/
Stokes'theoremclaimsthatifwe\capoStokes'theoremclaimsthatifwe\capo

Stokes'theoremclaimsthatifwe\capo "thecurveCbyanysurfaceS(withappropri - PDF document

briana-ranney
briana-ranney . @briana-ranney
Follow
410 views
Uploaded On 2016-08-07

Stokes'theoremclaimsthatifwe\capo "thecurveCbyanysurfaceS(withappropri - PPT Presentation

22HemisphereTakeStobetheunitupperhemispherede nedbyx2y2z21z0AccordingtotheorientationconventionthenormalntoSshouldbeorientedupwardpointingawayfromtheoriginThatmeansnxyz p x2y2z ID: 437325

 :2.2HemisphereTakeStobetheunitupperhemisphere de nedbyx2+y2+z2=1 z0.Accordingtotheorientationconvention thenormal~ntoSshouldbeorientedupward pointingawayfromtheorigin.Thatmeans~n=(x;y;z) p x2+y2+z

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Stokes'theoremclaimsthatifwe\capo "thecu..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Stokes'theoremclaimsthatifwe\capo "thecurveCbyanysurfaceS(withappropriateorientation)thenthelineintegralcanbecomputedasZC~Fd~r=ZZScurl~F~ndS:Nowlet'shavefun!Moreprecisely,letusverifytheclaimforvariouschoicesofsurfaceS.2.1DiskTakeStobetheunitdiskinthexy-plane,de nedbyx2+y21,z=0.Accordingtotheorientationconvention,thenormal~ntoSshouldbeorientedupward,sothatinfact~n=(0;0;1).ZZScurl~F~ndS=ZZS(�x;0;z�1)(0;0;1)dS=ZZS(z�1)dS=ZZS(�1)dS=�Area(S)= � :2.2HemisphereTakeStobetheunitupperhemisphere,de nedbyx2+y2+z2=1,z0.Accordingtotheorientationconvention,thenormal~ntoSshouldbeorientedupward,pointingawayfromtheorigin.Thatmeans~n=(x;y;z) p x2+y2+z2=(x;y;z).LetusparametrizeSinsphericalcoordinates,2 2.3ParaboloidTakeStobethepartoftheparaboloidde nedbyz=1�x2�y2,x2+y21.Accordingtotheorientationconvention,thenormal~ntoSshouldbeorientedupward,pointingawayfromthez-axis.LetusparametrizeSusingxandyasparameters,withdomainofparametrizationDtheunitdiskx2+y21:~r(x;y)=(x;y;1�x2�y2):Thetangentvectorsare~rx=(1;0;�2x)~ry=(0;1;�2y)sothatanormalvectorisgivenbythecrossproduct~rx~ry=(2x;2y;1):Checktheorientation:Thisnormalvectorpointsupandawayfromthez-axis.Ok!Noneedto ipit.ZZScurl~F~ndS=ZZDcurl~F(~rx~ry)dxdy=ZZD(�x;0;z�1)(2x;2y;1)dxdy=ZZD�2x2+z�1dxdy=ZZD�2x2+(1�x2�y2)�1dxdy=ZZD�3x2�y2dxdy=�Z20Z10�3r2cos2+r2sin2rdrd=�Z20Z10�3r3cos2+r3sin2drd=�Z203 4cos2+1 4sin2d=�3 4()+1 4()= � :2.4ConeTakeStobethepartoftheconede nedbyz=1�p x2+y2,x2+y21.Accordingtotheorientationconvention,thenormal~ntoSshouldbeorientedupward,pointingawayfromthe4 Accordingtotheorientationconvention,thenormal~ntoS1shouldpointawayfromthez-axis.Thatmeans~n=(x;y;0).LetusparametrizeS1incylindricalcoordinateswith0z5and02:~r(z;)=(cos;sin;z):ZZS1curl~F~ndS=ZZS1(�x;0;z�1)(x;y;0)dS=ZZS1�x2dS=�Z20Z50(cos2)(1)dzd=�5Z20(cos2)d=�5:Thenormal~ntoS2shouldpointup.Thatmeans~n=(0;0;1).ZZS2curl~F~ndS=ZZS2(�x;0;z�1)(0;0;1)dS=ZZS2(z�1)dS=ZZS2(4)dS=4Area(S2)=4:Combiningthetwoparts,weobtainZZScurl~F~ndS=ZZS1curl~F~ndS+ZZS2curl~F~ndS=�5+4= � :3Closedsurfaces3.1ClosedcurvesRecallthefollowingfromchapter13.De nition3.1.Aclosedcurveisacurvethatendswhereitstarted.Inotherwords,aclosedcurveChasnoendpoints oatingaround;itformsaloop.Anotherwaytosaythisisthatitsboundaryisempty:@C=;.Ingeneral,theboundaryofacurve6 toeachpartyieldsZZScurl~F~ndS=ZZS1curl~F~ndS+ZZS2curl~F~ndS=ZC~Fd~r�ZC~Fd~r=0wheretheoppositesignscomefromtheorientationconvention.Infact,property(2)characterizescurls:Avector eldisthecurlofsomevector eldifandonlyifitsintegralalonganyclosedsurfaceiszero.Property(2)isnotasmysteriousasitseems.Thekeyisthatcurlsareveryspecial.Mostvector eldsarenotthecurlofavector eld.4Whichvector eldsarecurls?Wehaveseenthatvector eldsoftheformcurl~Fare(relatively)easytointegratealongsurfaces.Buthowdoweknowifagivenvector eldisthecurlofsomevector eld?Hereisanecessarycondition.Proposition4.1.Let~Fbeaniceenoughvector eld(twicecontinuouslydi erentiable).Thenwehavediv(curl~F)0.Inwords:acurlisalwaysincompressible.Proof.Write~F=(F1;F2;F3)andabbreviatethepartialdi erentiationoperatorsas@1=@ @x;@2=@ @y;@3=@ @z:Thenthecurliscurl~F= ~i~j~k@1@2@3F1F2F3 =~i(@2F3�@3F2)�~j(@1F3�@3F1)+~k(@1F2�@2F1)=(@2F3�@3F2;@3F1�@1F3;@1F2�@2F1):Itsdivergenceisdivcurl~F=@1(@2F3�@3F2)+@2(@3F1�@1F3)+@3(@1F2�@2F1)=@1@2F3�@1@3F2+@2@3F1�@2@1F3+@3@1F2�@3@2F1=(@1@2F3�@2@1F3)+(@2@3F1�@3@2F1)+(@3@1F2�@1@3F2)0+0+0=0: 8