunderstandingofhierarchicalsystemstructures.IEEETrans.Sys.,Man,Cyb.,11(2):109{125,1981.19 Thevariablesshallbe1ifuisleftofvand�1otherwise.Fornotationalsim-plicity,wealsousetheshorthandyvu:=1�yuvforu_.Itiswell-knownthatfeasibleorderingscanbedescribedvia3-cycleinequalities�1yuv+yvw�yuw1;8u;v;w2Vi;1ip;u__:(2)Takingthevectorycollectingtheyuv,wecande nethemulti-levelquadraticordering(MQO)polytopePMQO:=conv(1y1y&#xw-27;:y2f�1;1g;ysatis es(2)):Nowthenon-convexequationY=yy&#xw-27;canberelaxedtotheconstraintY�yyT0,whichisconvexduetotheSchur-complementlemma.Moreover,themaindiagonalentriesofYcorrespondtoy2uv,andhencediag(Y)=e,thevectorofallones.Tosimplifyournotation,weintroduceZ=Z(y;Y):=1yTyY;(3)where:=dim(Z)=1+Ppi=1�jVij2andZ=(zij).WehaveY�yyT0,Z0.Hence,PMQOiscontainedintheelliptopeE:=fZ:diag(Z)=e;Z0g:InordertoexpressconstraintsonyintermsofY,wereformulatethemasquadraticconditionsiny.For(2)thisgivesyuvyvw�yuvyuw�yuwyvw=�1;8u;v;w2Vi;1ip;u__:(4)Wecanassignasemide nitecostmatrixCtogived(E)foranygivenfeasibleorderingyandcancomputeMLVObysolvingd=minfhC;Zi:Z2IMQOg,whereIMQO:=fZ:Zpartitionedasin(3),satis es(4);Z2E;y2f�1;1gg:Bydroppingtheintegralityofy,wegetabasicsemide niterelaxationforMLVOthatcanbetightenedinmultipleways,e.g.viametric-andLovasz-Schreivercuts.See[4]fordetails.TomaketheSDPcomputationallytractable,weonlymaintainthecon-straintsZ0anddiag(Z)=eexplicitely,anddealwiththeotherconstraintsviaLagrangiandualityusingsubgradientoptimizationtechniques(inparticular,thebundlemethod[15,9]).Weobtainupperboundsviathehyperplaneroundingmethod[12],supplementedbyarepairstrategy.Again,wereferto[4]fordetails.Therein,itisalsoshownthatthisapproachclearlydominates|boththeoreti-callyandpractically|otherapproachesbasedonlinearorquadraticprograms.21

Related Contents


Next Show more