/
Proof:First,wemultiplytherstnormalequationby�Pni=1xiandtheseco Proof:First,wemultiplytherstnormalequationby�Pni=1xiandtheseco

Proof:First,wemultiplythe rstnormalequationby�Pni=1xiandtheseco - PDF document

bety
bety . @bety
Follow
342 views
Uploaded On 2021-01-05

Proof:First,wemultiplythe rstnormalequationby�Pni=1xiandtheseco - PPT Presentation

y0b1 xNote y1 nPni1yiand x1 nPni1xiProofIgnoringthesecondnormalequationstartbydividingthe12rstnormalequationbyn1 nnXi1yib0b1 nnXi1xiRearrangingthisequationandnotingthat y1 nPni ID: 827116

1xi nxi pni 1x2i nxi 1xi 1x2i pni npni 1yi nnxi 1xiyi 1xinxi 1yiand s2x proof b1nnxi b0nnxi

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Proof:First,wemultiplythe rstnormale..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Proof:First,wemultiplythe rstnormale
Proof:First,wemultiplythe rstnormalequationby�Pni=1xiandthesecondonebyn:�nXi=1xinXi=1yi=�b0nnXi=1xi�b1 nXi=1xi!2nnXi=1xiyi=b0nnXi=1xi+b1nnXi=1x2i:Next,addthetwoaboveequations,notingthatthetermsinvolvingb0cancelout:nnXi=1xiyi�nXi=1xinXi=1yi=b1nnXi=1x2i&#

0;b1 nXi=1xi!2=b124nnXi=1x2i� nXi=1xi
0;b1 nXi=1xi!2=b124nnXi=1x2i� nXi=1xi!235:Solvingforb1isnowastraightforwardmatterofdividingbothsidesbyhnPni=1x2i�(Pni=1xi)2i.4.Onceb1isknown,showthatsolvingthenormalequationsforb0yieldsb0=y�b1x(Note:y=1nPni=1yiandx=1nPni=1xi.)Proof:Ignoringthesecondnormaleq

uation,startbydividingthe rstnormale
uation,startbydividingthe rstnormalequationbyn:1nnXi=1yi=b0+b1nnXi=1xi:Rearrangingthisequation,andnotingthaty=1nPni=1yiandx=1nPni=1xi,weobtainb0=y�b1xasdesired.5.Provethatthesetwoequationsarevalid:nXi=1xiyi�1nnXi=1xinXi=1yi=nXi=1(xi�x)(yi�y)nXi=

1x2i�1n nXi=1xi!2=nXi=1(xi�x)2T
1x2i�1n nXi=1xi!2=nXi=1(xi�x)2Therefore,ifwedividersxsybys2x,then�1cancelsfromtheprevioustwoexpressionsandweareleftwithrsxsys2x=Pni=1(xi�x)(yi�y)Pni=1(xi�x)2;whichisidenticaltotheformulaforb1inpart6(frompage144).Weconcludethatb1=rsxsys2x=rsysx: