/
CumulativeHaploinsufciencyandTriplosensitivityDriveAneuploidyPattern CumulativeHaploinsufciencyandTriplosensitivityDriveAneuploidyPattern

CumulativeHaploinsufciencyandTriplosensitivityDriveAneuploidyPattern - PDF document

bella
bella . @bella
Follow
342 views
Uploaded On 2022-10-13

CumulativeHaploinsufciencyandTriplosensitivityDriveAneuploidyPattern - PPT Presentation

948150962November720132013ElsevierInc CORE Metadata citation and similar papers at coreacuk Provided by Elsevier Publisher Connector CancerdrivergeneshavebeendescribedasmountainsandhillsW ID: 959430

146 150 benign etal 150 146 etal benign frequency 948 20132013elsevierinc november7 962 2013 000 tsg 145 cell 2010

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "CumulativeHaploinsufciencyandTriplosensi..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

CumulativeHaploinsufÞciencyandTriplosensitivityDriveAneuploidyPatternsandShapetheCancerGenomeTeresaDavoli,AndrewWeiXu,KristenE.Mengwasser,LauraM.Sack,JohnC.Yoon,PeterJ.Park,andStephenJ.Elledge ,948–962,November7,20132013ElsevierInc. CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector CancerdrivergeneshavebeendescribedasmountainsandhillsWoodetal.,2007).Mountainsaredrivergenesthatareveryfrequentlymutatedincancer,whereashillsrepresentlessfrequentlymutateddrivergenes.Ithasbecomeclearfromrecentinternationalsequencingeffortsthatmostpotentdrivers(moun-tains)havebeendiscovered.Akeyissueishowtodeterminetheidentityofthesignicantbutlessfrequentlymutateddrivers,thehills.Arecentanalysissearchingforveryhighcondencecancerdriversinadatabaseof400,000mutationsestimatedthattherewere71TSGsand54OGs(Vogelsteinetal.,2013).Itislikelythattherealsoexistadditionalfunctionallysignicantcancerdriverswithweakerphenotypesandlowerprobabilitiesthatareselectedlessfrequently.Acentralquestionishowtoidentifythesegenes.Inprinciple,withmoresamplesanalyzed,greaterstatisticalsignicancecanbeplacedontheoutliers,allowingdiscoveryoflowerpenetrancedrivers.However,itislikelythatthereismoreinformationpresentinthecurrentdatathatmayallowtheselowerfrequencyeventstobedetected.Toapproachthisquestion,wesoughttodeviseamethodtopredictTSGsandOGsincancerbasedonthepropertiesofgenemutationsignaturesofthesetwodistinctclassesofdrivergenes.Wehypothesizedthattheproportionofthedifferenttypesofmutationswithdifferentfunctionalimpactwouldbeinforma-tiveinpredictingthesetwotypesofdrivers(Figure1A).Eachgenehasabackgroundmutationratethatisdependentontran-scription,replicationtiming,andpossiblyotherunknownparam-eters,andthisratecanbeestimatedbythenumberofmutationsthatareunlikelytoaffectitsfunction(suchassilentorfunc-tionallybenignmutations),whoseobservedfrequencyisnotdependentonselectivepressureduringcancerevolution.Theproportionoffunctionallyrelevantmutationsofparticularclassescomparedtothisbackgroundmutationratewillbedependentonthedegreeofselectionandwillpredictthelikelihoodthatagenewillactasacancerdriver.TSGsandOGscanbedistinguishedamongthecancerdrivergenesbasedonthecharacteristicpatternofthedifferenttypesofmutations(i.e.,lossoffunction[LOF],missense,silent)thataretypicallyobservedforthosetwoclassesofdriversrelativetoneutralgenes,asillustratedinFigure1IdentiÞcationofParametersPredictingTSGsandOGsWesetouttodeterminethemostreliableparametersforthepredictionofTSGsandOGsinanunbiasedway(Figure1Weusedsequencedatafrom�8,200tumorsfromtheCOSMICForbesetal.,2010)andTCGA(databasesandarecentlypublisheddatabase(etal.,2013)comprising�1,000,000mutations(FigureS1TableS1availableonline).Wedenedalistof22parameterspri-marilybasedonthedifferentclassesofmutationsandusedtheclassicationmethodLassoandthreetrainingsetsofknownTSGsandOGs(fromtheCancerGeneCensus,Futrealetal.,TableS2A)andneutralgenestoidentifythoseparametersthatbestpredictthetwoclassesofdrivergenes(seementalProcedures).WeemployedPolyPhen2topredictthe Prediction of TSGs of TSGs and OGs TumorSamples Analysis of Mutation Patternsfor each gene AnalysisFunctional SilentGene Tumor Suppressor Gene OncogeneNeutral geneACB for TSGs,OGs and Neutral genes MissensePatterns of mutations expected to bepredictive of TSGs and OGs DTUSON ExplorerParameters for theprediction of TSGsParameters for the1. LOF/Benign ratio3. Splicing/Benign ratio1. Entropy Score2. HiFi Missense/Benign ratio High level of missense mutationsand clustering of mutations LOFSilentSilentSilent Figure1.PredictionofTSGsandOGsBasedonTheirMutationalProÞle(A)Schematicrepresentationofourmethodforthedetectionofcancerdrivergenesbasedontheassessmentoftheoverallmutationalproleofeachgene.Thesomaticmutationsineachgenefromalltumorsamplesarecombinedandclassi-edbasedontheirpredictedfunctionalimpact.Themainclassesofmutations(silent,missense,andLOF)aredepicted.(B)SchematicdepictingthemostimportantfeaturesofthedistributionsofmutationtypesexpectedforatypicalTSG,OG,andneutralgene.Comparedto‘‘neutral’’genes,TSGsareexpectedtodisplayahighernumberofin-activatingmutationsrelativetotheirbackgroundmutationrate(benignmutations),andOGsareexpectedtodisplayahighernumberofacti-vatingmissensemutationsand

acharacteristicpatternofrecurrentmissensemutationsinspe-cicresidues.(C)AowchartdelineatingthemainstepsinourmethodforidentifyingTSGsandOGs,fromtheclassicationofthemutationsbasedontheirfunctionalimpacttotheidenticationofthebestparametersthroughLassoandtheiruseforthepredictionofTSGsandOGsbyTUSONExplorer(ortheLassomethod).(D)Schematicrelatedto(C)depictingthepa-rametersselectedbyLassoemployedbyTUSONExplorerforthepredictionofTSGsandOGs(HiFI,highfunctionalimpact).ForTSGs,theparametersaretheLOF/Benignratio,theHiFI/Benignratio,andtheSplicing/Benignratio,whereasforOGstheparametersaretheEntropyscoreandtheHiFI/Benignratio.AlsoseeFigureS1TableS1 ,948–962,November7,20132013ElsevierInc. functionalimpactofmissensemutationsinordertoclassifythemintothosewithpotentiallyhigh(HiFI)orlow(LoFI)functionalimpact(Adzhubeietal.,2010).LoFImutationsaretypicallyconservativeaminoacidchangesorchangesinpoorlyconservedresidues.WedenedthecombinationofsilentandLoFImissenseas‘‘Benign’’mutationstoprovidealarger,morereliablevalueforestimatingbackgroundmutationrates.WealsodenedtheLOFmutationsasthecombinationofnonsenseandframeshiftmutations.AsamajorityofknownOGsshowanatypicaldistributionofrecurrentmutationsinoneorafewkeyresidues,weutilizedentropy,awell-denedconceptinphysicsandinformationtheory(ShannonandWeaver,1949),tomeasurethedegreeofreoccurringmutationswithinagene.TheEntropyscorerepresentstheweightedsumoftheprobabilities,acrossagene,thatasiteismutated(seeExperimentalProceduresThebestparametersfoundbyLassoforthepredictionofTSGsandOGsaredescribedbelowandarevisualizedinDandTumorSuppressorsversusNeutralGenesThemostpredictiveparametersforTSGsare:(1)theratioofLOFmutationstoBenign(p=2.51,Wilcoxon,one-tailedtest);(2)theratioofSplicingtoBenignmutations(p=4.6);(3)theratioofHiFImissensetoBenignmutations(p=);and(4)high-leveldeletionfrequency(p=1.46).A20-foldcross-validationshowsahighpredictionaccu-racyof93.2%onthesetrainingsets(Figure2AandTableS2OncogenesversusNeutralGenesThemostpredictiveparametersforOGsare:(1)theentropyformissensemutations(p=2.2);(2)theratioofHiFImissensemutationstoBenignmutations(p=1.2);and(3)high-levelamplicationfrequency(p=1.4).The20-foldcross-validationaccuracyis85.2%(Figure2BandTableS2TumorSuppressorGenesversusOncogenesOneimportantaimofourpredictionmethodisthediscriminationbetweenTSGsandOGs.Themostpredictiveparametersbe-tweenthesetwosetsare:(1)theratioofLOFtoBenignmutations(p=2.5);(2)high-levelamplicationfrequency(p=);(3)high-leveldeletionfrequency(p=7.6and(4)theratioofSplicingtoBenignmutations(p=9.9).The20-foldcross-validationaccuracyis91.9%.Overall,LassoidentiedparametersthatmakeintuitivesensefortheseclassesofgenesandclearlydelineatedTSGsandOGsfromeachotherandfromneutralgenes.Insum,weidentiedindependentparametersthatstronglypredictanddistinguishbetweenTSGsandOGs(Figures2Cand2DandTableS2IdentifyingOGsandTSGsHavingidentiedthemostpredictiveparameters,wedevelopedamethodwecalluppressorandcogeneExplorer(TUSONExplorer)thatcombinedselectedparameterstoderiveanoverallsignicanceandrankingforeachgeneasapotentialTSGorOG(Figure1D).First,wederivedapvalueforeachgenefortheratiosofLOF/Benign,Splicing/Benign,HiFI/Benign,andMissenseEntropybasedonthecomparisontotheneutralgeneset(seeExperimentalProcedures).FortheLOF/Benignparameter,weappliedacorrectiontonormalizeforthenonuni-formcodonusageamonggenesfortheoccurrenceofnonsensemutations(seeExperimentalProcedures).Finally,weusedanextensionofLiptak’smethodtoprovideacombinedpvaluefortheselectedparametersforeachgene.ForTSGs,thecom-binedpvalues(andqvalues)werederivedfromindividualvaluesfromtheLOF/Benign,Splicing/Benign,andHiFI/Benignparam-eters.ForOGs,thecombinedvalueswerederivedfromtheMissenseEntropyandtheHiFI/Benignparameters(Figure1TheLOF/BenignparameterfordiscriminationbetweenTSGsandOGswassubsequentlyutilizedtodeneanallistofOGsandTSGs(seeExperimentalProcedures).TUSONExplorerdoesnottakeintoaccountSCNAinformation,andthisallowsustoperformarigorousanalysisofourcancerdrivergenesfortheirabilitiestopredictthefrequencyofdeletionandamplica-tion(seebelow).AsasecondstrategytopredicttheprobabilityofagivengenebeingaTSGorOG,weemployedtheLassomodel,whichalsotakesintoaccountSCNAs(seeExperimentalProcedures).Therankedlistsofpredicted

TSGsandOGsbybothLassoandTUSONExplorerarecontainedinTablesS3AandS3B.Thislistprovidesafacilelook-uptablethatcanbeeasilysortedfordifferentparametersforallthosewhoareinterestedinthemuta-tionalbehaviorofagivengeneinthisdataset.Bothrankingstrategiesperformedsimilarlyandeliminatedtheproblemsofinappropriatelyincludinggiantgenesandgenesinhighlymutableregions(Deesetal.,2012),withouttheneedtoconsiderexpressionlevelorreplicationtiming(Lawrenceetal.,).Importantly,bothofourstrategiesdistinguishbetweenTSGsandOGs,whicharepredictedtohavefunctionallyoppo-siterolesinthecontrolofcellgrowthandhavedifferentimplica-tionsforpotentialcancertherapeutics.EstimatesoftheNumbersofTSGsandOGsArankingofthisnatureconsistsoftrulysignicantgenesmixedwithfalse-positivegenesthatobtainlowpvaluesbychanceun-derthenullhypothesis.Thus,wesoughttogetanestimateoftheminimumnumberofTSGsandOGsbyanalyzingthedistributionofthecombinedpvaluesforeachclassofcancerdrivergenes.Toachievethis,weutilizedahistogram-basedmethod(etal.,2001)toestimatethenumberofrejectedhypothesesfromthedistributionsofthecombinedpvaluescalculatedforeachgene.Withourdataset,thismethodestimatedTSGsand250OGs(ExtendedExperimentalProceduresThislonglistofTSGsandOGssuggeststhattherearemanymoredriversthananticipatedandthattheyexistinacontinuumofdecreasingpotency(Figure7A).Fortheanalysesdescribedbelow,weconsideredthetop300TSGs(qvalue0.18)and250OGs(qvalue0.22)asourworkinglists.Giventhefactthatthedeviationofthemutationsignaturesfromthenormalpatternisafunctionofthedegreeofselectionandthefrequencyofmutation,increasingthenumberoftumorsampleswilldetectevenmorecancerdriversofprogressivelyweakerselectivepressure.TodeterminethepotentialnumberofTSGsuponadditionalsequencing,weappliedTUSONandestimatedthenumberofTSGs(usingMosig’smethod)onrandomsubsetsofthedatasetwithincreasingnumbersofsamplesandobservedthatthenumberofpredictedTSGscontinuestoincreasewithadditionalsamples.WeobservedthattherateofincreaseinthepredictednumberofTSGsdecreasesslightlyat ,948–962,November7,20132013ElsevierInc. thehighestnumberofsamplesexamined(FigureS2),indicatingapossibleplateauatverylargenumberofsamples.PAN-CancerMutationalAnalysisGeneOntology(GO)termandpathwayanalysisofourlistofpo-tentialTSGsshowedenrichmentforfunctionsthatarehighlyrelevanttotumorigenesis,includingcell-cyclecontrol,embry-onicdevelopment,promotionofdifferentiation,apoptosis,andbloodvesseldevelopment(TableS3CandFigure3).Inaddition,therewasastrongenrichmentfortranscriptionalregulation(q=)andchromatinmodication(q=5.7Furthermore,wenoticedanenrichmentforgenesinvolvedin  0.000.250.500.751.001.251.752.002.252.753.00 OGTSG   0.00.10.20.30.4 OGTSG  0.0000.0010.0020.0040.0050.0060.007 OGTSG  0.000.010.020.040.05 OGTSG  0.000.250.501.251.502.002.252.753.00 NeutTSG  0.000.250.501.251.501.752.002.252.50 NeutTSG   0.00.10.20.40.5 NeutTSG   0.0000.0050.0100.0150.020 NeutTSG  0.000.050.100.200.250.300.350.40 NeutOGMissense Entropy &

#1; 0.000.250.501.001.251.501.752.00 NeutOG   0.000.250.500.75 NeutOGMean Polyphen2 Score  0.000.010.020.030.040.050.06 NeutOG LOFBenign HiFIBenign Benign FrequencyLOFBenign Benign FrequencyFrequencyp=3e-28p=3e-14p=5e-13p=1e-8p=3e-16p=1e-8p=8e-6p=1e-9 TSG versus Neutral GenesOG versus TSGFrequencyMissenseHiFIBenignMean Missense Polyphen2Scorep=2e-14p=1e-9p=3e-10p=1e-6 BDAPCNPM1CASP8CDKN2AGATA3ARID1AMAP3K1B2MPTENRB1RPL22SMAD4CDKN1BTP53VHLAKT1BRAFCTNNB1EZH2IDH1KRASNRASPIK3CARAC1U2AF1EGFRFBXW7STK11IDH20.050.100.200.300.400.500.600.801.002.00 0.250.500.751.001.502.00 pvalue OGpvalue TSG110 OG versus Neutral Genes Figure2.BestParametersSelectedbyLassoforthePredictionofTSGsandOGs(A–C)Boxplotrepresentationsofthedistributionofthevaluesfortheindicatedparametersintheneutralgenes(gray),TSG(red),andOGtrainingset(green).Themedian,rstquartile,thirdquartile,andoutliersinthedistributionareshown.ThepvalueforthedifferencebetweenthetwoindicateddistributionsisshownasderivedbytheWilcoxontest.(A)BoxplotsshowingthedistributionofLOF/Benign,HiFImissense/Benign,andSplicing/Benignratiosandthehigh-levelfrequencyoffocaldeletionamongtheneutralgenesetandtheTSGset.(B)BoxplotsshowingthedistributionofMissenseEntropy,HiFImissense/Benign,meanofPolyPhen2score,andthehigh-levelfrequencyoffocalamplicationamongtheneutralgenesetandtheOGset.(C)BoxplotsshowingthedistributionofLOF/BenignandSplicing/Benignratios,high-levelfrequencyofdeletionandamplicationamongtheTSGandOGsets.(D)PlotoftheLOF/BenignratioandMissenseEntropyforeachgene,thebestparametersfordiscriminatingbetweenTSGsandOGs.SpecicgeneswithhighlevelsofLOF/BenignorMissenseEntropyareshownalongwiththeirpvaluesforbeingaTSGoranOG(TUSONExplorer).AlsoseeFigureS2TablesS2 ,948–962,November7,20132013ElsevierInc. PTPRK Response to Growth Factors B2MAntigen Presentationand Inflammation HLA-A HLA-B HLA-DRB1 Tumor Suppressor Genes p value 10-10010-2 EGFR ERBB2 GNAS PPP6C FZD6 CHD8 TCF7L2 WNT Signaling CTNNB1 WNT11 DVL1 AXIN1 GSK3B LEF RSPO2 MAP3K1 MAP2K4 BRAF KRAS NRAS HRAS MAPK1 MAP2K1 TGFBR2 TGFBR1 TGFB1 ACVR1B Activin SMAD4 SMAD2 TGF IDH1 IDH2 PSPH PGM5 PTEN RPL18 RPL5 Ribosome PIK3CA AKT1 MTOR CASP8 FADD BAX BCL2 FAS FASLG BID Mitochondria CytC CASP9 TNFR TRAF2 TNF RALGDSPRKCI FAT1 PVRL4 Cell-CellAdhesion CDH1 FOXO1 FUBP1 BCOR GPS2 CIC SETD2 RUNX1 SMARCA4 KDM5C EP300 ARID1B NSD1 MEN1 TBX3 KMT2B NCOR1 CDK12 KANSL1 KMT2A SIN3A TCF12 CHD3 EZH2 SPOP MYC MAX TRRAP Transcription GATA3 ATRX ARID1A ARID2 KTM2D KTM2CCohesin SMARCB1 Sonic Hedgehog PTCH1 SHH SUFU COS2 FU GLI GF ZFP36L1 ANAPC1 CDKN2A CDKN1B CDKN2C CDK4/6 CCND3 E2F CDK2 CCNE1 CDK1 CCNA/B CDKN1A FBXW7 Cell Cycle Regulation ZFP36L2 KEAP1 NFE2L2 CUL3 DNA Damage Response TP53 ATM USP28 UBR5 TRIP12 RBMX TP53BP1 MCM7 ATR BRCA2 BAP1 BRCA1 MLH1 MDM2 RNF168 STAG2 SF3B1 Avoiding Avoiding GenomeInstabilityAltered MetabolismNotch Signaling NOTCH1 NOTCH2 Hypoxia Stress Response HIF1A CUL2 EGLN1 IKK NFKB Invasion ERBB3 FGFR2 ACVR2A NF1 APC VHL CTCF RB1 RPL22 SMO RASA1 NF2 STK11 ARHGAP35 COL4A2 RHOA PIK3R1MBD6 IL32 IL32 10-10 10-5 RIT1 RNF43 RAC1 RNF111 BRE RAD21 SMC4 BRD7 NIPBL KIT1 PTPN11 PRKCI SRC COL4A2 PPP2R1A CHD4 Figure3.RepresentationofPredictedTSGsandOGswithinTheirCellularPathwaysPlacementofpredictedcancerdriverswithinspeciccellularpathways.T

SGsandOGswerepredictedbyTUSONExplorer.ThepredictedTSGsandOGsbelongingtomanyknowncellularpathwaysorcomplexesareshown,alongwithhowtheygenerallycorrespondtothehallmarksofcancer.TSGsareshowninred,whereasOGsareshowningreen;colorintensityisproportionaltothecombinedpvalueasindicated.Forsomepathways,additionalgenesabsentfromthepredictedTSGsandOGswereaddedandmarkedingrayforclarityofthepathwayrepresentation.Althoughseveralgenesareknowntoaffectmultiplepathwaysandhallmarks,onlyonefunctionispresentedforthesakeoflimitingthecomplexityofthediagram.Anexternalblackboxoutsideofthecoloredgeneboxhighlightsgenespreviouslylesswellcharacterizedfortheirrolesintumorigenesis.SeealsoFigureS3TableS3 ,948–962,November7,20132013ElsevierInc. theimmunesystem(q=5.8),particularlyinantigenpro-cessingandpresentationrepresentedbytheMHCclassIsys-tem.TwomajorHLAgenes()wereinthetop90candidateTSGs(q0.0002),andthe2microglobulin)gene,whichisanobligatorycomplexcomponentofbothHLAproteins,ranked43rd(q=9.2)onourTSGlist,underscoringthatescapingfromimmunosurveillanceisasignicantselectiveforceintumorigenesis(HanahanandWein-berg,2011Figures3B).Furthermore,,whichstimu-latestheimmuneresponsesofNKcellsandCD8+TcellsthatmonitorMHCstatus(Contietal.,2007),isalsointhetop50TSGs.Unexpectedly,negativeregulationofcelladhesion(q=4.32)wasenriched,indicatingthatincreaseofcelladhesionmayconferaselectiveadvantagetotumorcells.Tradi-tionallyithasbeenthoughtthatreducingadhesionpromotestumorigenesis;however,recentndingssuggestapotentiallydifferentroleforcell-to-cell-adhesion.First,ithasbeenshownthatcirculatingtumorcellsexistinclustersintheblood(etal.,2011).Second,,whichrankedwellinourLassoOGlist,wasshowntopromotetransformationthroughcelladhe-sion,asdoseveralotheroncogeneslike,andlossofPavlovaetal.,2013).Thus,promotionofadhesionmaybeadrivingforceintumorigenesis. C TP53BP111714-1850 1354-H2AX Binding 956 1865-BRCTBRCT1490-1590TUDOR F 1374 MATH domainBTB domain F133W131K134SPOP 166190 E50K D140GD140N R121Q x18B 203207299 309-332 IgCTM A 1USP281077 97-116162-196400-432580649 PPP2R1A PP2A Subunit B Binding 399 8400Subunit C-Binding R144H S143FR144CT145P P179R R183W R183Q S256YS256FR258HR258CW257C E1D RASA1 161264 350426 287339SH3SH2 494575 698RasGAP 595-689C2 1 LOFSilentMissense 1044 Figure4.RepresentationofMutationPatternsinRepresentativePredictedTSGsandOGs(A–F)ThemutationalpatternsofselectedTSGsandOGsaredepicted.ForTSGs(A–D),theloca-tionsofLOF(red)andsilent(white)mutationswithinthecodingregionsareshown.ForOGs(EandF),thelocationofrecurrentmissensemu-tations(orange)andofLOFmutations(red)withinthecodingregionsareshown.TP53BP1arepreviouslylesswell-characterizedcandidateTSGsintheTUSONPAN-Canceranal-arepreviouslylesswell-characterizedcandidateOGs.SeealsoTableS3NewPotentialCancerDriversNewcomponentsofpathwayspreviouslylinkedtotumorigenesishavealsobeendetected(Figure4).Forexample,theDNAdamageresponsepathwayiscen-traltothemaintenanceofgenomicstability,andbothmembersofakeyDDRcomplex,theTP53BP1/USP28complex(Zhangetal.,2006),whicharesubstratesoftheATMkinase(etal.,2007),wereidentiedwithinthetop110TSGs(q0.15,Figures3A–4C).TwocomponentsthatregulateATM-dependentchromatinremodeling,Gudjonssonetal.,),arealsohighontheTSGlist(q,whichcontrolsexpression(Adamsonetal.,),ranked76thonthelist(q=1.1).ThereareseveralcandidateOGswithenzymaticfunctionsthatcouldserveasdrugtargets(Figure4EandTablesS3BandB),includingthreephosphatases(andregulatorssuchas,aswellasseveralkinasesamongothers).TherearemanyothernewpotentialTSGsandOGsontheseliststhatcannotbedis-cussedhereduetolimitationsofspace,butseveralofthesearepresentedinFigure3Consistentwiththeenrichmentofcell-cycleandapoptosisGOterms,integrationofthePAN-Canceranalysiswithfunctionalgenesetsrevealedthatessentialgenesaresignicantlydepletedfordeleteriousmutations(seebelow).Anexceptiontothatndingwasthepresenceof,andlargeribosomalsubunitgenesinthetop210TSGs(q0.07;Figure3).Interestingly,heterozygousmutationsinribosomalgenespromotetumorigenesisinzebrash(Laietal.,2009Furthermore,familialmutationsinribosomalproteinshavebeenassociatedwithDiamond-Blackfananemia,whichisasso-ciatedwithanincreasedriskofleukemia(Willigetal.,2000AnalysisofIndividualTumorTypesIdenticationofcancerdriversusingthePAN-Canceranalysisfavorsdiscoveryofgeneswhosefuncti

onscontributetomany ,948–962,November7,20132013ElsevierInc. differenttypesofcancer.CertaincancerdriversmaymissthecutoffforsignicanceinthePAN-Canceranalysisbecausetheyareprimarilyinvolvedincontrollingtissue-specicdifferen-tiationnetworksorbecausetheyareratelimitingforaparticularfunctioninonlycertaintissues.Thus,weanticipatethatnewdriverscanbediscoveredthroughanalysisofmutationsigna-turesinindividualtumortypesdespitetheirlowernumbers.Weperformedthesameanalysisasaboveforeachof20tumortypes(TablesS1A,andS4B).ThisanalysisfoundmanyTSGsthatarespecicforonetissuetypesuchasinbreastadenocarcinoma,inkidneyclearrenalcellcarcinoma,andinhematologicalmalignances(TableS4A).GeneswhoseFDRsforthedifferentsubtypeswerebelow0.25wereallalreadyrelativelyhighlyrankedinthePAN-Canceranalysis.Thisindicatesthatthema-jorityoftissue-specicdriversweredetectedinthePAN-CancerWewantedtodeterminehowmanynewTSGsmightbeexpectedfromtheanalysisofanewcancersubtype.Forthis,wecalculatedthenumberofTSGsinthewholedatasetlackinganindividualtumortype(TablesS4C)andcomparedthislisttotheTSGsinthattumortype,whichaveraged14genes.WefoundthattheaveragenewcancertypeaddedaboutveTSGstothePAN-Cancerlist.Thus,onaverage,70%oftheTSGsdetectedinasingletumortypewerealreadydetectedinthePAN-Canceranalysisperformedafterexcludingthemutationsinthattypeoftumor.Thissuggeststhatmostcancergenesselectedduringtumorevolutionactincellularpathwayswhoseroleintumorigen-esisiswidespreadamongdifferenttumortypes.AnalysisofTSGsandOGsBehaviorofFunctionalGeneSetsThePAN-Cancermutationdatasetallowsustointerrogatethebehavioroffunctionalgenesetsderivedthroughexperimentalapproaches.WepreviouslyshowedthatSTOPgenesareover-representedinregionsofdeletion(Soliminietal.,2012).Examina-tionoftheirabundanceinthesetofcandidateTSGsshowedthatSTOPgenesaresignicantlyenrichedintheTSGset(p=0.0031,Fisher’sexacttest)comprising10%ofthetop300TSGs(68%morethanexpected).TheSTOPgenesetshoweda50%higherratioLOF/Silentthantheaveragefortheneutralgeneset(p=2.0Figure5A).Furthermore,theSTOPgenesshowedasignicantincreaseintheSplicing/BenignandHiFI/Benignratios,twoofthemostpotentparametersforthepredic-tionofTSGs(Figure5A).Thisanalysisfurtherunderscoresthefundamentalconnectionbetweencellproliferationandcancer.Wenextinvestigatedahigh-condencesetof145genespredictedtobeessentialatthecellularlevelbasedontheirhousekeepingcellularfunctionsandtheirhighevolutionaryconservation(TableS5AandExperimentalProcedures).Thissetwasdepletedfromregionsofrecurringdeletions(etal.,2010)by43%(p=0.0198,Fisher’sexacttest),andalargersetof332essentialgeneswasdepletedby25%(p=0.014).ExaminationoftheLOF/Silentratioshowedthat,forthesetof145genes,thefrequencyofLOF/silentwas27%lowerthantheratefortheneutralgeneset(p=5.8Figures5B).Additionally,theLOF/kbandHiFI/Benignratioswerealsosignicantlydecreasedintheessentialgeneset.Giventhatthevastmajorityofthemutationsanddeletionsinquestion   0.250.000.250.501.001.251.50 NeutEss   0.53.0 NeutEss  0.00.20.41.01.41.82.02.22.42.62.83.0 NeutEss   0.0000.0010.0030.0040.005 NeutEssLOF p=5.8e-5LOF p=7.1e-7HiFIBenign p=1.7e-4Frequencyp=8.9e-3 Essential versus Neutral Genes   0.00.20.60.81.0 NeutSTOP &

#1;  0.000.050.100.200.25 NeutSTOP   0.00.51.52.02.5 NeutSTOP   0.0000.0010.0020.0040.005 NeutSTOPLOF p=2e-18 p=2.5e-9HiFIBenignp=1.6e-8Frequencyp=1.4e-5 STOP versus Neutral Genes AB Figure5.BehaviorofFunctionalGeneSetsRelativetoTSGParameters(AandB)BoxplotrepresentationofthedistributionofthevaluesfortheindicatedparametersintheneutralgenescomparedwiththeessentialgenesandSTOPgenes.Themedian,rstquartile,thirdquartile,andoutliersinthedistributionareshown.ThepvalueforthedifferencebetweenthetwoindicateddistributionsisshownasderivedbytheWilcoxontest.(A)Boxplotsshowingthedistribution(orange)ofLOF/Silent,Splicing/Benign,andHiFImissense/Benignratios(gray)andthehigh-levelfrequencyoffocaldeletionamongtheneutralgeneandSTOPgenesets.(B)BoxplotsshowingthedistributionofLOF/Silent,LOF/Kb,HiFImissense/Benignratiosandthehighfrequencyoffocaldeletionamongtheneutralgeneset(gray)andtheessentialgeneset(lightblue).SeealsoTablesS3A,andS5B. ,948–962,November7,20132013ElsevierInc. areheterozygous,thereducedLOFmutationanddeletionfre-quencyoftheessentialgenesasagrouparguesthatbetween25%and45%arehaploinsufcient.Interestingly,ourTSGswereenrichedinrecurringfocaldeletions(68%,p=0.000281)andweredepletedfromrecurringamplications(28%,p=0.015),whereastheOGswereenrichedinamplications(25%,p=0.046)anddepletedfromfocaldeletions(23%),indicatingthatamplicationsarealsolikelytobeCancerGeneIslands.GeneralPropertiesofCancerDriversHighInteractivityTosearchforuniquepropertiesofTSGsandOGs,weexaminedthedegreetowhichthesedriversparticipateinproteincom-plexesusingtheCORUMdatabaseofexperimentallyvalidatedhumanproteincomplexes(Rueppetal.,2010).WefoundthatbothTSGsandOGsweresignicantlymorelikelytobeinproteincomplexesthanatypicalprotein.The13.4%ofallproteinsfoundinCORUMareinacomplex.However,36.7%ofthepredictedTSGswereincomplexes(p=3.1),and26.4%ofthepre-dictedOGswereincomplexes(p=3.510FigureS3HighBetweennessAsecondpropertyofcomplexesisthedegreetowhichtheyareconnectedtootherproteinsandcomplexes.Weexploredthisbyassessingapropertycalled‘‘betweenness,’’whichispropor-tionaltothenumberoftimestheproteinispartoftheshortestpathsbetweenallpairsofproteinsinanetwork.Highbetween-nessindicatesagreaterconnectivity.TheTSGandOGcandi-dategenelistsweremappedontothemostcurrentBioGRIDhumanprotein-proteininteractionnetwork(Starketal.,2006BoththepredictedTSGsandOGsshowahighdegreeofbetweenness(TSGp=6.16,OGp=1.68ureS3B),indicatingthattheyareoptimallypositionedtoimpactinformationowthroughnetworks.GreaterLengthProteinswithgreaterinteractivityoftenhavemoredomains.Thus,weexaminedgenelength.Cancerdriversaresignicantlylongerthantheaveragegene(1,700nt),withthemeanforTSGsat3,234nt(p=2)andOGsat2,107nt(p=9.7Importantly,thisobservationisalsocharacteristicofthegenesinourtrainingsets(TSGs,4,133nt,p=6.7;OGs,2,260nt,p=0.0016).AnUnusuallyHighConcentrationofTSGsontheXWhileexaminingthedistributionofTSGsacrosschromosomes,wefoundthattheXisunusuallyenrichedforTSGs(p=0.0042,exactbinomialtest)relativetoautosomes.Examiningthetop300TSGs,wendthat,althoughonly3.9%ofallgenesareontheX,itcontains7.3%ofallpredictedTSGs(86%morethanex-pected)andwastheonlychromosomewithasignicantenrich-mentofTSGs(TableS5C).GiventhefactthattheXisfunctionallyhaploidinbothmalesandfemales,thisobservationhascertainimplicationsforevolutionaryselectionofcancerdriversduringtumorigenesisandhaploinsufciencyofTSGs(seeInterestingly,inthetop400TSGs,wefoundtwopotentialTSGsontheY,(q0.22).BothhavehomologsontheXthatescapeXinactivation,eachofwhichalsodisplaystumorsuppressorproperties:(p=0.019)and(p=3.3).Thiscouldexp

laintheobservationthatfrequentYnullisomyisobservedinprostate,renalcell,headandneck,Barret’sesophagealadenocarcinoma,bladder,pancreaticadenocarcinoma,andothercancersatfrequenciesof30%–80%(Bianchi,2009;Kowalskietal.,2007Furthermore,weanalyzedthesilentmutationratesalongentirechromosomesandfoundanenhancedmutationrateontheXchromosomerelativetoautosomesinmales(30%increase,p=1.1).Thisincreaseisevengreaterinfemales(77.5%,p=1.6TableS5D).Possibleexplana-tionsforthisphenomenonaredetailedinthediscussion.DistributionandPotencyofCancerDriversonChromosomesPredictArmandChromosomeSCNAInadditiontofocalSCNAs,alessfrequentbutsignicantchro-mosomalalterationiswhole-armlossorgain.WehypothesizedthatthedistributionandpotencyofTSGsandOGsonchromo-somesmightexplaintheaveragefrequencyofchromosomalwhole-armSCNAsseenincancer.Tothisend,wegeneratedascore,Charm,thatprovidesanassessmentofeacharmbasedonthedensityofTSGsandOGsandtheirpotency(weightsofTSGsandOGsarebasedontheirrankontheirrespectivelistsandserveasametricfortheirpotency).TheCharmscorerepresentsameasureoftheamountofpositiveornegativegrowthandsurvivalpotentialthatwild-typeOGsorTSGsmightnormallyimparttoagivenarmandthereforehowSCNAsmightimpactcancerevolutionbyalteringthisbalanceduringtumorigenesis.Importantly,forCharmcalculations,weemployedtheparametersfromTUSONExplorer,whichdoesnotincludecopynumberinformation.Tolessenthedilutingimpactoffalsepositivesforthisanalysis,weappliedstringencycutoffsofaqvalueof0.25forTSGsand0.35forOGsandamin-imumof10missensemutationsforOGsand8LOFmutationsforTSGstogetastringentlistof264TSGsand219OGs(seeimentalProcedures).TheanalysisoftheCharmscoreversusfrequencyofchromosomalarmdeletionrevealedastrongposi-tivecorrelation(r=0.578,p=5.8,Pearsoncorrelation;Figure6AandTableS6A).Interestingly,theCharmalsoshowedastrongnegativecorrelationwitharmamplicationfrequency,andthusahighCharmscoreindicatesasigni-cantlyreducedtendencyforachromosomearmtobeamplied(r=0.59,p=2.8Figure6B).SimpleTSGdensitieswithoutweightingbyrankalsoshowedcorrelationswitharmdeletions(FigureS4A),butthesecorrelationsareimprovedbyCharm.IncontrasttoCharm,theCharmscoreshowedanegativecorrelationwitharmdeletionfrequency(r=0.52,p=Figure6C).Moreover,thedensityofOGspositivelycorrelatedwitharmamplicationfrequency(r=0.45,p=1.8Figure6D)butwasnotimprovedbytheCharmscore(datanotshown).Wereasonedthat,likeGOgenesinfocaldeletions,thechro-mosomearmsmostfrequentlydeletedincancerwouldbedepletedofgenesthatpromotethetnessofcancercells.Usingourinsilicolistofessentialgenes,weestimatedtheirtnesspotencybyestimatingtheiravoidanceofdamagingmutationsusingthe(LOF+HiFI)/Benignratios.BydeterminingaCharmscoreforeacharm,wefoundanegativecorrelationbetween ,948–962,November7,20132013ElsevierInc. r=0.578 p=5.881e-05 10 p 10q11 p 11q12 p 12q13q14q15q16 p 16q17 p 17q18 p 18q19 p 19q1 p 1q20 p 20q21q22q2 p 2q3 p 3q4 p 4q5 p 5q7 p 7q8 p 8q9 p 9q012345 0.050.100.150.20Arm Deletion Frequency r=-0.599 p=2.818e-05 10 p 10q11 p 11q12 p 12q13q14q15q16 p 16q17 p 17q18 p 18q19 p 19q1 p 1q20 p 20q21q2 p 2q3 p 3q4 p 4q 5p 5q6 p 6q7 p 7q8 p 8q9 p 9q0123 0.10.20.3Arm Amplification Frequency r=-0.523 p=0.0003214 10 p 11q12 p 12q13q14q16 p 16q17 p 17q18 p 18q19 p 19q1 p 1q20 p 20q21q22q2q3 p 3q4 p 5 p 5 q 6 p 6q7 p 7q8 p 9 p 9q0123 0.050.100.150.20Arm Deletion Frequency r=0.454 p=0.001837 10 p 11 p 11q12 p 12q13q14q15q16 p 16q17 p 17q18 p 18q19 p 19q1 p 1q20 p 20q21q22q2 p 2 q 3 p 3q4 p 4q5 p 6 p 6 q7 p 8 p 8q9 p 9 q0.000.010.02 0.10.20.3Arm Amplification Frequency r=0.771 p=4.774e-09 10 p 11p11q12 p 12q13q15q16q17 p 18 p 18q19q1 p 1q20 p 20q22q2 p 3 p 3q4 p 5 p 5q6 p 6q7q9q-5.0-2.50.02.5 0.050.100.150.20Arm Deletion Frequency r=-0.651 p=3.627e-06 10 p 10q11 p 11q12 p 12q13q14q15q16 p 16q17 p 17q18 p 18q19 p 19q1 p 20q21q22q2 p 2q3 p 3q4 p 4q5 p 5q6 p 6q7 p 8 p 8q9 p 9q-4-202 0.10.20.3Arm Amplification Frequency r=0.804 p=3.2e-06 123457891011121416171819202122-4-20 0.040.080.120.16Chromosome Deletion Frequency r=-0.648 p=0.0005522 1234578910111213141619202122-4-202 0.050.100.150.200.25Chromosome Amplification FrequencyACEGBDFH6pCharm and Amplification Frequency TSGCharm and Deletion Frequency OGDens and Amplification Frequency OGCharm and Deletion Frequency TSG-OG-EssCharm and Amplification Fre

quency TSG-OGChrom and Deletion Frequency TSG-OG-EssChrom and Amplification Frequency TSG-OGCharm and Deletion Frequency TSGCharm TSGCharm TSGCharm OGDens OGCharm TSG-OG-EssCharm TSG-OGChrom TSG-OG-EssChrom TSG-OG 22q 5q 10q 4q14q21q 17q 61715q2p10q4q11p7q20p8q2q16p8q19p10q9p7q1q15187p8p13615 Figure6.CharmScore,ChromScore,andCopyNumberAlterations:CorrelationAnalysis(A–F)ThePearson’scorrelationanalysisoftheCharmscoresorDensityscorefortheindicatedgenesets(A–D)and/orcombinationsofthesesets(EandF)relativetothefrequencyofarm-leveldeletionoramplication.Ess,essentialgenes.(GandH)ThecorrelationsoftheChromscores(ChromandChrom)relativetothechromosome-leveldeletionoramplicationfrequency.TheCharmscoresrefertoaweighteddensityofTSGs,OGs,oressentialgenespresentoneachchromosomearm,whereeachTSGorOGisweightedbasedonitsrankpositionwithinthelistofpredictedTSGsandOGsrankedbyTUSONExplorerandeachessentialgeneisweightedbasedonits(LOF+1/2HiFI)/Benignratio.TheChromscoreistheequivalentoftheCharmscoreforwholechromosomes.SeealsoFigures4TableS6 ,948–962,November7,20132013ElsevierInc. scoresandthefrequencyofarm-leveldeletions(r=0.34,p=1.6FigureS4D).NocorrelationwasfoundbetweenCharmandamplicationfrequency,asexpected.BecausetheCharm,Charm,andCharmcorrelatewitharm-leveldeletion,wecombinedthembygivingapositiveweighttotheCharmscoreandanegativeweighttotheCharmandCharmscorestoderiveacumula-tiveCharmscore.TheCharmscoregaveanevenstrongerpositivecorrelationwitharmdeletionfre-quency(r=0.77,p=4.7Figure6EandTableS6Foramplication,weusedtheCharmscoreandfoundastrongnegativecorrelationwithamplicationfrequency(r=0.65,p=3.6Figure6F).WealsocombinedamplicationanddeletionfrequenciesintoasinglescoreforcopynumbervariationoneacharmandcomparedthattotheCharmscore.Thisalsogaveastrongsignicantcorrelation(r=0.74,p=2.7FigureS5WeextendedouranalysisofcancerdriverscoresandSCNAstowhole-chromosomeaneuploidyusingitsCharmequivalentscorethatwecallChrom(Figures6G,6H,S5E,andS5F).Chromsignicantlycorrelatedwithchromo-somedeletionfrequency(r=0.66,p=3.7FigureS4andanticorrelatedwithamplicationfrequency(r=0.54,p=;FigureS4F).Impressively,whenwecombinedallthreeclasses—TSGs,OGs,andessentialgenes—thewasstronglypredictiveofthefrequencyofchromosomeloss(r=0.80,p=3.2Figure6G),andwaspredictiveofchromosomegains(r=0.64,p=5.5Figure6H).VerysimilarresultswereobtainedusingjusttheTUSONrankingwithoutstringencycutoffs(C–S5FandTableS6Together,thesedatastronglyarguethataselectiveforceingeneratingchromosomalarmandwhole-chromosomeSCNAsderivesfromtheintegrationoftherelativedensitiesandpotenciesofpositivelyandnegativelyactingcancerdriversonaparticularchromosome.Thus,theSCNAsincancergenomesmaybeselectedduringtumorevolutionthroughcumulativehaploinsufciencyfordeletions(aspreviouslyproposedforSTOPgenesinfocaldeletions[Soliminietal.,2012])andthroughcumulativetriplosensitivityforamplications(seeInthisstudyweanalyzedthemutationaldatafrom�8,200spo-radiccancerstopredictcancerdrivergenes.WedeterminedthemostpredictiveparametersforidentifyingTSGsandOGsandusedthemtodevelopanalgorithmcalledTUSONExplorertopredicttheprobabilitythatanindividualgenefunctionsasaTSGoranOGincancer.Thisunbiasedapproachdemonstratedthattheprobabilityofbeingacancerdrivercanbeassessedbythesignicanceofthedistortionofitsmutationalpatternfromthepatternexpectedfora‘‘neutral’’gene.Combiningdatafromouranalysesofdriversandcopynumberchanges,theaveragetumorinourdatasethasameannumberof1OGmutation,3TSGmutations(LOFanddamagingmissense),3chromo-somalarmgains,5chromosomalarmlosses,2whole-chromosomegain,2whole-chromosomelosses,12focaldeletions,and11focalamplications(Zacketal.,2013Thus,SCNAscompriseaverylargeproportionofcancer-drivingAContinuumofCancerDriverGenesAcentralconclusionfromthisstudyisthattherearelikelytobemanymorecancerdriversthananticipated.OurestimateofthenumberofTSGsbasedeitheronthecombinedsignicanceofthedifferentparametersoronthesinglebestparameterforthepredictionofTSGs,i.e.,theLOF/Benignratio,predictedTSGswiththecurrentdatabasefrom8,200tumors.Likewise,wealsopredictmoreOGsthananticipated.Theviewofthecan-cerlandscapeemergingfromouranalysisdoesnot

containaclearcutoffforpredictingcancerdrivers.Instead,thereexistsacontinuumofdecreasingprobabilityofagivengenebeingadriver(eitherTSGorOG).Thisprobabilityisrevealedbythedegreeofselectionthatthegeneexperiencesduringtumorevo-lution,whichshouldbeproportionaltothephenotypiceffectcausedbyitslossorgain.Thiscontinuumofdecreasingpotencyofpotentialcancerdriversislikelytocorrespondtoacontinuumofincreasingnumbersofgeneswithdecreasingphenotypicseverity,asillustratedschematicallyinFigure7A.Inaddition,wehypothesizethateventsthatsimultaneouslyaffectmultipleweakdriverscancumulativelyhaveaneffectequaltoasinglepotentdriver.Ourmodelingoftheprogressivelyhighernumberofdrivergenesidentiedasincreasingnumbersoftumorsareanalyzedsuggeststhatthisnumberwillcontinuetoclimbasmoresequenceinformationbecomesavailablebutmaybebeginningtoplateau.However,thenewlyidentieddriversarelikelytodisplayprogressivelylesspotencywithlowertherapeu-ticsignicance.ThisisanalogoustoGWASstudiesforwhichincreasingsamplesizesallowtheidenticationofprogressivelyweakeractingvariants.Ouranalysisprovidesaprobabilityofeachgenebeingacan-cerdriver,andassuch,therewillbefalsepositivesregardlessofthethresholdofminimumprobabilitythatweemploy.IdentifyingbonadedriversfromtheregionswithsignicantpvaluesbuthigherFDRvalues,i.e.,weakerphenotypicsignatures,canbeaidedbyconsideringotherinformationsuchastheirinvolvementinSCNAs,biochemicalconnectionstoknownOGsandTSGs,andfunctionalinformationgleanedfromtheliterature.Theseheuristicmethodscanbeusedtoincreasecondenceandrescuegenesontothelikelycancerdriverlist(TablesS7andS7B).PAN-CancerandTissue-SpeciÞcAnalysisAnalysisofindividualtumortypesidentieddistinctsetsofdriversineachtumortype,butthemajorityofthesewerealsoidentiedinthePAN-Canceranalysisaslowercondencecandidates(TablesS4A–S4C).Thus,althoughthereisclearlytissuespecicity,thereisstillsignicantoverlapamongdifferenttumortypesandaPAN-Canceranalysissamplesasufcientnumberofsimilartumorstodetectmostofthelargelytissue-specicortissue-biasedcancerdrivers.Ouranalysissuggeststhatsignicantlydeepersequencingofindividualtu-mortypesisunlikelytouncovermanynewpotentdriversbeyondwhatwehavealreadyidentiedandfurthersequencingislikelytosufferfromdiminishingreturns.Thisviewisconsis-tentwitharecentreviewthatarguesthatnearlyallpotent ,948–962,November7,20132013ElsevierInc. drivershavebeenidentied(Vogelsteinetal.,2013Sequencingofmorerareandrelativelyunexploredcancertypesmayidentifyafewnovelpotentdriversthatarespecictothosetumortypes,butthevastmajorityofpotentdriverswillalreadyhavebeenseeninothercancers.ThemajoreffectsofcontinuedsequencingwilllikelybetosolidifythecontinuumbybringingmuchweakerdriversintotherealmofstatisticalPropertiesofNewPotentialCancerDriverGenesAnalysisofthelistsenrichedforcancerdriversrevealedseveralgeneralpropertiesthatdistinguishthemfromnondrivergenes.ThelistsofbothTSGsandOGsarestronglyenrichedbothforresidenceinproteincomplexesandforapropertyknownasbetweenness,whichisameasureofthedegreetowhichasetofgenesisenrichedforhubswithinaninteractionnetwork.Thus,thedrivergenesaremuchmorehighlyconnectedthantheaverageproteininthehumangenenetworkandarelonger.Highlyconnectednodesarebetterpositionedtocontroltheowofinformation,andtheirremovalorhyperactiva-tionwillhavethehighestimpactacrossanetworkduetotheirUnexpectedPropertiesoftheXChromosomeGiventhepotentiallydeleteriouseffectsofmutatingTSGs,weanticipatedthatTSGswouldbedepletedfromtheXchro-mosomebynaturalselection,astheXishaploidinmalesandisfunctionallyhaploidinfemalesduetodosagecompensation.However,ouranalysisrevealedjusttheopposite—namely,thattheXhas86%moreTSGsthanexpected.Oncogenes,ontheotherhand,arenotoverrepresentedontheX.Thelikelyexplana-tionisthatadeleteriousmutationinaTSGontheXismorepene-trantbecausethereisnotaWTcopytocompensateforitsloss.ThisfurthersuggeststhatnaturalselectionhasnotcompletelydepletedTSGsfromtheX,possiblybecausecancerislargelyapostreproductivedisease. ABCD Figure7.CumulativeHaploinsufÞciencyandTriplosensitivityShapetheCancerGenomeIllustrativeschematicsofdifferentconceptshighlightedintheDiscussion.(A)Thephenotypiccontinuumofcancerdrivers.(B)ThecancergeneislandmodelforfocalSCNAs.(C)Thecumulativegenedosagebalancemodelforpredictingthepatternsofan

euploidy.(Thepaneldepictstheconceptforarm-levelSCNAs.)(D)ComparisonofthepredictionsofKnudson’sTwo-HitHypothesisforTSGscomparedtotheHaploinsufciencyHypothesispresentedinthisstudy. ,948–962,November7,20132013ElsevierInc. WefoundahighermutationratefortheXthanforautosomes,andthisisfurtherexaggeratedinfemales.Infemales,theaddi-tionalincreaseinXmutabilityislikelyduetothepresenceoftheinactiveX,whichhasverylittletranscriptionand,hence,lesstranscription-coupledrepairandisenrichedinlate-repli-catingheterochromatin,whichtendstobemoremutagenicStamatoyannopoulosetal.,2009).Themechanismunderlyingthesedifferencesandtheirbiologicalsignicanceremainstobedetermined.However,thesedifferencesmightindicatethatthemutationratesofwholechromosomesaresetbyevolutionandthatthehighermutabilityoftheXisadvantageousoverevolutionarytimeifitalsooccursinthegermline.HaploinsufÞciencyandCancerTheclonalexpansiontheoryoftumorigenesisarguesthat,inorderforanindividualmutationtobeselected,itmustcauseanexpansionoftheclonederivedfromthatmutantcellbyincreasingitsrelativeproliferationandsurvival(VogelsteinandKinzler,1993).ThisisintuitiveforOGs,astheyaredominant,butitislesssoforTSGs.ForahemizygousmutationinaTSGtobeselectedincancer,wehavetoassumethateitherthemutationisdominantnegativeortheTSGishaploinsufcient.Ourcurrentanalysisofthedegreetowhichessentialgenesareabsentfromhemizygousrecurringfocaldeletions,coupledwiththereducedfrequencywithwhichessentialgenesexperi-enceLOFmutationsintumors,conservativelysuggestshaploinsufciencyoverallamonghumangenes().Arecentanalysisofhaploinsufciencybythemouseknockoutconsortium(Whiteetal.,2013)foundthat42%ofgenesexaminedproducedaphenotypewhenheterozy-gous,similartoourestimates.EvidencesuggestingthatoursporadicTSGlistislargelyhaploinsufcientcomesfromacom-parisonoftheenrichmentinfocaldeletionsofSTOPgenesversusoursporadicTSGs.STOPgenes,whichareTSG-like,areenrichedby20%(Soliminietal.,2012).Ifweassumethatonly30%ofthisgenesetishaploinsufcientandthatalloftheselectiveenrichmentcomesfromhaploinsufcientgenes,thenalistofpurelyhaploinsufcientSTOPgeneswouldbeexpectedtobeenrichedby67%.Perhapscoincidentally,ourlistofTSGsisenriched68%inrecurringfocaldeletions,sug-gestingthatasignicantproportion,andpossiblyall,ofsporadicTSGsarehaploinsufcient.WeproposethattwoclassesofTSGsmightexist:thosethatarehaploinsufcientandcontributetosporadiccancerandthosethatareanddonotsignicantlycontributetosporadiccancerthroughmutation.Circumstancesunderwhichorganismsinheritonlyonefunctionalcopyofthosehaplo-sufcientTSGsmightresultincancerbecauselossofthesec-ondallelewouldproduceaselectablephenotype.ThissituationoccurswithfamilialTSGsandtheclassicTwo-Hitmodeloftumorigenesis.Ourhypothesisisconsistentwiththefactthat,outofalistof73familialTSGsculledfromtheliterature,only32%ofthemhadacombinedqvalueinthePAN-Canceranalysis(TableS3D).Anothercircumstancewithonlyonefunc-tionalallelepercelloccursontheX,whereweseeahigherdensityofTSGsthanontheautosomes.Ifthepredictedrateof30%haploinsufciencyiscorrect,thenonemightexpecta200%increaseoverautosomes,butnegativeselec-tivepressureontheXcouldhavereducedthatnumber.Thus,itispossiblethatthereareactuallysimilardensitiesofTSGsontheXandautosomes(haploinsufcientsporadicTSGsandhaplosufcientpotentialTSGs),butthoseontheXrealizetheirtumorigenicpotentialatahigherratethandothoseontheThePAN-CancerMutationalAnalysisPredictsAneuploidyinCancerAneuploidyisahallmarkofcancerandcanhavebothadvanta-geousanddeleteriousconsequencesforcells(TangandAmon,2013;Luoetal.,2009),butthereisnogeneraltheorythatexplainshowpatternsofaneuploidyemerge.Knowingtheidentityandpotentialpotencyofcancerdrivershasallowedustouncoveradrivingforcebehindselectionofarm-andchromo-some-levelSCNAs.OuranalysisusingCharmandChromasanintegratedassessmentofthedensityandpotencyofthedifferentclassesofcancerdrivergenesonchromosomesdisplayedarobustabilitytopredictthepatternsofwhole-armamplicationsanddeletionsandaneuploidy(Figures6,and).ThefactthattheCharmscoreimprovesthecorrelationswithSCNAscomparedtothesimplegenedensityofthedifferentclassesofgenesindicatesthattherankingofdrivergenesbyTUSONExplorerislikelytorepresentanaccurateestimateofthepotencyoftheirphenotypiceffectincancerandfurthersupportsthecontinuumtheory.andCh

armdonotpredictarmamplicationaswellasCharm.ThisreducedpredictivepotentialislikelytobebecausetheOGswereselectedonthebasisoftheabilitytobeactivatedbymutationandbecausesimplyincreasingthedosageby50%mightnotstronglyimpactthenetworkstheycontrol.Charm,however,doesshowastrongnegativecorre-lationwitharmdeletionfrequency,indicatingthat,normally,theWTOGsareactingtopromoteproliferationandsurvivalandthecumulativereductionoftheirlevelsby50%isdeleterious.Inthisrespect,theOGsarebehavingliketheessentialgenes,andtheinclusionofahigh-condencelistof332essentialgenestogetherwithOGsandTSGsfurtherimprovesthepredictiveabil-ityforarmdeletions(Figure6E).Asexpected,theessentialgeneshavenopredictivepowerforamplications.stronglypredictswhole-armdeletions.Unexpect-edly,italsostronglypredictsarmamplication,providingastrongnegativecorrelation.ThissuggeststhatincreasingthegenedosageofagroupofTSGscanhavedeleteriouseffectsontumorigenesisthroughtheprocessofcumulativetriplosensi-tivity.IfTSGsaretrulyhaploinsufcient,theirWTproteinlevelsmaybeonlymarginallysufcienttoexecutetheirroles.Ifso,TSGsmaywellbemoresensitivetoincreasedgenedosagetofurtherenhancetheirpathwaysthantypicalgenes.Inotherwords,haploinsufcientgenesmaybemorelikelytodisplaytriplosensitivity.ThispropertyofsporadicTSGsbeingbothhaploinsufcientandtriplosensitive,therefore,maymaketheircumulativeCharmscoreanevenbetterparametertoexplainSCNAsofchromosomearmsandaneuploidyingeneral.Devel-opingacombinedCharmandChromcannowpredict80%ofthefrequencyofarmandchromo-somelossand65%oftheamplicationsobservedacrossall ,948–962,November7,20132013ElsevierInc. AlthoughthecorrelationbetweenCharm/ChromscoresandSCNAsisstriking,thereareseveralareasforimprovement.Therstareaconcernsourlackofknowledgeofthefullcomple-mentofessentialgenesandwhichofthesearehaploinsufcient.Second,onlyasubsetofOGswillbedosagesensitive,andthisknowledgewouldimprovethecorrelation.Inaddition,therearetwoclassesofOGs.ClassIcontainsclassicaloncogenessuchasKRASthatareactivatedbymutationbutwhoseWTcopiesarenotnecessarilyoncogenicafteroverexpressionandwillnotbepredictiveofamplication.ClassIIcontainsgenessuchascyclinDthatcanbeactivatedbyoverexpressionbutaredifculttoactivatebymissensemutationsandthuslackamutationalsignature.ClassIIOGscannotbeidentiedwithcondencethroughmutationalsignaturesyetarelikelytodisplaytriplosen-sitivityandwouldpositivelycorrelatewithamplication.Third,someTSGscanbedifculttodistinguishfromOGs.TheseareTGSsthathavelowhaploinsufciencybutcanproduceaselect-ablephenotypebygenerationofdominant-negativealleles.SuchgeneswilllackastrongLOFsignaturebutwillshowasig-nicantnumberofdeleteriousmissensemutations,whicharelikelytopredominantlyoccurinoneorafewcrucialresidues,thusconferringasignicantEntropyscore.Inaddition,earlySCNAeventsmightinuencesubsequentevents,asisthecasewhenspecicaneuploidyco-occurs(Ozery-Flatoetal.,),whichwouldconfoundouranalysistosomedegree.Finally,reningtheselistsofcancerdriverswillonlyimprovetheirpredictivepower.Thecurrentprogramsforpredictionhavetheirstrengthsandweaknessesandarelikelytobefurtherimprovedinthefuture.MorepreciseknowledgeoftheseessentialandcancerdrivergenesshouldsignicantlyimproveSCNApredict-abilityandourunderstandingofthecancergenome.Finally,theSCNAfrequenciesmightvaryaccordingtotumortype;thus,comparisonofdatasetswithinonetumortypemightprovidemorepredictivepower.Inaddition,wedonotknowtheback-groundfrequencyofSCNAsuponwhichselectionacts,sotheobservedSCNAfrequencycannotbenormalizedlikemutationratescan,andtherefore,theobservedSCNAfrequencyde-tectedmightreectbothfrequencyoftheeventanditsselectivepower,whichcouldconfoundthecorrelation.ModelsofCancerEvolutionOurworksuggestsaveryimportantroleforcumulativehaploin-sufciencyandtriplosensitivityoperatingduringcancerevolu-tiontodrivetumorigenesis.Ineachgenomicregion,thereareSTOP(TSG)andGO(OGandessential)genesthatwillexertanegativeorpositivephenotypiceffectontumorigenesis.BothforfocaldeletionsasillustratedbytheCancerGeneIslandModelFigure7B)andforchromosomesandchromosomalarmSCNAsasindicatedbytheCharmandChromanalysis(Figure7C),theintegratedcumulativebalanceofthesepositiveandnegativetumorigeniceffectsofindividualgenesaffectedineachSCNAeventprovidestheselect

ivepotencytothateventandcanpre-dictitsfrequencyacrosscancers.Forthepast40years,thetumorsuppressoreldhasbeenguidedbyKnudson’sclassicalTwo-HitHypothesisoftumori-genesisforfamilialcancers.ThoughtherearecertainlybonadeexamplesoftheTwo-HitModelinsporadiccancer,thismodelconictswiththetheoryofclonalevolutionofsporadiccancerintheassumptionthatthersthitisfullyrecessiveandasecondhitisrequiredtocontributetotumorigenesis.WhileitisdifculttomeasurethefrequencywithwhichtheTwo-HitHypothesisoperatesincancersbecausetheroleandextentofmethylationinactivationisnotyetknownineachtumor,analysisofLOFmutationaleventssuggeststhatitmaybearelativelyinfrequenteventexceptinthecaseofafewgenessuchas(p53)and(p16),bothofwhichareinducibleresponderstooncogenicstress,whichcanincreaseduringtumorigenesis.Inthecasesofsporadiccancer,whereinthetwo-hithypothesisdoesoperate,itisstillpossibleandevenprobablethatthegenesinvolvedarehaploinsufcienttobeginwith.Ourresultshaveledustoproposethatthevastmajority,ifnotall,ofsporadicTSGsarelikelytobehaploinsufcientandthat,therefore,sporadicTSGsaremostlikelytooperatethroughtheHaploinsufciencyModelshowninFigure7D.Itisimportanttonotethatthesehypothesesarenotmutuallyexclusive,aslossofthesecondalleleofahaploinsufcientTSG,thesecondhit,willundoubtedlyprovideastrongerselectivepressurethanthersthit.However,atumorhasmultiplepathsthroughwhichtoevolve,anditmaynotrequirelossofthatsecondalleleasitobtainsgrowth-promotingpowerthroughtheaccumulationofotherevents.In1914,TheodorBoveriproposedthatspecic‘‘chromosomeconstitutionscanbeproducedsuchthatthecellsthatharboritaredriventounrestrainedproliferation’’(Boveri,1929).Recurringpatternsofaneuploidyexistintumors,butwhethertheyexistbecauseofthefrequencyofoccurrenceofeachindividualSCNAeventorbecausetheyareselectedduetoatumorigenicphenotypiceffectwasnotknown.Here,weproposethatthecu-mulativephenotypiceffectsofgenedosagealterationsofSTOPandGOgenesprovidetheselectivepressurethatisresponsiblefortherecurrentpatternsofcopynumbervariationobservedincancer.OurndingssupportthehypothesisputforwardbyBoveriexactlyonecenturyagothataneuploidyisnotonlyahall-markofcancer,butisalsoadrivingforceduringtheevolutionofhumancancer.EXPERIMENTALPROCEDURESSomaticMutationDataSetThedatasetofsomaticmutationsincludeddatafromTheCancerGenomeAtlas(TCGA,http://cancergenome.nih.gov/)researchnetworkandfromtheCatalogueofSomaticMutationsinCancer(COSMIC,http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/)andthedatasetpublishedbydrovetal.(2013).Thedatasetcontained1,200,000mutationsfrom8,207tumorsamplesfrom�20tumortypes(TableS1)andwillbeavailableathttp://elledgelab.med.harvard.edu/.AlldatarelatedtoSCNAswerederivedfromtheTCGAGenomeDataanalysisCenterattheBroadInstitute(etal.,2013TUSONExplorerPredictionsThePolyPhen2algorithm(Adzhubeietal.,2010)wasusedtopredictthefunctionalimpactofeachmissensemutationandtoclassifythemashighfunctionalimpact(HiFI)orlowfunctionalimpact(LoFI).Wedenedthefourfollowingclassesofmutations:(1)Benignmutations:Silent+LoFIMissense;(2)LossofFunctionmutations(LOF):NonsenseandFrameshiftmutations;(3)Splicingmutations:mutationsaffectingsplicingsites;and(4)HiFImissensemutations.AnadditionalparameterconsideredwastheEntropyscore,whichmeasuresthedegreeofrandomnessofthedistributionofmissense ,948–962,November7,20132013ElsevierInc. Among22potentialparameters,weselectedthemostpredictiveonesbyusingtheLassopredictionmodelandthreetrainingsetsofknownTSGsandOGs(fromtheCancerGeneCensus,Futrealetal.,2004)andputativeneutralgenes.LOF/Benign,Splicing/Benign,andHiFI/BenignratioswereselectedbyLassoforthepredictionofTSGs,andtheHiFI/BenignratioandtheEntropyscorewereselectedforthepredictionofOGs.TUSONpredictionsarebasedonthecalculationofacombinedpvalue(andqvalue)oftheselectedparam-etersbyusinganextendedversionoftheLiptakmethod(TablesS3AandS3B).BasedonthecombinedpvaluesderivedwiththeTUSONmethod,weesti-matedthetotalnumberofpredictedTSGsandOGsbyusingahistogram-basedmethod(Mosigetal.,2001CharmandChromScoreandCorrelationwithFrequencyofSCNAsForeacharmandchromosome,respectively,theCharmandChromscoresforacertaingeneset(TSGs,OGs,oressentialgenes)representthedensityofthegenescontainedinthatsetweightedbytheirpredictedpotency.Thepotencyofeachgenecorrespondstoitsra

nkpositionwithinitsgenesetlistrankedbytheTUSONpvalueorbythe(LOF+1/2HiFi)/Benignratiofortheessentialgenes.ForthecumulativeCharmTSG-OG-EssandChromTSG-OG-Essscore,thescoresofOGsandessentialgenesweresubtractedfromthescoresrelativetotheTSGs.Thecorrelationanalysiswasperformedusingone-sidedPearson’scorrelationtestbetweentheCharmorChromscoreandthefrequencyofdeletionandamplicationofeacharmorchromosomeacrossalltumors(TableS6AnalysisofFunctionalGeneSetsTheSTOPgenelistwasderivedfromananalysisperformedusingRNAigeneenrichmentranking(RIGER)algorithm(Cheungetal.,2011)onapreviouslydescribedfunctionalshRNA-basedproliferationscreen(Soliminietal.,2012TableS5A).Aninsilicolistof332essentialgeneswasderivedbyconsideringtheintersectionbetweenthelistsofgenespredictedtobehousekeepinggenesandhighlyconservedgenes(Marcotteetal.,2012TableS5A).WeusedtheFisher’sexacttesttoexaminethesignicanceoftheassociationbetweenthepresenceofageneinrecurrentSCNAs(Beroukhimetal.,2010anditspresenceamongacertaingeneset.Foradditionalinformation,seetheExtendedExperimentalProceduresSUPPLEMENTALINFORMATIONSupplementalInformationincludesExtendedExperimentalProcedures,vegures,andseventablesandcanbefoundwiththisarticleonlineatdx.doi.org/10.1016/j.cell.2013.10.011ACKNOWLEDGMENTSWethankSimonForbesandMichaelStratton(WellcomeTrustSangerInsti-tute,UK)forthedatafromtheCosmicdataset(http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/),EricWootenforhelpondataextraction,andChadCreightonandKimRathmellforallowingaccesstotheirunpublisheddataonKICHSCNAs.WealsothankAndrewFutreal,SeminLee,DavidLiving-ston,DavidPage,Mary-ClaireKing,JimLupski,RameenBeroukhim,MattMeyerson,AtanasKamburov,andPaulEdwardsforhelpfuladviceandBertVogelstein,JudithGlaven,andmembersoftheElledgelabforhelpfulcom-mentsonthemanuscript.ThisworkwasfundedbyaDODBreastCancerInnovatorAwardandNIHgranttoS.J.E.,U54LM008748toP.J.P.,andK08DK081612toJ.C.Y.S.J.E.isaninvestigatorwiththeHowardHughesMedicalInstitute.Weapologizetoourcolleagueswhosepaperswecouldnotciteduetospacelimitations.Received:August20,2013Revised:September26,2013Accepted:October8,2013Published:October31,2013Adamson,B.,Smogorzewska,A.,Sigoillot,F.D.,King,R.W.,andElledge,S.J.(2012).Agenome-widehomologousrecombinationscreenidentiestheRNA-bindingproteinRBMXasacomponentoftheDNA-damageresponse.Nat.CellBiol.,318–328.Adzhubei,I.A.,Schmidt,S.,Peshkin,L.,Ramensky,V.E.,Gerasimova,A.,Bork,P.,Kondrashov,A.S.,andSunyaev,S.R.(2010).Amethodandserverforpredictingdamagingmissensemutations.Nat.Methods,248–249.Alexandrov,L.B.,Nik-Zainal,S.,Wedge,D.C.,Aparicio,S.A.,Behjati,S.,Bian-kin,A.V.,Bignell,G.R.,Bolli,N.,Borg,A.,Børresen-Dale,A.L.,etal.;AustralianPancreaticCancerGenomeInitiative;ICGCBreastCancerConsortium;ICGCMMML-SeqConsortium;ICGCPedBrain.(2013).Signaturesofmutationalprocessesinhumancancer.Nature,415–421.Beroukhim,R.,Mermel,C.H.,Porter,D.,Wei,G.,Raychaudhuri,S.,Donovan,J.,Barretina,J.,Boehm,J.S.,Dobson,J.,Urashima,M.,etal.(2010).Theland-scapeofsomaticcopy-numberalterationacrosshumancancers.Nature899–905.Bianchi,N.O.(2009).Ychromosomestructuralandfunctionalchangesinhumanmalignantdiseases.Mut.Res.,21–27.Boveri,T.(1929).TheOriginofMalignantTumors(Baltimore,MD:WilliamsandCancerGenomeAtlasNetwork.(2012).Comprehensivemolecularportraitsofhumanbreasttumours.Nature,61–70.Conti,P.,Youinou,P.,andTheoharides,T.C.(2007).Modulationofautoimmu-nitybythelatestinterleukins(withspecialemphasisonIL-32).Autoimmun.,131–137.Dees,N.D.,Zhang,Q.,Kandoth,C.,Wendl,M.C.,Schierding,W.,Koboldt,D.C.,Mooney,T.B.,Callaway,M.B.,Dooling,D.,Mardis,E.R.,etal.(2012).MuSiC:identifyingmutationalsignicanceincancergenomes.GenomeRes.,1589–1598.Forbes,S.A.,Tang,G.,Bindal,N.,Bamford,S.,Dawson,E.,Cole,C.,Kok,C.Y.,Jia,M.,Ewing,R.,Menzies,A.,etal.(2010).COSMIC(theCatalogueofSomaticMutationsinCancer):aresourcetoinvestigateacquiredmutationsinhumancancer.NucleicAcidsRes.(Databaseissue),D652–D657.Futreal,P.A.,Coin,L.,Marshall,M.,Down,T.,Hubbard,T.,Wooster,R.,Rah-man,N.,andStratton,M.R.(2004).Acensusofhumancancergenes.Nat.Rev.,177–183.Gudjonsson,T.,Altmeyer,M.,Savic,V.,Toledo,L.,Dinant,C.,Grøfte,M.,Bart-kova,J.,Poulsen,M.,Oka,Y.,Bekker-Jensen,S.,etal.(2012).TRIP12andUBR5suppressspreadingofchromatinubiquitylationatdamagedchromo-somes.Cell,697&#

150;709.Hanahan,D.,andWeinberg,R.A.(2011).Hallmarksofcancer:thenextgener-ation.Cell,646–674.Hou,J.M.,Krebs,M.,Ward,T.,Sloane,R.,Priest,L.,Hughes,A.,Clack,G.,Ranson,M.,Blackhall,F.,andDive,C.(2011).Circulatingtumorcellsasawindowonmetastasisbiologyinlungcancer.Am.J.Pathol.,989–996.Kowalski,J.,Morsberger,L.A.,Blackford,A.,Hawkins,A.,Yeo,C.J.,Hruban,R.H.,andGrifn,C.A.(2007).Chromosomalabnormalitiesofadenocarcinomaofthepancreas:identifyingearlyandlatechanges.CancerGenet.Cytogenet.,26–35.Lai,K.,Amsterdam,A.,Farrington,S.,Bronson,R.T.,Hopkins,N.,andLees,J.A.(2009).Manyribosomalproteinmutationsareassociatedwithgrowthimpairmentandtumorpredispositioninzebrash.Dev.Dyn.Lawrence,M.S.,Stojanov,P.,Polak,P.,Kryukov,G.V.,Cibulskis,K.,Sivachenko,A.,Carter,S.L.,Stewart,C.,Mermel,C.H.,Roberts,S.A.,etal.(2013).Mutationalheterogeneityincancerandthesearchfornewcancer-associatedgenes.Nature,214–218.Luo,J.,Solimini,N.L.,andElledge,S.J.(2009).Principlesofcancertherapy:oncogeneandnon-oncogeneaddiction.Cell,823–837.Matsuoka,S.,Ballif,B.A.,Smogorzewska,A.,McDonald,E.R.,3rd,Hurov,K.E.,Luo,J.,Bakalarski,C.E.,Zhao,Z.,Solimini,N.,Lerenthal,Y.,etal.(2007).ATMandATRsubstrateanalysisrevealsextensiveproteinnetworksresponsivetoDNAdamage.Science,1160–1166.Meyerson,M.,Gabriel,S.,andGetz,G.(2010).Advancesinunderstandingcancergenomesthroughsecond-generationsequencing.Nat.Rev.Genet.,685–696. ,948–962,November7,20132013ElsevierInc. Mosig,M.O.,Lipkin,E.,Khutoreskaya,G.,Tchourzyna,E.,Soller,M.,andFriedmann,A.(2001).AwholegenomescanforquantitativetraitlociaffectingmilkproteinpercentageinIsraeli-Holsteincattle,bymeansofselectivemilkDNApoolinginadaughterdesign,usinganadjustedfalsediscoveryratecriterion.Genetics,1683–1698.Ozery-Flato,M.,Linhart,C.,Trakhtenbrot,L.,Israeli,S.,andShamir,R.(2011).Large-scaleanalysisofchromosomalaberrationsincancerkaryotypesrevealstwodistinctpathstoaneuploidy.GenomeBiol.,R61.Pavlova,N.N.,Pallasch,C.,Elia,A.E.,Braun,C.J.,Westbrook,T.F.,Hemann,M.,andElledge,S.J.(2013).AroleforPVRL4-drivencell-cellinteractionsintumorigenesis.Elife,e00358.Ruepp,A.,Waegele,B.,Lechner,M.,Brauner,B.,Dunger-Kaltenbach,I.,Fobo,G.,Frishman,G.,Montrone,C.,andMewes,H.W.(2010).CORUM:thecomprehensiveresourceofmammalianproteincomplexes—2009.NucleicAcidsRes.(Databaseissue),D497–D501.Shannon,C.E.,andWeaver,W.(1949).TheMathematicalTheoryofCommu-nication(Urbana,IL:UniversityofIllinoisPress).Solimini,N.L.,Xu,Q.,Mermel,C.H.,Liang,A.C.,Schlabach,M.R.,Luo,J.,Bur-rows,A.E.,Anselmo,A.N.,Bredemeyer,A.L.,Li,M.Z.,etal.(2012).Recurrenthemizygousdeletionsincancersmayoptimizeproliferativepotential.Science,104–109.Stamatoyannopoulos,J.A.,Adzhubei,I.,Thurman,R.E.,Kryukov,G.V.,Mirkin,S.M.,andSunyaev,S.R.(2009).HumanmutationrateassociatedwithDNAreplicationtiming.Nat.Genet.,393–395.Stark,C.,Breitkreutz,B.J.,Reguly,T.,Boucher,L.,Breitkreutz,A.,andTyers,M.(2006).BioGRID:ageneralrepositoryforinteractiondatasets.NucleicAcidsRes.(Databaseissue),D535–D539.Stratton,M.R.,Campbell,P.J.,andFutreal,P.A.(2009).Thecancergenome.,719–724.Tang,Y.C.,andAmon,A.(2013).Genecopy-numberalterations:acost-benetanalysis.Cell,394–405.Vogelstein,B.,andKinzler,K.W.(1993).Themultistepnatureofcancer.Trends,138–141.Vogelstein,B.,Papadopoulos,N.,Velculescu,V.E.,Zhou,S.,Diaz,L.A.,Jr.,andKinzler,K.W.(2013).Cancergenomelandscapes.Science,1546–White,J.K.,Gerdin,A.K.,Karp,N.A.,Ryder,E.,Buljan,M.,Bussell,J.N.,Salis-bury,J.,Clare,S.,Ingham,N.J.,Podrini,C.,etal.;SangerInstituteMouseGeneticsProject.(2013).Genome-widegenerationandsystematicphenotyp-ingofknockoutmicerevealsnewrolesformanygenes.Cell,452–464.Willig,T.N.,Gazda,H.,andSieff,C.A.(2000).Diamond-Blackfananemia.Curr.Opin.Hematol.,85–94.Wood,L.D.,Parsons,D.W.,Jones,S.,Lin,J.,Sjoblom,T.,Leary,R.J.,Shen,D.,Boca,S.M.,Barber,T.,Ptak,J.,etal.(2007).Thegenomiclandscapesofhumanbreastandcolorectalcancers.Science,1108–1113.Zack,T.I.,Schumacher,S.E.,Carter,S.L.,Cherniack,A.D.,Saksena,G.,Tabak,B.,Lawrence,M.S.,Zhang,C.-Z.,etal.(2013).Pan-cancerpatternsofsomaticcopynumberalteration.Nat.Genet.,1134–1140.Zhang,D.,Zaugg,K.,Mak,T.W.,andElledge,S.J.(2006).Aroleforthedeu-biquitinatingenzymeUSP28incontroloftheDNA-damageresponse.Cell,529–542. ,948–962,November7,20132013

Related Contents


Next Show more