/
UsingKnowledgeComponentModelingtoIncreaseDomainUnderstandinginaDigital UsingKnowledgeComponentModelingtoIncreaseDomainUnderstandinginaDigital

UsingKnowledgeComponentModelingtoIncreaseDomainUnderstandinginaDigital - PDF document

arya
arya . @arya
Follow
344 views
Uploaded On 2021-06-09

UsingKnowledgeComponentModelingtoIncreaseDomainUnderstandinginaDigital - PPT Presentation

wedescribethegameenvironmentusedfordataanalysis21KCModelingTraditionallyKCmodelshavebeendevelopedbydomainexpertsusingCognitiveTaskAnalysismethodssuchasstructuredinterviewsthinkaloudprotocolsandra ID: 838676

koedinger springer addition sequence springer koedinger sequence addition mclaren stamper bucket andb numberline games sorting 2014 forinstance 2012 andk

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "UsingKnowledgeComponentModelingtoIncreas..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 UsingKnowledgeComponentModelingtoIncreas
UsingKnowledgeComponentModelingtoIncreaseDomainUnderstandinginaDigitalLearningGameHuyNguyenCarnegieMellonUniversityhn1@andrew.cmu.eduYeyuWangUniversityofPennsylvaniayeyuw@upenn.eduJohnStamperCarnegieMellonUniversityjstamper@cs.cmu.eduBruceM.McLarenCarnegieMellonUniversitybmclaren@cs.cmu.eduABSTRACTKnowledgecomponents(KCs)de netheunderlyingskillmodelofintelligenteducationalsoftware,andtheyarecrit-icaltounderstandingandimprovingtheecacyoflearningtechnology.Inthisresearch,weshowhowlearningcurveanalysisisusedto taKCmodel-onethatwascreatedafteruseofthelearningtechnology-whichcanthenbeimprovedbyhuman-centereddatasciencemethods.Wean-alyzeddatafrom417middle-schoolstudentswhousedadigitallearninggametolearndecimalnumbersanddecimaloperations.Ourinitialresultsshowedthatproblemtypes(e.g.,orderingdecimals,addingdecimals)capturestudents'performancebetterthanunderlyingdecimalmisconceptions(e.g.,longerdecimalsarelarger).ThroughaprocessofKCmodelre nementanddomainknowledgeinterpretation,wewereabletoidentifythedicultiesthatstudentsfacedinlearningdecimals.Basedonthisresult,wepresentanin-structionalredesignproposalforourdigitallearninggameandoutlineaframeworkforpost-hocKCmodelinginatu-toringsystem.Moregenerally,themethodweusedinthisworkcanhelpguidechangestothetype,contentandorderofproblemsineducationalsoftware.KeywordsKCModel,DecimalNumber,DigitalLearningGame1.INTRODUCTIONIntheviewofKCmodeling,student'sknowledgecanbetreatedasasetofinter-relatedKCs,whereeachKCis\anacquiredunitofcognitivefunctionorstructurethatcanbeinferredfromperformanceonasetofrelatedtasks"[22].AKC-basedstudentmodel(whichwerefertoasKCmodel)hasbeenemployedinawiderangeoflearningtasks,suchassupportingindividualizedproblemselection[11],choos-ingexamplesforanalogicalcomparison[35]andtransition-ingfromworkedexamplestoproblemsolving[43].AgoodKCmodelisvitaltointelligenteducationalsoftware,par-ticularlyinthedesignofadaptivefeedback,assessmentofstudentknowledgeandpredictionoflearningoutcomes[24].Anewareaineducationaltechnologythatcouldpotentiallybene tfromKCmodelsisdigitallearninggame.Whiletherehasbeenmuchenthusiasmaboutthepotentialofdig-italgamestoengagestudentsandenhancelearning,fewrigorousstudieshavedemonstratedtheirbene tsovermoretraditionalinstructionalapproaches[32,34].Onepossiblereasonisthatmostdigitallearninggameshavebeende-signedinaone-size- ts-allapproachratherthanwithper-sonalizedinstructioninmind[9].AdoptingKCmodelingtechniquescouldthereforebeanimportant rststepinmeet-ingindividualstudents'learningneedsandmakingdigitallearninggamesamoree ectiveformofinstruction.Acriti-calquestioninthisdirectioniswhetheraKCmodelcanbecreatedaftertheuseofthelearningtechnology,inordertobetterunderstandthetargetedlearningdomainandtohelpinimprovingthetechnology.Inourstudy,weexplorethisquestioninthecontextofagamethatteachesdecimalnumbersanddecimalopera-tionstomiddle-schoolstudents.WestartedwithaninitialKCmodelbasedonproblemtype(e.g.,addingdecimals,completingsequencesofdecimals),thenusedthehuman-machinediscoverymethod[51]toderivenewKCsandfor-mulatethebest ttingmodel.Fromthisimprovedmodel,we rstdiscuss ndingsaboutstudents'learningofdecimalnumbersandproposepotentialchangestotheinstructionalmaterialsthataddressawiderrangeoflearningdiculties-aprocessknownas\closingtheloop"[24].Then,weoutlineageneralframeworkforaddingKCmodelstoeducationalsoftwareinapost-hocmanneranddiscussitsbroaderim-plicationsindigitallearninggames.2.BACKGROUNDInthissection,we rstpresentbackgroundinformationabouttwoaspectsofstudentmodelingthatarerelevanttoourwork:(1)KCmodeling,atechniquethatrepresentsstu-dents'knowledgeaslatentvariables,and(2)thecurrentstateofstudentmodelingindigitallearninggames.Then, wedescribethegameenvironmentusedfordataanalysis.2.1KCModelingTraditionally,KCmodelshavebeendevelopedbydomainexperts,usingCognitiveTaskAnalysismethodssuchasstructuredinterviews,thinkaloudprotocolsandrationalanalysis[45].Thesemethodsresultinbetterinstructionaldesignbutarealsohighlysubjectiveandrequiresubstantialhumane ort.Toaddressthisshortcoming,awiderangeofpriorresearchhasfocusedoncreatingKCmodelsthroughdata-driventechniques.Someoftheearliestworkoniden-tifyingandimprovingKCmodelswasdonebyCorbettandAnderson[11]withtheearlyLISPtutors.Inthiswork,plottingoflearningcurvesshowed\blips"or\peaks"inthecurveswhichindicatednewKCsthatwerenotaccountedforintheinitialmodel.Byusingacomputationalmodelto tthedatainlearningcurves,[5]showedhowLearningFactorAnalysis(LFA)couldautomatetheprocessofidenti-fyingadditionalKCsineduca

2 tionalsoftware.LFAtakesasinputaspaceofhy
tionalsoftware.LFAtakesasinputaspaceofhypothesizedKCs,whichcanbediscoveredthroughvisualizationandanalysistools[51].Oncethereareseveralhuman-generatedKCmodels,theycanbecom-binedbymergingandsplittingskillsusingmachinelearningtechniquesthataimtoimprovetheoverall t[23].Itisimportanttode neagoodmodel,butitisnotal-waysclearhowtodoso.Goodnessof tisbestmeasuredbycrossvalidation,butthistechniqueistimeconsumingandcomputationallyexpensiveforlargedatasets.Further-more,thereisnoconsensusonhowcrossvalidationshouldbeperformedoneducationaldata[50].Tworelatedandeasy-to-computemetricsaretheAkaikeinformationcrite-rion(AIC)andBayesianinformationcriterion(BIC),whichaddressover tbymeasuringpredictionaccuracywhilepe-nalizingcomplexity.Ingeneral,alowerAIC/BIC/crossval-idationscoreindicatesabettermodel.Incasetheydonotagree,[50]showedthatAICcorrelateswithcrossvalidationbetterthanBIC,throughananalysisof1,943KCmodelsinDataShop.However,thesescoresalonedonotportraythefullpicture;aspointedoutby[3],manystudentmodelingtechniquesthataimtopredictstudentlearningachieveneg-ligibleaccuracygains,\withdi erencesinthethousandthsplace,"suggestingthattheyarealreadyclosetoceilingper-formance.Inresponse,[28]broughtattentiontoanotherimportantcriterion-whetherthemodelisinterpretableandactionable.Astheauthorsargued,evenslightimprovementcanbemeaningfulifitrevealsinsightsonstudentlearningthatgeneralizetoanewcontextandleadtobetter,empiri-callyvalidatedinstructionaldesigns.Forinstance,somere-searchhasbeensuccessfulinredesigningtutorunitstohelpstudentsreachmasterymoreeciently,basedonanalysisofpreviousKCmodels[24,27].Ouranalysisfollowstheestablishedprocessoutlinedabove,inwhichwestartedwithabasichuman-generatedKCmodel,thenidenti edpotentialimprovementsusinglearningcurveanalysis,andevaluatedthenewmodelbyAIC,BICandcrossvalidation.Wealsoderivedinstructionalinsightsfromthismodelasthe rststepinclosingtheloop.2.2StudentModelinginGamesAspointedoutby[2],knowledgeindigitallearninggamesishardertorepresentthanknowledgeintutoringsystemsbecausethestudents'thinkingprocess,aswellaslearningobjectives,maynotbeasexplicit.Thepopularstudentmodelingtechniquesforlearninggamesarethosethatcanrepresentuncertainty,suchasBayesianNetworks(BN)[31]andDynamicBayesianNetworks(DBN)[8].Forinstance,inUseYourBrainz,byapplyingBNtoeachlevelofthegametoestimatetheproblem-solvingskillsoflearners,re-searcherswereabletovalidatetheirmeasuresofstealthas-sessment[46].[10]appliedDBNinPrimeClimb,amathgameforlearningfactorization,tobuildanintelligentpeda-gogicalagentthatresultsinmorelearninggainsforstudents.Follow-upworkby[30]re nedandevaluatedtheexistingDBN,yieldingsubstantialimprovementinthemodel'stestperformancepredictionaccuracy,whichinturnhelpsbet-terestimatestudents'learningstatesinfuturestudies.Asanotherexample,[42]employedDBNtopredictresponsesonpost-testquestionsinCrystalIsland,animmersivenarrative-basedenvironmentforlearningmicrobiology.Recentresearchhasproposedentirelydata-drivenmeth-odsfordiscoveringKCmodelsinatutoringsystem[17,26].However,mostKCmodelsemployedindigitallearninggameshavebeengeneratedmanuallybydomainexperts.Forinstance,inZombieDivision,theKCswereidenti edbymathteachersascommonprimefactorssuchas\dividebytwo"and\dividebythree"[2].Similarly,thedesignersofCrystalIslandlabeledthegeneralcategoriesofknowl-edgeinvolvedinproblem-solvingasnarrative,strategic,sce-nariosolutionandcontentknowledge[42].The rstat-tempttore neahuman-generatedbaselineKCmodelusingdata-driventechniquesindigitallearninggameswasdonebyHarpsteadandAleven[18].Theirapproach,whichwasappliedtoBeanstalk,agamethatteachestheconceptofphysicalbalance,isbasedon[51]'shuman-machinediscov-erymethod,whichisverysimilartoours;however,therearenotabledi erencesinthelearningenvironments.Inparticu-lar,thedomainofdecimalnumbersinvolvesmanymorerulesandoperationsthanBeanstalk'sdomainofbeambalancing;inturn,ourdigitallearninggamealsoincorporatesmoreac-tivities(e.g.,placingnumbersonanumberline,completingsequences,assigningnumberstoless-thanandgreater-thanbuckets).Therefore,ourKCmodelingprocesstakesintoac-countnotjusttheinstructionalmaterialsbutalsoelementsoftheinterfaceandproblemtypes,whichcouldbemoregeneralizabletootherlearningenvironments.2.3ADigitalLearningGameforDecimalsDecimalPointisasingle-playergamethathelpsmiddle-schoolstudentslearnaboutdecimalnumbersandtheirop-erations(e.g.,adding,ordering,comparing).Thegameisbasedonanamusementparkmetaphor(Figure1),wherestudentstraveltovariousareasofthepark,eachwithadif-ferenttheme(e.g.,HauntedHouse,SportsWo

3 rld),andplayavarietyofmini-gameswithinea
rld),andplayavarietyofmini-gameswithineachthemearea,eachtarget-ingacommondecimalmisconception:Megz(longerdecimalsarelarger),Segz(shorterdecimalsarelarger),Pegz(thetwosidesofadecimalnumberareseparateandindependent)andNegz(decimalssmallerthan1aretreatedasnegativenumbers)[21,47].Eachmini-gamealsoinvolvesoneofthefollowingproblemtypes:1.NumberLine-locatethepositionofagivendecimalnumberonthenumberline. 2.Addition-addtwodecimalnumbersbyenteringthecarrydigitsandtheresultdigits.3.Sequence- llinthenexttwonumbersofagivense-quenceofdecimalnumbers.4.Bucket-comparegivendecimalnumberstoathresh-oldnumberandplaceeachdecimalina\lessthan"or\greaterthan"bucket.5.Sorting-sortagivenlistofdecimalnumbersinas-cendingordescendingorder. Figure1:Ascreenshotofthemainmapscreen.Ineachthemearea,andacrossthedi erentthemeareas,theproblemtypesareinterleavedtoimprovemathematicslearning[41]andintroducevarietyandinterestingameplay.Figure2showsthescreenshotsoftwomini-games-AncientTemple(aSequencegame)andPegLegShop(anAdditiongame).Eachmini-gamerequiresstudentstosolveuptothreeproblemsofthesametype(e.g.,placethreenumbersonanumberline,orcompletethreenumbersequences).Stu-dentsmustanswercorrectlytomovetothenextmini-game;theyalsoreceiveimmediatefeedbackabouttheiranswers.Tofurthersupportlearning,afteraproblemhasbeensolved,studentsarepromptedtoself-explaintheiranswerbyselect-ingfromamultiple-choicelistofpossibleexplanations[7].Apriorstudyby[34]showedthatDecimalPointpromotedmorelearningandenjoymentthanaconventionalinstruc-tionalsystemwithidenticaldecimalcontent.Follow-upstudiesby[37]and[19]thentestedthee ectofstudentagency,wherestudentscanchoosetheorderandnumberofmini-gamestheyplay.Thesestudiesrevealednodi er-encesinlearningorenjoymentbetweenlow-andhigh-agencyconditions,but[19]foundthatstudentsinahigh-agencyconditionhadthesamelearninggainswhileplayingfewermini-gamesthanthoseinlow-agency,suggestingthatthehigh-agencyversionledtomorelearningeciency.Post-hocanalysesby[52]examinedthedi erentmini-gamesequencesplayedbyhigh-agencystudentsandfoundthat,consistentwiththereportsin[19],thosewhostoppedearlylearnedasmuchasthosewhoplayedallmini-games.Thisresultleadstoimportantquestionsabouttherightamountofinstructionalcontenttomaximizelearningeciency.Toanswerthesequestions,wewouldneedamore ne-grainedmeasureofstudentlearningusingin-gamedataratherthanexternaltestscores.TheKCmodelingworkpresentedhererepresentsthe rststepinthisdirection. (a)AncientTemple (b)PegLegShopFigure2:Screenshotsoftwomini-games.2.3.1ParticipantsandDesignWeobtaineddatafromtwopriorstudiesofDecimalPointinvolving484studentsin5thand6thgrade,inallstudyconditions[19,37],andremovedthosestudentswhodidnot nishalloftherequiredmaterials,reducingthesampleto417students(200males,216females,1declinedtorespond).Thestudentsplayedeithersomeorallofthe24mini-gamesinFigure1,dependingontheirassignedagencycondition,asdescribedpreviously.Whenselectingamini-game,stu-dentswouldplaytwoinstancesofthatgame,withthesameinterfaceandgamemechanicsbutdi erentquestions.Stu-dentsinthehigh-agencyconditionalsohadthechoicetoplayathirdinstanceofeachmini-gameonce.Insubsequentanalyses,weuseanindexof1,2and3todenotethein-stancenumber,e.g.,AncientTemple1,AncientTemple2andAncientTemple3.Foradetaileddescriptionoftheexperimentaldesignofpriorstudies,referto[19,37].2.4DatasetWeanalyzedstudents'in-gameperformancedata,whichwasarchivedintheDataShoprepository[49]indatasetnumber2906.Thedatasetcoversatotalof613,055individualtrans-actions,whichrepresentactionstakeninthemini-gamesby417studentsinsolvingdecimalproblems.3.METHODS&RESULTSWestartedwiththebaselineKCmodelsderivedfromtwosetsoffeaturesthatDecimalPointwasbuiltupon.Theseinitialmodelswere tusingtheAdditiveFactorsModel(AFM)method[6],andthelearningcurveswerevisualizedinDataShop.AFMisaspeci cinstanceoflogisticregres-sion,withstudent-correctness(0or1)asthedependentvari-ableandwithindependentvariabletermsforeachstudent,eachKC,andtheKCbyopportunityinteraction.Itisageneralizationofthelog-lineartestmodel[54]producedbyaddingtheKCbyopportunityterms.Wethenchosethemodelwithbetter tandanalyzeditslearningcurves.Eachmodelwasrunon42,637observationstaggedwithKCs.3.1BaselineModelsOur rstbaselinemodel,calledDecimalMisc,consistsoffourKCsthatarethemisconceptionstargetedbythemini-games:Megz,Segz,Negz,Pegz[21].Becauseeachmini-gamewasdesignedbasedonasinglemisconception(KC), wecreatedamodelthatmapseachmini-gamequestiontoitscorrespondingKC.Thesecondmodel,ProblemType,insteadmapseachmini-gamequestiontoitsproblemtype(oneofNum

4 berLine,Addition,Bucket,SortingandSequen
berLine,Addition,Bucket,SortingandSequence).Table1showsthe tstatisticsresultsofthesetwomodels.Table1:Fitstatisticsresultsofthetwobaselinemodels.RMSEindicates10-foldcross-validationrootmeansquarederror,strati edbyitem.Val-uesthatindicatebest tareinbold. Model(#ofKCs) AIC BIC RMSE DecimalMisc(4) 30,699.27 34,379.97 0.3292 ProblemType(5) 29,504.09 33,202.12 0.3231 Ascanbeseen,ProblemTypeoutperformsDecimalMiscinallthreemetrics-AIC,BICandRMSE.Inotherwords,theactualproblemtypescapturestudents'learningbetterthantheunderlyingmisconceptions.Insubsequentanalyses,wethereforefocusedonimprovingtheProblemTypemodel.The rststepisidentifyingpotentialimprovementsinthelearningcurveofeachKC.Ingeneral,agoodlearningcurveissmoothanddecreasing[51].Smoothnessindicatesthatnostepismuchharderoreasierthanexpected,andadecreasingcurveshowsthatstudentswerelearningwellandthereforemadefewererrorsatlateropportunities[36].FromFigure3,weobservedthatthelearningcurvesofNum-berLineandBucketarereasonablygood.ThelearningcurveofAdditionstaysatroughlythesamelowerrorratethroughout(10%),buttherearesuddenpeaks,suggest-ingthatsomeproblemswereharderthanothersandthusshouldberepresentedbyaseparateKC.ThelearningcurveofSequencedecreasesbutnotsmoothly;thezigzagpatternindicatesthatstudentswerealternatingbetweeneasyandhardproblems.Again,havingseparateKCsforthelowsandhighsofthecurvewouldlikelyyieldabetter t.ThelearningcurveofSortingisneitherdecreasingnorsmooth;therefore,thisKCneedstobefurtherdecomposed.3.2ImprovedKCModels3.2.1KCdecompositionTo ndpossibledecompositions,wefollowedthehuman-machinediscoverymethodoutlinedin[51]andconsultedpriorliteratureonstudents'learningofdecimalnumbers.Belowwepresentouranalysisofeachproblemtype.NumberLine.Asitslearningcurveisalreadygood,weturnedtorelatedworkonthegameBattleshipNumberline[29],wherestudentshavetoplacegivenfractionnumbersonanumberline.Theauthorsfoundthat,onanumberlinethatrunsfrom0to1,studentshavebetterunderstandingwhenadjustingfrom0or1(e.g.,1/10or9/10)thanfrom1/2(e.g.,3/7).Sincedecimalnumberscanbetranslatedtofractionsandviceversa,we(tentatively)experimentedwithapplyingthe ndingsof[29]toourmodel.Inparticular,wedecomposedtheNumberLineKCintoNumberLineMid(thenumbertolocateliesbetween0.25-0.75)andNumberLineEnd(thenumbertolocateliesbetween0-0.25or0.75-1). Figure3:LearningcurvesoftheKCsinProblemType.Thex-axisdenotesopportunitynumberforeachKCandy-axisdenoteserrorrate(%).Theredlineplotsalloftheactualstudents'errorrateateachoppor-tunity,whilethebluelineisthecurve tbyAFM.Addition.ThereareeightitemsinanAdditiongame:fourtextboxesforcarrydigits-carryTens,carryOnes,carry-Tenths,carryHundredths-andfourtextboxesfortheresult-ansTens,ansOnes,ansTenths,ansHundredths(seeFigure2bforanexample).Previously,alloftheseitemshadthesameKClabelofAddition,butweexpectedthatsomedig-itswouldbehardertocomputethanothers.Forinstance,thecarryHundredthsdigitisalways0,becauseourprob-lemsonlyinvolvenumberswithtwodecimalplaces.Ontheotherhand,becausethefocusofAdditionproblemsistotestthatstudentscancarryfromthedecimalportiontothewholenumberportion(i.e.,probingforthePegzmiscon-ception),thecarryOnesdigitisalwaysexpectedtobe1.ItwasindeedthecasethatcarryOnes,alongwithansOnes,ac-countsforalargeportionofthepeaksinAddition'slearningcurve(Figure3).Themostcommonerrorinthesepeaks,however,comesfromcarryTensandansTensinthemini-gameThirstyVampire1.Forthemajorityofstudentsinoursample(87.5%),ThirstyVampire1wasthe rstAddi-tionproblemtheyencountered,anditsquestion(7.50+3.90)wasalsotheonlyonewithacarryinthetensplace;inotherwords,itwasboththe rstandhardestquestion.Forthisreason,wedecidedtodecomposetheAdditionKCinto:Addition_Tens_NonZeroappliestothecarryTensandansTensiteminThirstyVampire1.Addition_OnesappliestocarryOnesandansOnesinallAdditionmini-games.Otheritems(e.g.,carryTenths,carryHundredsansTenths)retaintheKClabelAddition.Sequence.InaSequencemini-game,studentshavetoenterthelasttwonumbersinanincreasingarithmeticse- quence,basedonthepatternofthe rstthreegivennumbers(e.g.,Figure2a).Inthewaythequestionsweredesigned,the rstnumberto llinalwaysrequiresanadditionwithcarry,whereastheseconddoesnotinvolveacarry.Wethereforehypothesizedthatthe rstnumberismoredi-cultthanthesecond,whichwascon rmedbyinspectionofthelearningcurve:thealternateupanddownpatternsdepictstudents'errorratesasthey lledinthe rstandsecondnumberineachsequence.Wefurtherdistinguishedbetweennumberswithtwodecimaldigitsandthosewithone,astheformershouldbemorediculttoworkwith.Insummary,wedec

5 omposedtheSequenceKCintofourKCs:Sequence
omposedtheSequenceKCintofourKCs:Sequence_First_OneDigit( rstnumber,withonedecimaldigit),Sequence_First_TwoDigits( rstnumber,withtwodecimaldigits),Sequence_Second_OneDigit(secondnum-ber,withonedecimaldigit),Sequence_Second_TwoDigits(secondnumber,withtwodecimaldigits).Bucket.AsthelearningcurveofBucketisalreadygood,wedidnotfurtherdecomposethisKC.Sorting.ThelearningcurveofSortingremains atatarounda25%errorrate.Sincetherearenooutstandingblipsorpeaksinthiscurve,weinsteadusedDataShop'sPerformancePro lertooltoplotthepredictedandactualerrorratesofeachmini-gameproblem(Figure4).Weidenti- ed vemini-gameproblemsinwhichtheactualerrorratewaslargerthanpredictedbyatleast5%;inotherwords,theseproblemswereharderthanexpected.Therefore,welabeled veofthem-RocketScience1,RocketScience2,JungleZipline2,BalloonPop2andWhacAGopher1-byaseparateKCcalledSortingHard,whileotherproblemsre-mainedinSorting.WewillcharacterizethemathematicalfeaturesoftheseSortingHardproblemsinSection4.2. Figure4:VisualizationoftheSortingKC'sgoodnessof twithrespecttotenSortingmini-gameswiththehighesterrorrates.Thebars(shadedfromleft)showtheactualerrorratesandthebluelineshowspredictederrorrates.3.2.2Newmodelresult&comparisonTable2showsthe tscoresoftheoriginalProblemTypemodel,themodelsresultingfromindividualKCdecompo-sitions,andthe nalmodelcombiningalldecompositions,calledCombined.ApartfromProblemTypeandCombined,thenameofeachothermodelindicateswhichoriginalprob-lemtypeKCisdecomposed.Forinstance,theSortingmodelhassixKCs-SortingHard,Sorting,NumberLine,Bucket,Addition,Sequence-wherethelastfourareiden-ticaltothoseinProblemType.WecanthereforeseethatdecomposingtheoriginalSortingKCaloneresultsinade-creaseofAICby231.91andBICby214.59.Table2:Fitstatisticsresultsoftheoriginalandnewmodels,sortedbyAICindescendingorder.Valuesthatindicatebest tareinbold. Model(#ofKCs) AIC BIC RMSE ProblemType(5) 29,504.09 33,202.12 0.3231 NumberLine(6) 29,492.48 33,207.83 0.3233 Sorting(6) 29,272.18 32,987.53 0.3215 Sequence(8) 29,159.27 32,909.25 0.3234 Addition(7) 29,025.77 32,758.43 0.3235 Combined(12) 28,436.07 32,255.34 0.3196 Figure5showstheresultinglearningcurvesoftheabovedecompositions.WeobservedthreeKCswithissues:(1)Sequence_First_TwoDigitsisa atcurvewhichindicatesnolearning,(2)SortingHardremainsathigherrorrates,and(3)Addition_Tens_NonZerohastoolittledata(becauseitonlyappliestoThirstyVampire1).ThreeotherKCs-Addition,Addition_Ones,Sequence_Second_Digits-havelowand atcurves,suggestingthatstudentsalreadymas-teredthemearlyonanddidnotneedasmuchpractice(i.e.,theywereover-practicingwiththeseKCs).TheremainingKCshavesmoothanddecreasingcurves.Mostnotably,wewereableto xthezigzagpatternintheoriginalSequencecurve,reducethepeaksintheAdditioncurve,andcapturetheSortingproblemsthatdore ectstudents'learning.OtherthanNumberLine,allofthenewmodelsresultedinbetterAICandBICscores.TheCombinedmodel,whichincorporatesalldecompositions,isthebest t;whencom-paredtoProblemType,itsAICscoreislowerby1068.02anditsBICislowerby946.78.UsingDataShop'sPerformancePro lertool,wewerealsoabletovisualizethedi erencesbe-tweenthesemodelsinFigure6.HereweseethatforeachofthenewKCs,theCombinedmodel'sprediction,representedbytheblueline(squarepoints),isclosertotheactualerrorratethantheProblemTypemodel'sprediction,representedbythegreenline(roundpoints).Hence,thecombinationofourKCdecompositionsresultedinabetter tvisually.4.DISCUSSION4.1ComparisonofBaselineModelsWefoundthattheProblemTypemodel,whichmapsmini-gamequestionstoproblemtypes,isabetter tforstudentlearningthantheDecimalMiscmodel,whichmapsmini-gamequestionstounderlyingmisconceptions.Hereweout-linetwopossibleinterpretations.First,whileeachquestionwasdesignedtotestonemiscon-ception,studentsmaydemonstrateothermisconceptionsintheiranswers.Forexample,themini-gameJungleZipline1,labeledasSegz(shorterdecimalsarelarger),asksstudentstosortthedecimals1.333,1.33,1.3003,1.3fromsmallesttolargest.Ananswerof1.3003,1.333,1.33,1.3wouldmatch KCswithissues Lowand atKCs GoodKCs Figure5:LearningcurvesoftheKCsinCombined.Thex-axisdenotesopportunitynumberandy-axiserrorrate(%).Theredlineplotstheactualstudents'errorrateateachopportunity,whilethebluelineisthecurve tbyAFM. Figure6:VisualizationoftheCombinedandProblem-Typemodels'goodnessof twithrespecttothenewKCs.Thebars(shadedfromleft)showtheactualerrorrates.TheblueandgreenlineshowpredictederrorratesofCombinedandProblemTyperespectively.theSegzmisconception,butweobservedthat25%ofthein-correctanswerswere1.3,1.33,1.333,1.3003,whichinsteadcorrespondst

6 oMegz(longerdecimalsarelarger).Asanother
oMegz(longerdecimalsarelarger).Asanotherexample,themini-gameCaptureGhost1,labeledasMegz,asksstudentstodecideifeachofthefollowingnumbers-0.5,0.341,0.213,0.7,0.123-issmallerorlargerthan0.51.14%oftheincorrectanswersstatedthat0:5�0:51andalso0:341�0:51,whichdemonstratesbothSegzandMegz,re-spectively.Ingeneral,inaproblemsolvingenvironmentlikeDecimalPoint,measuringstudents'misconceptionsshouldbebasedontheiractualanswers,notthequestionsalone.Therefore,aKCmodelthatmapseachquestiontoitshy-pothesizedmisconceptionmaynotcapturethestudents'fullrangeoflearningdiculties.Twoalternativeapproachesusedbyotherresearchfortrackingdecimalmisconceptionsare:(1)measuringthematalargergrainsize,suchaswholenumber,roleofzeroandfraction[14],and(2)usingerro-neousexamplesinsteadofproblemsolvingquestions[21].InthecontextofKCmodeling,wecouldapplyourprocesstoanexistingdatasetofstudentlearningofdecimalnumbersfromerroneousexamples,suchasthedatasetfrom[33].Fromacognitiveperspective,[44]pointedoutthat\di erentkindsofknowledgeandcompetenciesonlyshowupinter-twinedinbehavior,makingithardtomeasurethemvalidlyandindependentlyofeachother."Theauthorsconducted aseriesofstudiestoteststudents'conceptualknowledgeofdecimalnumbersandproceduralknowledgeoflocatingthemonanumberline.Eachstudyemployedfourcommonhy-potheticalmeasuresofeachkindofknowledge,butrevealedsubstantialproblemswiththemeasures'validity,suggestingthatitisdiculttoreliablyseparatetestsofconceptualknowledgeandproceduralknowledge.Inourcontext,thedecimalmisconceptionsre ectconceptualknowledgewhiletheproblemtypesrequireacombinationofbothconceptualandproceduralknowledge.Therefore,di erentiatingprob-lemsbytheirtypescreatesclearerKCdistinctionsthanbytheirassociatedmisconceptions,becausetheformermatchesmorecloselywithstudents'actualperformance.4.2InterpretationoftheNewKCsHerewediscusstheinsightsfromourearlierKCdecompo-sitionresults,usingacombinationoflearningcurveanaly-sesanddomain-speci cinterpretations.Whiletheexamplequestionswecitearespeci ctothoseinDecimalPoint,the ndingsaboutstudentlearningareapplicabletoanyothereducationaltechnologysystemindecimalnumbers.NumberLine.Unlike[29],wedidnotobservethatstudentshavemoredicultywithnumberscloseto0.5thanwithnumberscloseto0or1.DecomposingNumberLineintoNum-berLineEndandNumberLineMidresultsinincreasesinBICandRMSE,whichareindicativeofover t.Furthermore,theoriginallearningcurveofNumberLineisalreadysmoothanddecreasing(Figure3),soitisunlikelythatanydecomposi-tionwouldyieldsigni cantimprovements.Moregenerally,thisresultsuggeststhatstudentscouldlearntoestimatethemagnitudeofagivendecimalnumberbetween0and1rea-sonablywell,eventhoughtheymayhavedicultywiththeequivalentfractionformintheway[29]reported.Toexplainthisdi erence,weshouldnotethatstudentstendnottoper-ceivedecimalsandfractionsasbeingequivalent[47],hencedicultieswithfractionsmaynottranslatetodicultieswithdecimalnumbers.As[12]pointedout,afractiona/brepresentsboththerelationbetweenaandbandthemag-nitudeofthedivisionofabyb,whereasadecimalnumber,withouttherelationalstructure,moredirectlyexpressesaone-dimensionalmagnitude.Therefore,studentsoftenhavehigheraccuracyinestimatingdecimalnumbersthanfrac-tionsonanumberline[53].The ndingsfromouranalysisand[29]furthersupportthisdistinction.AdditionandSequence.Theseproblemtypesbothin-volvecomputingthesumoftwodecimalnumbers,andasourdecompositionsshowed,thedicultyfactorliesincar-ryingdigitstothenexthighestplacevalue.InthecaseofAddition,the rstquestion,whichalsohappenstobethemostchallenging,istoadd7.50and3.90,whichrequirestwocarries,onetotheonesplaceandonetothetensplace.Theerrorrateisthereforehighestforthisquestion(the rstpeakinFigure3),butdecreasesatlater(easier)opportuni-ties.TheoriginallearningcurveofSequenceproblemshasazigzagpatternduetothestudentsalternatingbetweenadditionswithandwithoutcarry.Distinguishingbetweenthesetwotypesofoperations,andalsoonthenumberofdecimaldigits,didresultinabettermodel t.WealsonotethattheerrorratesinSequenceproblemsaregenerallyhigherthaninAdditionproblems.Apossibleinterpretationisthat,whiletheunderlyingadditionoperationsaresimilar,theSequenceinterfacedoesnotlayoutthecarryandresultdigitsindetailastheAdditioninterfacedoes(Figure2).Aspointedoutby[25],foraddingandsubtractingdecimalsofdi erentlengths,incorrectalignmentofdecimaloperandsisthemostfrequentsourceoferror.SinceAdditionproblemsalreadysupportedthisalignmentviatheinterface,studentswerelesslikelytomakemistakesinthem.BucketandSorting.Theseproblemtypesbothinvolve

7 performingcomparisonsinalistof vedec
performingcomparisonsinalistof vedecimalnumbers,butindi erentmanners.Bucketproblemsrequirecompar-ingeachnumbertoagiventhresholdvalue,whileSort-ingproblemsrequirecomparingthenumbersamongthem-selves.Accordingto[40],orderingmorethantwodecimals(Sorting)couldreveallatenterroneousthinkingwhichmerecomparisonofpairs(Bucket)cannot.Consistentwiththis nding,ourresultsalsoshowedthatstudentswereabletolearnBucketproblemswellbutstruggledwithSorting.OurhypothesisisthataSortingproblemrequirestwoseparateskills:(1)comparingindividualpairsofnumber(inalistof venumbers,studentsmayperformuptotencompar-isons),and(2)orderingthenumbersonceallthecompar-isonshavebeenestablished.Thecurrentinterfaceonlyasksforthe nalsortedlist,soitwouldneedtoberedesignedtoallowfortrackingstudentmasteryofeachofthesetwoskills.Furthermore,byexaminingthe veproblemscatego-rizedasSortingHard,weidenti eduniquechallengesthatwerenotpresentelsewhereinDecimalPoint.Firstistheissueofnegativenumber-themini-gameBalloonPop2,withanerrorratecloseto60%(Figure4),asksstudentstosortthesequence8.5071,-8.56,8.5,-8.517indescendingorder.Giventhatstudentsmayholdmisconceptionsaboutboththelengthandsignofdecimalnumbers[21],andthatnootherSortingproblemsinvolvenegativenumbers,itisclearwhystudentsfacedsigni cantdicultiesinthiscase.Thesecondissueisanothercommonmisconception-thata0immediatelytotherightofthedecimalpointdoesnotmatter(e.g.,0.03=0.3)-which[39]referredtoasroleofzero.Itcouldbeinvokedinthemini-gameRocketScience1,whichasksstudentstosort0.14,0.4,0.0234,0.323inascend-ingorder;inparticular,19%oftheincorrectanswersput0.0234between0.14and0.323,implyingtheincorrectbe-liefthat0.0234=0.234.Previousstudieshavealsoreportedthat9thgradersandevenpre-serviceteachersdemonstratedthismisconceptioninsimilarsortingtasks[20,38].Further-more,studentsmaystillhavethismisconceptionevenafterabandoningothers[13].Accordingto[24],therearefourstepstoredesignatutorbasedonanimprovedcognitivemodel:(1)resequencing,(2)knowledgetracing,(3)creatingnewtasks,and(4)changinginstructionalmessages,hintandfeedback.Basedonthisframeworkandouranalyses,wederivedthefollowinglessonsfordesigninginstructionalmaterialsinourdigitallearninggameandothertutoringsystemsindecimalnumbers:1.ArrangetheeasyAdditionproblems(withoutorwithonecarry)atthebeginning.Thenumberoftheseeasyproblemscanalsobereduced,asoverpracticeisal-readyoccurringbasedonthenumberofproblemsstu-dentsareattemptingwithlowerrorrates.2.DesignmoreAdditionproblemswithvaryingdicul-ties(thosewithmorecarriesaremoredicult)and positiontheminincreasingorderofdiculty.3.Leavetheoperand eldsblankinAdditionproblemssothatstudentscanpracticealigningdecimaldigits.GettingfeedbackonthisalignmenttaskcouldinturnhelpthemsolveSequenceproblemsbetter.4.Providemoresca oldinginSortingproblems,by rstaskingstudentstoperformpairwisecomparisonsofthegivennumbers,thenhavingthemplacethenumbersinorder.The rsttaskcanbeusedtotrackmiscon-ceptionsandthesecondtotracktheskillofordering.5.DesignquestionsinotherproblemtypesbesidesSort-ing(e.g.,NumberLine,Bucket)thataddresstheroleofzeromisconception,asitmaybestrongerandpersistlongerthanothermisconceptions.4.3AdvantagesofPost-hocKCModelingWhile,ingeneral,KCmodelingmethodscanbeappliedtoanydomain,domainknowledgeisstillcriticalfortheinter-pretationoftheimprovedmodelsandanunderstandingofthenewlydiscoveredKCs.Wehaveshownthatwecanapplymethodsinapost-hocmannertoadatasetinaneducationaldomaintobothachieveabetterunderstandingandcreateabetter ttingKCmodel.Our ndingsalsodemonstratethatthetypeofKCmodelingweusedcanhelpguidechangestothetypes,contentsandorderofproblemsthatareusedinadecimallearninggame(andeducationaltechnologymoregenerally).Fromatheoreticalperspective,thesearchspaceforaKCmodelinagivendomainwillbesomewherebe-tweenaSingleKCmodel,whereeverysteprepresentsthesameKC,toaUniqueStepmodel,whereeverystephasitsownKC.IfweincludetheoptionoftaggingasinglestepwithmultipleKCs,thespacecouldgetin nitelylarger,butinapracticalsensemulti-codedstepscouldbecombinedtoasingleKCbyconcatenatingtheKCsonagivenstep.Sev-eralautomatedprocesseshavebeenappliedtocreateKCmodelsbysearchingthepossiblespace,suchasQ-Matrixsearch[48],buttheyhavethelimitationofcreatingmodelswithunlabeledskills.Themethodsthatweuseddonotfacethisproblembecausewestartedwithafullylabeledmodelandworkedfromthere.Usingvisualandcomputationalanalysesonthelearningcurves,wewereabletomakeim-provementsbycombiningtheoutputof ttingmodelswithdomainknowledge.TheoriginalAdditionKCisanexcel-lentexampleofthisapproa

8 chinaction.Whiletheoverallcurvedidshowad
chinaction.Whiletheoverallcurvedidshowadecliningerrorrate,everyfouropportu-nitieslookedasifthestepsweregettingharder(seeFigure3).Methodologically,thiswasaclearopportunityforim-provementandlikelyafeaturewhereeachsuccessivestepinaproblembecameharder.Sureenough,thiswasthecaseaseachoffourproblemstepsrequiredacarry,andthehardestproblemrequiredtwocarries.Thisisoneexamplewhichdemonstratesthatwewereabletonotonlygetabetter t-tingmodel,butalsoattainadeeperdomainunderstanding.4.4FutureWorkInournextstudy,wewillusethebestKCmodelfromthisworkasatestofhowwellitperformswithanewpopula-tionofstudents.Thereisalsopotentialinconnectingourworkwithearlierstudiesofstudentagencyindigitallearn-inggames.Inparticular,[37]and[19]reportedthateventhoughstudentsinthehigh-agencyconditioncouldchoosetoplayanymini-gameinanyorder,theydidnotlearnmorethanthoseinthelow-agencycondition,whoplayeda xednumberofmini-gamesinadefaultorder.[19]speculatedthattheformermightbefocusedonselectingmini-gamesbasedontheirvisualthemes(e.g.,HauntedHouse,WildWest-seeFigure1)ratherthanlearningcontent.Toaddressthisissue,wecouldemployanopenlearnermodel[4]thatdis-playstheestimatedmasterylevelofeachdecimalskilltothestudents,wheretheskillsaretheKCsinourbestmodel.Inthisscenario,weexpectthatstudentswhoexerciseagencywouldbeabletomakeinformedselectionsofmini-gamesbasedonanawarenessoftheirlearningprogress.Atthesametime,digitallearninggamesareintendedtoengagestudentsandpromotelearning.Therefore,wewanttoexploretheinteractionsbetweenenjoymentandlearning,particularlyinhowbesttobalancethem.Justaslearningcanbemodeledbyknowledgecomponents,canenjoymentalsobemodeledby\funcomponents,"andhowwouldtheybeidenti ed?Webelieveourdigitallearninggameisanexcellentplatformforthisexploration,becauseeachmini-gamehasaseparatelearningfactor(thedecimalquestion)andenjoymentfactor(thevisualthemeandgamemechan-ics).Itisalsopossibletotrackstudents'enjoymenteitherthroughin-gamesurveysorautomateda ectdetectors[1].Asournextstep,wewilldesigntwostudyconditions,onethatemploysatraditionalopenlearnermodelandonethatcapturesandre ectsstudents'enjoyment,usingthe veproblemtypes(wordedinamoreplayfulway,e.g.,ShootinginsteadofSorting,becauseallSortingmini-gamesinvolveshootingobjectssuchasspaceship)astheinitialfuncompo-nents.Findingsfromthisfollow-upstudywouldthenallowustore neourenjoymentmodelandprovideinsightsintowhetheralearning-drivenorenjoyment-drivengamedesignyieldsbetteroutcomes.InthedirectionofKCmodeling,asmentionedin[19]and[52],itispossiblethatthethegamecontainsmorelearningmaterialsthanrequiredformastery,orthatsomestudentsmayhaveexhibitedgreaterlearningeciencythanothers.WiththeKCmodelidenti edinthiswork,wecanthenapplyBayesianKnowledgeTracing[11]toassessstudents'masteryofeachKCandverifythepresenceoflearningef- ciencyorover-practice.Anotherareaweplantostudyiswhetherindividualdi erencesamongthestudentsintheirgameplayandlearningcouldleadtofurtherimprovementinpredictingskillmasterybasedonthebest- tKCmodel,similartopreviousresearchdoneinanintelligenttutorforgeneticslearning[15].Theseindividualdi erencescouldbeaccountedforbyotherfeaturesinthegameoutsideoftheidenti edcognitive-de nedKCs[16].5.CONCLUSIONPreviousworkhasbeendoneonre ningKCmodelsfored-ucationalsystemsinthemannerwehaveshownhere[51],althoughourresearchfocusedontheapplicationofthere- nementtechniquestoadigitallearninggame.WefoundthatmodelingKCsbyproblemtypesyieldsabetter tthanmodelingbytheunderlyingmisconceptionsthatwerebeingtested.Furthermore,there nedKCmodelalsoshowedushowtoimprovetheoriginallearningmaterials,inparticularbyfocusingonthemorechallengingandpersistentmiscon-ceptions,suchasthoseinvolvingmultiplecarries,roleofzeroandnegativenumbers.Moregenerally,wedemonstratedhowlearningcurveanalysiscanbeemployedtoperform post-hocKCmodelinginatutoringsystemwithvarioustypesoftask.Inturn,ourworkopensupfurtheroppor-tunitiestoexploretheinteractionofstudentmodelswithlearning,enjoymentandagency,whichwouldultimatelycontributetothedesignofalearninggamethatcanadap-tivelybalancetheseaspects.6.ACKNOWLEDGEMENTSThisworkwassupportedbyNSFAward#DRL-1238619.TheopinionsexpressedarethoseoftheauthorsanddonotrepresenttheviewsofNSF.SpecialthankstoJ.Eliza-bethRicheyandErikHarpsteadforo eringvaluablefeed-back.ThankstoScottHerbst,CraigGanoe,DarlanSantanaFarias,RickHenkel,PatrickB.McLaren,GraceKihumba,KimLister,KevinDhou,JohnChoi,andJimitBhalani,forcontributionstothedevelopmentoftheDecimalPointgame.7.REFERENCES[1]R.Baker,S.Gowda,M.Wixon,J.Kalka,A.Wagner,A.Salvi,V.Aleven

9 ,G.Kusbit,J.Ocumpaugh,andL.Rossi.Sensor-
,G.Kusbit,J.Ocumpaugh,andL.Rossi.Sensor-freeautomateddetectionofa ectinacognitivetutorforalgebra.InEducationalDataMining2012,2012.[2]R.Baker,M.J.Habgood,S.E.Ainsworth,andA.T.Corbett.Modelingtheacquisitionof uentskillineducationalactiongames.InInternationalConferenceonUserModeling,pages17{26.Springer,2007.[3]J.BeckandX.Xiong.Limitstoaccuracy:Howwellcanwedoatstudentmodeling?InEducationalDataMining2013.Citeseer,2013.[4]S.BullandT.Nghiem.Helpinglearnerstounderstandthemselveswithalearnermodelopentostudents,peersandinstructors.InProceedingsofworkshoponindividualandgroupmodellingmethodsthathelplearnersunderstandthemselves,InternationalConferenceonIntelligentTutoringSystems,volume2002,pages5{13.Citeseer,2002.[5]H.Cen,K.Koedinger,andB.Junker.Learningfactorsanalysis{ageneralmethodforcognitivemodelevaluationandimprovement.InInternationalConferenceonIntelligentTutoringSystems,pages164{175.Springer,2006.[6]H.Cen,K.R.Koedinger,andB.Junker.Isoverpracticenecessary?-improvinglearningeciencywiththecognitivetutorthrougheducationaldatamining.Frontiersinarti cialintelligenceandapplications,158:511,2007.[7]M.T.Chi,N.DeLeeuw,M.-H.Chiu,andC.LaVancher.Elicitingself-explanationsimprovesunderstanding.Cognitivescience,18(3):439{477,1994.[8]C.Conati,A.Gertner,andK.Vanlehn.Usingbayesiannetworkstomanageuncertaintyinstudentmodeling.Usermodelinganduser-adaptedinteraction,12(4):371{417,2002.[9]C.ConatiandM.Manske.Evaluatingadaptivefeedbackinaneducationalcomputergame.InInternationalworkshoponintelligentvirtualagents,pages146{158.Springer,2009.[10]C.ConatiandX.Zhao.Buildingandevaluatinganintelligentpedagogicalagenttoimprovethee ectivenessofaneducationalgame.InProceedingsofthe9thinternationalconferenceonIntelligentuserinterfaces,pages6{13.ACM,2004.[11]A.T.CorbettandJ.R.Anderson.Knowledgetracing:Modelingtheacquisitionofproceduralknowledge.Usermodelinganduser-adaptedinteraction,4(4):253{278,1994.[12]M.DeWolf,M.Bassok,andK.J.Holyoak.Fromrationalnumberstoalgebra:Separablecontributionsofdecimalmagnitudeandrelationalunderstandingoffractions.Journalofexperimentalchildpsychology,133:72{84,2015.[13]K.DurkinandB.Rittle-Johnson.Thee ectivenessofusingincorrectexamplestosupportlearningaboutdecimalmagnitude.LearningandInstruction,22(3):206{214,2012.[14]K.DurkinandB.Rittle-Johnson.Diagnosingmisconceptions:Revealingchangingdecimalfractionknowledge.LearningandInstruction,37:21{29,2015.[15]M.Eagle,A.Corbett,J.Stamper,B.M.McLaren,R.Baker,A.Wagner,B.MacLaren,andA.Mitchell.Exploringlearnermodeldi erencesbetweenstudents.InInternationalConferenceonArti cialIntelligenceinEducation,pages494{497.Springer,2017.[16]M.Eagle,A.Corbett,J.Stamper,B.M.McLaren,A.Wagner,B.MacLaren,andA.Mitchell.Estimatingindividualdi erencesforstudentmodelinginintelligenttutorsfromreadingandpretestdata.InInternationalConferenceonIntelligentTutoringSystems,pages133{143.Springer,2016.[17]J.P.Gonzalez-BrenesandJ.Mostow.Dynamiccognitivetracing:Towardsuni eddiscoveryofstudentandcognitivemodels.InternationalEducationalDataMiningSociety,2012.[18]E.HarpsteadandV.Aleven.Usingempiricallearningcurveanalysistoinformdesigninaneducationalgame.InProceedingsofthe2015AnnualSymposiumonComputer-HumanInteractioninPlay,pages197{207.ACM,2015.[19]E.Harpstead,J.E.Richey,H.Nguyen,andB.M.McLaren.Exploringthesubtletiesofagencyandindirectcontrolindigitallearninggames.InInternationalLearningAnalytics&KnowledgeConference.Springer,2019.[20]J.HiebertandD.Wearne.Proceduresoverconcepts:Theacquisitionofdecimalnumberknowledge.Conceptualandproceduralknowledge:Thecaseofmathematics,pages199{223,1986.[21]S.Isotani,D.Adams,R.E.Mayer,K.Durkin,B.Rittle-Johnson,andB.M.McLaren.Canerroneousexampleshelpmiddle-schoolstudentslearndecimals?InEuropeanConferenceonTechnologyEnhancedLearning,pages181{195.Springer,2011.[22]K.R.Koedinger,A.T.Corbett,andC.Perfetti.Theknowledge-learning-instructionframework:Bridgingthescience-practicechasmtoenhancerobuststudentlearning.Cognitivescience,36(5):757{798,2012.[23]K.R.Koedinger,E.A.McLaughlin,andJ.Stamper.Automatedstudentmodelimprovement.InternationalEducationalDataMiningSociety,2012.[24]K.R.Koedinger,J.C.Stamper,E.A.McLaughlin,andT.Nixon.Usingdata-drivendiscoveryofbetterstudentmodelstoimprovestudentlearning.InInternationalConferenceonArti cialIntelligencein Education,pages421{430.Springer,2013.[25]M.Y.LaiandS.Murray.Whatdoerrorpatternstellusabouthongkongchineseandaustralianstudents:understandingofdecimalnumbers?2014.[26]R.V.Lindsey,M.Khajah,andM.C.Mozer.Automaticdiscoveryofcognitiveskillstoimprovethepredictionofst

10 udentlearning.InAdvancesinneuralinformat
udentlearning.InAdvancesinneuralinformationprocessingsystems,pages1386{1394,2014.[27]R.LiuandK.R.Koedinger.Closingtheloop:Automateddata-drivencognitivemodeldiscoveriesleadtoimprovedinstructionandlearninggains.JournalofEducationalDataMining,9(1):25{41,2017.[28]R.Liu,E.A.McLaughlin,andK.R.Koedinger.Interpretingmodeldiscoveryandtestinggeneralizationtoanewdataset.InEducationalDataMining2014.Citeseer,2014.[29]D.Lomas,D.Ching,E.Stampfer,M.Sandoval,andK.Koedinger."battleshipnumberline":Adigitalgameforimprovingestimationaccuracyonfractionnumberlines.SocietyforResearchonEducationalE ectiveness,2011.[30]M.ManskeandC.Conati.Modellinglearninginaneducationalgame.InAIED,pages411{418,2005.[31]J.MartinandK.VanLehn.Studentassessmentusingbayesiannets.InternationalJournalofHuman-ComputerStudies,42(6):575{591,1995.[32]R.E.Mayer.Computergamesforlearning:Anevidence-basedapproach.MITPress,2014.[33]B.M.McLaren,D.M.Adams,andR.E.Mayer.Delayedlearninge ectswitherroneousexamples:astudyoflearningdecimalswithaweb-basedtutor.InternationalJournalofArti cialIntelligenceinEducation,25(4):520{542,2015.[34]B.M.McLaren,D.M.Adams,R.E.Mayer,andJ.Forlizzi.Acomputer-basedgamethatpromotesmathematicslearningmorethanaconventionalapproach.InternationalJournalofGame-BasedLearning(IJGBL),7(1):36{56,2017.[35]K.MuldnerandC.Conati.Evaluatingadecision-theoreticapproachtotailoredexampleselection.InIJCAI,pages483{488,2007.[36]A.NewellandP.S.Rosenbloom.Mechanismsofskillacquisitionandthelawofpractice.Cognitiveskillsandtheiracquisition,1(1981):1{55,1981.[37]H.Nguyen,E.Harpstead,Y.Wang,andB.M.McLaren.Studentagencyandgame-basedlearning:Astudycomparinglowandhighagency.InInternationalConferenceonArti cialIntelligenceinEducation,pages338{351.Springer,2018.[38]I.J.Putt.Preserviceteachersorderingofdecimalnumbers:Whenmoreissmallerandlessislarger!.Focusonlearningproblemsinmathematics,17(3):1{15,1995.[39]L.B.Resnick,P.Nesher,F.Leonard,M.Magone,S.Omanson,andI.Peled.Conceptualbasesofarithmeticerrors:Thecaseofdecimalfractions.Journalforresearchinmathematicseducation,pages8{27,1989.[40]A.RocheandD.M.Clarke.Whendoessuccessfulcomparisonofdecimalsre ectconceptualunderstanding.Mathematicseducationforthethirdmillennium:Towards2010,pages486{493,2004.[41]D.Rohrer,R.F.Dedrick,andK.Burgess.Thebene tofinterleavedmathematicspracticeisnotlimitedtosuper ciallysimilarkindsofproblems.Psychonomicbulletin&review,21(5):1323{1330,2014.[42]J.P.RoweandJ.C.Lester.Modelinguserknowledgewithdynamicbayesiannetworksininteractivenarrativeenvironments.InSixthAIandInteractiveDigitalEntertainmentConference,2010.[43]R.J.Salden,V.A.Aleven,A.Renkl,andR.Schwonke.Workedexamplesandtutoredproblemsolving:redundantorsynergisticformsofsupport?TopicsinCognitiveScience,1(1):203{213,2009.[44]M.SchneiderandE.Stern.Thedevelopmentalrelationsbetweenconceptualandproceduralknowledge:Amultimethodapproach.Developmentalpsychology,46(1):178,2010.[45]J.M.Schraagen,S.F.Chipman,andV.L.Shalin.Cognitivetaskanalysis.PsychologyPress,2000.[46]V.J.Shute,L.Wang,S.Grei ,W.Zhao,andG.Moore.Measuringproblemsolvingskillsviastealthassessmentinanengagingvideogame.ComputersinHumanBehavior,63:106{117,2016.[47]K.Stacey,S.Helme,andV.Steinle.Confusionsbetweendecimals,fractionsandnegativenumbers:Aconsequenceofthemirrorasaconceptualmetaphorinthreedi erentways.InPMECONFERENCE,volume4,pages4{217,2001.[48]J.Stamper,T.Barnes,andM.Croy.Extractingstudentmodelsforintelligenttutoringsystems.InProceedingsoftheNationalConferenceonArti cialIntelligence,volume22,page1900.MenloPark,CA;Cambridge,MA;London;AAAIPress;MITPress;1999,2007.[49]J.Stamper,K.Koedinger,R.Baker,A.Skogsholm,B.Leber,J.Rankin,andS.Demi.Pslcdatashop:Adataanalysisserviceforthelearningsciencecommunity.InInternationalConferenceonIntelligentTutoringSystems,pages455{455.Springer,2010.[50]J.Stamper,K.Koedinger,andE.Mclaughlin.Acomparisonofmodelselectionmetricsindatashop.InEducationalDataMining2013,2013.[51]J.StamperandK.R.Koedinger.Human-machinestudentmodeldiscoveryandimprovementusingdatashop.InInternationalConferenceonAIinEducation,pages353{360.Springer,2011.[52]Y.Wang,H.Nguyen,E.Harpstead,J.Stamper,andB.M.McLaren.Howdoesorderofgameplayimpactlearningandenjoymentinadigitallearninggame?InInternationalConferenceonArti cialIntelligenceinEducation.Springer,2019.[53]Y.WangandR.S.Siegler.Representationsofandtranslationbetweencommonfractionsanddecimalfractions.ChineseScienceBulletin,58(36):4630{4640,2013.[54]M.WilsonandP.DeBoeck.Descriptiveandexplanatoryitemresponsemodels.InExplanatoryitemresponsemodels,pages43{74.Springer,

Related Contents


Next Show more