/
Keywordsandphrases.integerpoints,lattice,algorithms,polyhedra,toricvar Keywordsandphrases.integerpoints,lattice,algorithms,polyhedra,toricvar

Keywordsandphrases.integerpoints,lattice,algorithms,polyhedra,toricvar - PDF document

calandra-battersby
calandra-battersby . @calandra-battersby
Follow
408 views
Uploaded On 2017-03-06

Keywordsandphrases.integerpoints,lattice,algorithms,polyhedra,toricvar - PPT Presentation

ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA93InmostcasestheformulaeonecangetareneithersoniceandsimpleasPicksformulaExample12norsotautologicalastheformulafromExample13Weconsiderafewmoreexampl ID: 522819

ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA93Inmostcases theformulaeonecangetareneithersoniceandsimpleasPick'sformula(Example1.2) norsotautologicalastheformulafromExample1.3.Weconsiderafewmoreexampl

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Keywordsandphrases.integerpoints,lattice..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Keywordsandphrases.integerpoints,lattice,algorithms,polyhedra,toricvarieties,generat-ingfunctions,valuations. ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA93Inmostcases,theformulaeonecangetareneithersoniceandsimpleasPick'sformula(Example1.2),norsotautologicalastheformulafromExample1.3.Weconsiderafewmoreexamples.Example1.4.Letbethetetrahedronwiththevertices(00),(0),;b;0),and(0),wherea;bandarepairwisecoprimepositiveintegers.Thenthenumberoflatticepointsincanbeexpressedas +a+b+c 4+1 + + +1 bc;aac;bab;c)+2wherep;q)istheDedekindsumde nedforcoprimepositiveintegersandp;q  and(())= 0ifhereasusualbcisthe oorfunction.See[Mordell1951;Pommersheim1993;Dyer1991].Example1.5.Letbeanonemptyintegerpolytope.Forapositiveinteger,letdenotethedilatedpolytope.AsE.Ehrhartdiscovered[1977],thereisapolynomial),nowcalledtheEhrhartpolynomial,suchthatwhereFurthermore,=1and=vol),thevolumeof.Thefollowingreci-procitylawholds:dim(relint(forpositiveintegersThatis,thevalueofatanegativeintegerequals,uptoasign,thenumberofintegerpointsintherelativeinteriorof.See[Stanley1997,Section4.6],forexample.WewillarguethatbothExample1.4andExample1.5areusefulandbeautiful.Tonavigatetheseaof\latticepointsformulae"whichcanbefoundintheliteratureandwhicharetobediscoveredinthefuture,wehavetosetupsomecriteriaforbeautyandusefulness.Ofcourse,likeallsuchcriteria,oursispurelysubjective.Welookatthecomputationalcomplexityoftheformula.Fixthespace.Supposethatisarationalpolytope.Thereisanobviouswaytocountintegerpointsin:weconsiderasucientlylargebox;:::;;:::;dwhichcontains,andcheckintegerpointsfromonebyonetoseeiftheyarecontainedin.Inotherwords,thisisan\e ective"versionoftheformulaofExample1.3.Wewillmeasurethe\usefulness"and\niceness"oftheformulaforthenumberoflattice ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA95Tosummarize,weapproacheveryformulainthispaperprimarilyfromthepointofviewofcomputationalcomplexity.Ofcourse,therearedi erentphiloso-phiesthatareequallylegitimate.Thetopicofthispaperis\latticesandpolyhe-dra,"asopposedtoaclose,butsomewhatdi erentinspirit,topic\latticesandconvexbodies."Thisiswhyweomitmanyinterestingresultsonintegerpro-gramming,latticereductionalgorithms,andcountinglatticepointsingeneralconvexbodies;see[Cooketal.1992;Lovasz1986;Grotscheletal.1993;Schrijver1986].Similarly,wedonotdiscussratherinterestingresultsconcerninglatticepointsinnonrationalpolyhedra[Skriganov1998].Ourapproachisalgebraicandwedon'tcoverrecentadvancesinprobabilisticmethodsofcounting,suchasthosein[Dyeretal.1993;1997](see[Bollobas1997]forasurvey).Inshort,thepaperpresents\analgorithmictheory,"oneofmanypossible.Thisareaoftheresearchhasbeenquiteactive.Alongwithsuchactivity,oneexpectsindependentdiscoveriesofcertainresults,andwithunequalpublicationdelays,thereisoftenconfusionaboutwhodidwhat rst.Wehavetriedtobeaccurateinthechronology,but,unfortunately,inaccuraciesarepossible.Thispaperismeanttobeasurvey.However,itdoescontainsomenewresults:Theorem4.4(especiallythesecondpart),Theorem5.3,Theorem9.6,resultsinSection10,andpossiblysomeresultsinSection7.Inaddition,someofthelinksinSection8arenew.Wheneverpossible,wehavetriedtoprovidethereaderwithsketchesofproofs.2.Preliminaries.AlgebraofPolyhedraThenumberofintegerpointsinapolytopeisavaluation;thatis,itsatis- estheinclusion-exclusionproperty.Thetheoryofvaluations,withthetheoryofthepolytopealgebraasitsbasis,wasdevelopedbymanyauthors;see[Mc-MullenandSchneider1983;McMullen1993]forasurvey.Severalinequivalentde nitionsandapproacheshavebeenused,eachhavingitsownadvantages.Forexample,onecaneitherchoosetoconsiderarbitrarypolytopes,ortoconsiderlatticepolytopesonly.Inaddition,onecandecideeithertoidentifyornottoidentifytwopolytopeswhichdi erbya(lattice)translation.Also,valuationscanbede nedviatheinclusion-exclusionprinciplefortheunionoftwoorsev-eralpolytopes.See[KantorandKhovanskii1992;PukhlikovandKhovanskii1992a;Lawrence1988;McMullen1989;Morelli1993c;1993d].Hereweemployanapproachwhichisconvenientforus.Letbeaset.TheindicatorfunctionnA]:Rd!RofAisde nedbyyA](x)=1if0ifalgebraofpolyhedra)isthevectorspace(over)spannedbytheindicatorfunctions[]ofallpolyhedra.Thespace)isclosedunderpointwisemultiplicationoffunctions:foranytwofunctionsf;g),wehave ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA97Thesumiswell-de nedsincethereareonly nitelymanynonzeroterms.Nowwearereadytoextend).Chooseapolytopecontainingtheoriginasaninteriorpoint,andletbethedilatationofbyafactorof.Forany0andany),wehaveeQ(t)]f2Pc(Rd)andwelet)=limItisveryeasytoseethatiswell-de nedandthatitsatis estheconditionnP])=1foranynonemptypolyhedronTheEulercharacteristicallowsustointerpretvariousimportantvaluationsasintegraltransformswithrespecttoasameasure.See[KhovanskiiandPukhlikov1993].Theorem2.3.SupposethatisananetransformationThenthereisauniquevaluationsuchthathatP])=[foreachpolyhedronProof.De neakernelx;y1if0ifThenforeach xedandeach),wehavex;y),sowecanapplytheEulercharacteristicon),whichwedenoteby(tostressthevariable).Nowweletwherex;yInadditiontopointwisemultiplication,thereisacommutativeandassociativebilinearoperation),whichwecallconvolution,becauseitcanbecon-sideredastheconvolutionwithrespecttotheEulercharacteristicasameasure.Manyauthors[Lawrence1988;McMullen1989;1993]considerasthetruemul-tiplicationinthealgebraofpolyhedra,andperhapsrightlyso,becauseithasmanyinterestingproperties.Definition2.4.Letandbepolyhedrain.TheMinkowskisumisde nedasP;yTheorem2.5.ThereisauniquebilinearoperationsuchthathatP]?[Q]=[foranytwopolyhedraProof.Fixadecomposition.Letbethelineartransformationx;yandlet)bethecorrespondingvaluationwhoseexistenceisassertedbyTheorem2.3.Forfunctionsf;gde netheirouterproduct)by(x;y).Thenf?g ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA99forcertainrationalnumbersThennKi]=0:Proof.WeapplythevaluationofTheorem2.7tobothsidesoftheidentity.ThevaluationplaystheroleoftheFourierTransformwithrespecttotheEulercharacteristicasameasure.Thevaluationtransformspointwiseproductsintotheconvolutions:)andf?g)forf;gItsucestochecktheidentityforrK]anddC],whereK;Carecones.WehaveeK\C],D(f)=[)=[],and)=[[C]=[K+C]=[(Similarly,,K][C]=[]=[(f?gFinally,wedescribeanimportantvaluationonthepolytopealgebraassociatedwithavector.Letbeapolytopeandletavector.Letmax(u;P)=maxu;xbethemaximalvalueofthelinearfunctionu;xonthepolytopeandletu;x=max(u;Pbethefaceofwherethismaximumisattained.Theorem2.9.ForanythereisavaluationsuchthathatP])=[foranypolytopeSketchofproof.For0and0,de nethekernelx;y1ifu;xand0otherwise.Thenfor),welet,wherex;y ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA101Example3.2.De nefourrationalpolyhedrain,and.Part3ofTheorem3.1impliesthat=1.Now sobyPart3,wemusthave)=1).Similarly, 1�x�1=�x sobyPart3wemusthave).ByPart4,Finally,since[]=[]+[[P0],Part1impliesthat)=0,whichisindeedthecase.Example3.3.Chooselinearlyindependentintegervectors;:::;uandlet=co;:::;ubetheconegeneratedby;:::;u.Inotherwords,0for;:::;kLet0for;:::;kbethe\fundamentalparallelepiped"generatedby;:::;u.Asiswell-known(see,forexample,[Stanley1997,Lemma4.6.7]),foreachintegerpoint,thereisauniquerepresentationwhereand;:::;aarenonnegativeintegers.Let1for;:::;kThenisanonemptyopenset,andforeachwehave wheretheseriesconvergesabsolutelyforeach.Part3ofTheorem3.1impliesthatwemusthave Animportantparticularcaseariseswhenthefundamentalparallelepipedcon-tainsonlyoneintegerpoint,theorigin.Thishappensifandonlyif;:::;uformabasisofthe-dimensionallatticeSpan;:::;u.Inthiscase,the ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA103rationalpolyhedrawithoutstraightlines.De ne)asalinearcombination)viatheinclusion-exclusionprinciple.Provingthat)iswell-de nedboilsdowntoprovingthatwegetaconsistentde nitionof)ifitselfdoesnotcontainstraightlines.Thisistruesincethereisanonemptyopen,wherealltheseriesde ning)and)convergeabso-lutely.Itthenfollowsthattheproperties(1){(3)aresatis ed,anditremainstocheck(4).Ifcontainsastraightline,thenforsomenonzerowehave.Therefore,)and)mustbeidenticallyzero.Themapcanbeextendedtoavaluation),sendingeveryfunctionintoarationalfunctionincomplexvariablessuchthatprovidedtheseriesconvergesabsolutely.Furthermore,if)forsome,thenFinally,thekernelofthisvaluationcontainsthesubspacespannedbytheindi-catorfunctionsofrationalpolyhedrawithstraightlines.WearegoingtopresentinTheorem3.5averyinterestingandimportantcorollarytoTheorem3.1.ItwasprovedbyM.BrionbeforeTheorem3.1andits rstproofusedalgebraicgeometry[Brion1988].Elementaryproofswerepublishedin[Lawrence1991;PukhlikovandKhovanskii1992b;Barvinok1993]andelsewhere.First,weneedade nition.Definition3.4.Letbeapolyhedronandletbeavertexof.Thesupportingtangentconecone(P;v)ofisde nedasfollows:supposethat;:::;misarepresentationofasthesetofsolutionsofasystemoflinearinequalities,whereand.Letbethesetofconstraintsthatareactiveon.Thencone(P;vOfcourse,theconecone(P;v)doesnotdependonaparticularsystemofin-equalitieschosentorepresent.Ifisarationalpolyhedronthencone(P;visarationalpointedconewithvertex.Moregenerally,ifisaface,wede necone(P;Fwhereisthesetofinequalitiesthatareactiveon.Ifdimanddim,theapexofcone(P;F)isa-dimensionalanesubspacein ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA105Therefore,e,(�1)dXv2Vert())K�v](modItremainstoshowthat[cone(K�v](modThelastassertionfollowsbycomparingcone()andviaachainofinter-mediatecones,where2f�and;:::;").Notethatcone(and.OncewegettXv2Vert()[cone()](modforanysimplex,usingtriangulationswecanshowthattP]Xv2Vert([cone(P;v)](modforanypolytopeSupposethatisanarbitrarypolyhedron.Asiswellknown,canberepresentedastheMinkowskisum,whereisapolytope,isaconewithoutstraightlines,andisasubspacein.If,thenhasnovertices,and)=0,sothestatementofthetheoremistrue.If,wemaywriteeQ]Xv2Vert([cone(Q;v)](modandbyCorollary2.6,6,P][Q+K]Xv2Vert([cone(Q;v](modEachvertexisavertexof,andcone(P;v)=cone(Q;v.Further-more,avertexisavertexofifandonlyiftheconecone(Q;vdoesnotcontainstraightlines.Theproofnowfollows.Following[BrionandVergne1997c],insteadof),onecanconsideravaluation))withthevaluesinthespaceofformalLaurentpowerseriesin;:::;x)withrationalcoecients:Thisleadstoessentiallythesametheory:thespace))hasthenaturalstructureofamoduleovertheringofpolynomialssx1;:::;x].Aformalpowerseriesisidenti edwitharationalfunction),where)provided.Forexample,theseries))isidenti edwithzero,since)=0.Inthisapproach, ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA107Theorem4.2.FixThereexistsapolynomialtimealgorithmwhichgivenarationalpolyhedralconecomputesunimodularconesnumbers2f�suchthathatK]=Xi2I"i[Ki]:InparticularthenumberofconesinthedecompositionisboundedbyapolynomialintheinputsizeofSketchofproof.Usingtriangulation,wereducetheproblemtothecaseofasimplecone=co;:::;u,where;:::;uarelinearlyindependentintegerpoints(weleaveasidelower-dimensionalcones,whichcanbetreatedinasimilarway).Weintroducetheindexind()whichmeasureshowfarisfrombeingunimodular:ind(^^isthevolumeoftheparallelepipedspannedbythegenerators;:::;u.Onecanshowthatind()isthenumberofintegerpointsinthefundamentalparallelepipedof(cf.Example3.3).Thustheindexofaconeisapositiveintegerwhichequals1ifandonlyifisunimodular.Onecanshowthatlogind()isboundedbyapolynomialintheinputsizeof.Wearegoingtoiterateaprocedurewhichreplaces[]byalinearcombinationof[],wherearerationalconeswithsmallerindices.Consideraparallelepipedind(;:::;dWeobservethatiscentrallysymmetricandhasvolume2.Therefore,bytheMinkowskiconvexbodytheorem(see,forexample,[Lagarias1995]),thereisanonzerointegerpoint(suchavectorcanbeconstructedecientlyusing,forexample,integerprogrammingindimension:see[Schrijver1986]).For;:::;d,let=co;:::;u;w;u;:::;u,thenind(^^^^^^^^ind(ind(Furthermore,thereisadecompositionnK]=Xj2J"j[Kj]+XF"F[F];whererangesoverlower-dimensionalfacesof,and2f�.Ifweiteratethisprocedure,weobservethattheindicesoftheconesinvolveddecreasedoublyexponentially,whereasthenumberofconesincreasesonlyexponentially.Therefore,iteratingtheprocedure(loglogind())times,weendupwitha ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA109Notethattheareunimodular,providedthattheareunimodular.Iftheconeisde nedbylinearinequalitiesin,thenthecomplexityofthealgorithmandtheresultingformulais,whereistheinputsizeof.ThecomplexityofthealgorithmofTheorem4.2,asstated,canbeasbadasisgivenasaconichullofintegervectorsin,andisgivenbyasetoflinearinequalities.ThesavingsincomputationalcomplexitycomesfromthefactthatifweiteratetheprocedureofTheorem4.2asstated,thenumberofconesineverystepgrowsbyafactorof2.Ifwediscardlower-dimensionalcones,thenumberofconesineverystepgrowsbyafactorofonly.Wearereadytostatethemainresultofthissection.Wenotonlycomputetheexpressionfor),butwealsodescribehowitchangeswhenthefacetsofaremovedparalleltothemselvessothatthecombinatorialstructureofdoesnotchange.Theorem4.4.FixThereexistsapolynomialtimealgorithmwhichforagivenrationalpolyhedronfor;:::;mwherecomputesthegeneratingfunctionintheform where2f�;:::;bisabasisofforeachSupposethatthevectors;:::;mare xedandthevaryinsuchawaythatthecombinatorialstructureofthepolyhedron;:::; staysthesameThentheexponentsinthedenominatorofeachfractionremainthesamewhereastheexponentsinthenumeratorchangewithwherethearelinearfunctionsissuchthatisanintegerpolytopethenforeachpairi;jThecomputationalcomplexityofthealgorithmfor ndingwhereistheinputsizeofInparticularthenumberoftermsProof.LetVert()bethesetofverticesof.ForVert(),letbethesetofthoseinequalitiesthatareactiveat,andletP;v)=cobetheconichullofthenormalsofthefacetscontaining.Thenforthetangentconecone(P;v),wehavecone(P;vP;v ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA111asprovidedbyTheorem4.4,thenthepoint=(1;:::;1)isapoleofeachfractionintherepresentation(4.4.1).Thiscanbecanbehandledbytakinganappropriateresidueorbycomputingthevalueof)atapointclose=(1;:::;1)androundingtheanswertothenearestintegerasin[DyerandKannan1997].Weusethe\residue"approach,suggestedin[Brion1988]andalsousedin[Barvinok1994b],wherethe rstpolynomialtimealgorithmforcountingintegerpointsinarationalpolytopewasconstructed.Definition5.1.Considerthefunction;:::; exp(+1complexvariablesand;:::;.Itiseasytoseethatisanalyticinaneighborhoodoftheorigin=0andthereforethereexistsanexpansion;:::;;:::;wheretd;:::;)isahomogeneouspolynomialofdegree,calledthe-thToddpolynomial;:::;.Itiseasytocheckthattdisasymmetricpoly-nomialwithrationalcoecients;see[Hirzebruch1966]or[Fulton1993,Section5.3]).Algorithm5.2(Apolynomialtimealgorithmforcountingintegerpointsinrationalpolytopeswhenthedimensionisfixed).Supposethedimensionis xedandisarationalpolytope.WeuseTheorem4.4tocompute Weconstructavectorsuchthatl;b=0foreachand.Todothiseciently,weconsiderthe\momentcurve")=(1;;;:::;.Foreach,thefunctionisanonzeropolynomialofdegreeatmost1in,andthusthisfunctionhasatmost1zeros.Therefore,wecanselectfromthesetofintegervectors(0)(1);:::;g,where+1.Let;:::;).For0,letexp(;:::;exp(andletl;bandl;a.Then=lim)=limexp(l;a exp(l;bexp(l;b=lim exp( exp(exp( ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA113Remark(Relationtointegerprogrammingalgorithms).Integerpro-grammingisconcernedwithoptimizingagivenlinearfunctiononthesetofintegerpointsinagivenrationalpolyhedronin.Byusingastandardtrickofdichotomy,onecanreduceanintegerprogrammingproblemtoasequenceoffeasibilityproblems:givenarationalpolyhedron,decidewhethercontainsanintegerpoint,andifso, ndsuchapoint.IntegerProgrammingisdicult(NP-hard)ingeneral,butitadmitsapolynomialtimealgorithmifthedimensionis xedandnotapartoftheinput.The rstintegerprogrammingalgorithmhavingpolynomialtimecomplexityin xeddimensionwasconstructedbyH.W.Lenstra[1983];see[Grotscheletal.1993;Lovasz1986;Schrijver1986]forasurveyandsubsequentimprovements.Ofcourse,ifwecancountintegerpointsin,wecandecidewhether.ThecatchisthatinoneofthecrucialingredientsofAlgorithm5.2,namelyintheproofofTheorem4.2,werefertointegerprogrammingin xeddimension.Therefore,employingAl-gorithm5.2tosolveanintegerprogrammingproblemmayseemtoresultinaviciouscircle.However,asM.DyerandR.Kannan[1997]show,onecanavoidthedependenceonLenstra'salgorithminTheorem4.2byusinganappropriatelatticereductionalgorithm.HenceAlgorithm5.2givesrisetoanewlinearpro-grammingalgorithm,whosecomplexityispolynomialtimewhenthedimensionis xedandwhichuseslatticereduction(cf.[Lenstraetal.1982]),butdoesnotuse\rounding"ofagivenconvexbodyin,whichisthesecondmainin-gredientinLenstra'salgorithmanditssubsequentimprovements(see[Grotscheletal.1993;Lovasz1986]).Thisroundingseemstobequitetime-consuminganditwouldbeinterestingto ndoutifAlgorithm5.2cancompetewiththeknownintegerprogrammingalgorithms.Ontheotherhand,Lenstra'salgorithmcanbenaturallyextendedto\convexinteger"problems,whereasAlgorithm5.2heavilyusesthepolyhedralstructure.Weconcludethissectionwithadescriptionofaverygeneral\trick"whichsometimesallowsonetocountlatticepointsecientlyevenifthedimensionislarge.Remark(Changingthelattice).Supposethatisasublatticeofa niteindex.Letbetheduallattice.Therefore,andFor;:::;xandanyvector;:::;,de neilexp(2i;:::;exp(2iThenthevalueofil=expl;mdependsonlyonthecosetrepresentedby ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA1156.Existenceof\LocalFormulae"TheresultsofSections4and5provideasatisfactorysolutionofthecountingproblemwhenthedimensionoftheambientspaceis xed.Ifthedimensionisallowedtogrow,thealgorithmscanbecomelessecientthanstraightforwardenumeration.Ifthedimensionisallowedtogrow,theproblemof\ecientcounting"seemstobeill-posed,sincemuchdependsontheparticularsofthepolytope.Forexample,itbecomesrelevantwhetherthepolytopeisgivenbythelistofitsverticesorbythelistofitsfacets.Inthissection,weexplainourapproachtowhatthe\right"countingproblemiswhenthedimensionisallowedtogrow.P.McMullen[1983]provedthatthenumberofintegerpointsinarationalpolytopecanbeexpressedasalinearcombinationofthevolumesofthefacesofthepolytope,wherethecoecientofvol(),whereisafaceof,dependsonlyonthetranslationclassmodofthesupportingconecone(P;F)of(seeDe nition3.4).Theorem6.1(\LocalFormula").Foreveryrationalconeonecande nearationalnumbersuchthat(i)Thefunctionisinvariantunderlatticetranslationsforany(ii)Foranyrationalpolytopevol(cone(P;Fwherethesumistakenoverallfacesvol(isthevolumeofmeasuredintrinsicallyinitsanespanTheorem6.1immediatelyimpliesthatthenumberofintegerpointsinthedilatedpolytope,whereispositiveinteger,isaquasipolynomial,wherethe)areperiodicfunctions.Ifisintegral,thenwegetagenuinepolynomial,namelytheEhrhartpolynomialof,seeExample1.5.Thefunctionfailsbadlytobeunique.Essentially,onecangettheexistenceusingaHahn{Banachtypereasoning:see[McMullen1993].Inthenextsection,wesketchamoreconstructiveapproach,alsoduetoMcMullen,viawhatwecallthe\CombinatorialStokesFormula"(theformulabelongstoMcMullen,whereasitsnameisourinvention).Inmanyimportantcases,canbechosentobeavaluationonrationalcones.Notethat,ifdimanddim,theapexofcone(P;F)isadimensionalanesubspace.Thustheconeisjusttheproductofa(dimensionalpointedconewiththeapexattheoriginandarationalsubspace. ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA117Thisexplainswhyitisconvenienttoconsiderrightfromthebeginningagenerallattice(discreteadditivesubgroupof),ratherthanonlyDefinitions7.1.Fixalattice.Apolytopeiscalledalattice-polytopeprovidedthatitsverticesbelongto.Apolytopeiscalledrational-polytopeprovidedthatforsomepositiveintegerisalatticepolytope.Let)bethesubspace(subalgebra)of)spannedbytheindicatorfunctions[]ofrationalpolytopes.Avaluationiscalledsimpleprovided([])=0whendimPdvaluationiscalled-invariantprovided([])=([])forany.Avaluationiscalledcentrallysymmetricprovided([])=([])foreverypolytope.Oftenwewrite()insteadof([]).7.2(Conesandangles).Letbeacone.Letbetheunitspherecenteredattheapexof.Wede ne)tobethesphericalmeasureoftheintersectionnormalizedinsuchawaythatthesphericalmeasureofthewholesphereis1.Wealsoagreethatif=0,then(0)=1.Clearly,)=0ifisnotafull-dimensionalcone.Theintrinsicmeasure)isde nedasthesphericalmeasure)intheanehullof,where=dimFinally,letbea-dimensionalpolyhedron,andletbea-dimensionalfaceof.TheexteriorangleP;F)ofistheintrinsicmeasureofthenormalconeof(seeDe nition6.3);thatis,P;FP;Fisa-dimensionalpolyhedralcone,thenK;F)=1wherethesumistakenoverallnonemptyfaces;see[McMullen1975].Theproof,alsoduetoMcMullen,isimmediate:foreverypoint,letbethe(unique)pointclosesttointheEuclideanmetric.Thenthesummandsof(7.2.1)correspondtoadissectionofintopieces,eachofwhichconsistsofthosepointssuchthat)isintherelativeinteriorofagivenfaceAnimportantexampleofasimplelattice-invariantvaluationrelatedtolatticepointcountingariseswhenwecountlatticepointswiththeir\solidangles."Example7.3(ThesolidanglevaluationForapolyhedronandapoint,de nethesolidangleP;xinthefollowingway:let)denotetheballcenteredatofradius.WeletP;x)=limvol( vol(where\vol"istheusualvolumein.Forexample,ifthenP;x)=0.Similarly,ifdimPdthenP;x)=0forany.Furthermore,P;x)=1ifandonlyifisintheinteriorof.If-dimensionalandliesinthe ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA119Sketchofproof.Withoutlossofgenerality,weassumethat=.Weproceedbyinductionon.For=0,theresultisclear.Supposethat1,andconsiderasahyperplanein(thelastcoor-dinateis0).Wede neavaluation onby ()=((;1]).Clearly, isasimple-invariantvaluationin,sowecanapplytheinductionhypothesisto .Letbethecorrespondingnumber,bethecorrespondingfunction,andletbethecorrespondingfamilyofvaluationsforrationalhyperplanes.Ifisarationalhyper-plane,thenisarationalhyperplaneinwhosenormalvectoris.Usingtheinductionhypothesis,onecanshowthatthevaluationscanbeextendedtovaluationsinsuchawaythatt;1])=)foranyrationalpolytope.Hencewehaveconstructedvaluationsonthehyperplaneswhosenormalvectorsarein.Forarationalpolytopelet )=(volwherethesumistakenoverallfacetsofwhosenormalvectorsareinUsingTheorem2.9,onecanshowthat isinfactasimple-invariantvaluation.Itisclearthat ;1])=0,whereisalatticepolytopein.Since isasimplevaluation,weconcludethat )=0ifisa\latticeprism"m"m;n],wherem;nNowwearereadytode neforanyrationalhyperplaneandforall.Letbearationalanehyperplaneandletbearationalpolytope.Translatingbyalatticevector,ifnecessary,wecanalwaysassumethatisintheupperhalfspaceof(thehalfspacewithpositivelastcoordinate).Letbetheprojectionofdownonto,andlet()=conv((Q0)bethe\skewedprism"withbottomfacetandtopfacet.Let Onecanshowthat)iswell-de nedandthatthefamilyis-invariant,sinceifwechoosealatticetranslation,thedi erencebetweenthevalues ontheskewedprisms()and()willbethevalueof onarightprismsmm;n],whichiszero.Letdenotethelastcoordinateofavector=0wecanthinkofasavectorin.De ne1if1if)if=0.NowthetheoremfollowssinceeP]=XF(nF)[()]modulolower-dimensionalpolytopeswherethesumistakenoverallfacets ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA121Corollary7.7canbeconsideredasa\101st"generalizationofPick'sformula(Example1.2).Indeed,allfacetsofapolygonarecentrallysymmetric.Pick'sformulaisequivalenttosayingthatifwecounteveryintegerpointinapolygonwithweightequaltotheangleatthispoint,wegettheareaofthepolygon.Aninterestingexampleofapolytopewithcentrallysymmetricfacesispro-videdbyazonotope,thatis,theMinkowskisumof nitelymanylatticeinter-vals.Toremovevariousnormalizingfactors,itisconvenienttomeasurevolumesofpolytopesintrinsically,withrespecttoagivenlattice.Namely, xalattice.Supposethatisalatticepolytopeandsupposethat=dimWithoutlossofgenerality,wemayassumethattheanehullcontainstheorigin.Thenisalatticeofrank,andwenormalizethevolumeformininsuchawaythatdet=1.Corollary7.8.LetbeanintegerzonotopethatistheMinkowskisumof nitelymanyintegerintervalsThenthenumberofintegerpointsinisexpressedbytheformulavol(P;FwherethesumistakenoverallfacesP;FistheexteriorangleofandthevolumeofafaceismeasuredintrinsicallywithrespecttothelatticeProof.Sinceeveryfaceofazonotopeiscentrallysymmetric,theresultfollowsfromCorollary7.7andformula(7.3.1).Ofcourse,itisquiteeasyto ndasimplealternativeproofwhichdoesnotuseTheorem7.4.Forafull-dimensionallatticeparallelepiped(thatis,theMinkowskisumoflinearlyindependentintervals)wehave()=vol(),sincelatticetranslatesoftilethespaceandboththevolumeandthevaluationaresimpleandlattice-invariant.Sincealatticezonotopecanbedissectedintolatticeparallelepipeds(see,forexample,[Ziegler1995,Lecture7]),weget)=vol()foranylatticezonotope.Sinceeveryfaceofalatticezonotopeisalatticezonotopeitself,weuse(7.3.1)tocompletetheproof.Theboundaryofaconvexpolytopecanberepresentedasaunionoflower-dimensionalpolytopes.Therefore,wecanapplytheStokesformulaofTheorem7.4recursively, rsttothepolytope,thentoitsfacets,thentoitsridges,andsoforth.Wewillendupwithadecompositioninvolvingvolumesoffacesandsome\local"functions,dependingonlyonthesupportingconesatthefaces(see[McMullen1978/79]).ThususingTheorem7.4,onecanproveTheorem6.1 rstforthesimplevaluation,andthen,applying(7.3.1),forthenumberofintegerpoints.Example7.9(CoefficientsoftheEhrhartpolynomial).Foranyra-tionalpolytope,thereisapositiveintegersuchthatthedilatation ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA123Unlikethecoecients),thenumbers)aremonotone,thatis,)ifandareintegerpolytopeswith[Stanley1993].Inparticular,)arealwaysnonnegative.However,theyarenothomogeneous.FromtheproofofTheorem7.4,itisnotatallclearwhatthefunctionsinThe-orem6.1mightlooklike.Theproblemappearssomewhateasierforexponentialvaluations(Example7.5).Sincethemaintermis0unless=0weconcludethatifthehighesttermoftheEhrhart(quasi)polynomialofthevaluation,thenisorthogonaltosome-dimensionalfaceofApossibleapproachwouldbetorelatetheexponentialvaluationsofEx-ample7.5andthesolidanglevaluation(seeSection7.3).Letexp detexpexpl;xwhere0isaparameter.Itistheneasytoshow(see[Barvinok1992])thatThuswegetadecompositionofintotheFourierseriesofthevaluations)=limexpThisapproachwasdiscoveredindependentlyandisbeingdevelopedbyR.DiazandS.Robins[1999].8.UsingAlgebraicGeometrytoCountLatticePointsInrecentyears,manyauthors[BrionandVergne1997a;CappellandShaneson1994;Ginzburgetal.1999;KantorandKhovanskii1993;In rri1992;Morelli1993a;1993b;Pommersheim1993;1996;1997;PukhlikovandKhovanskii1992b]havestudiedtheproblemoflatticepointenumerationusingthesubjectoftoricvarieties.Inthissection,wedescribesomeoftheseresults.Inparticular,weshowhowthevaluationintroducedinSection3playsakeyroleinvariousformulasforcountinglatticepointsandfortheclosely-relatedproblemof ndingtheToddclassofatoricvariety.Toricvarieties,thoughveryspecialandsomewhatsimplefromthepointofviewofalgebraicgeometry,provideapowerfullinkbetweenthetheoryoflatticepolytopesandalgebraicgeometry.Earlyresearchersinthe eldoftoricvarietiesrealizedthat ndingaformulaforatoricvariety'sToddclass,acharacteristicclasslivinginhomology,wouldyieldaformulaforthenumberoflatticepointsinanintegralpolytope.Detailsofthisconnection,adirectresultoftheRiemann{RochTheorem,aresketchedfollowingthestatementofAlgorithm8.7.Foramorecompletediscussion,see[Fulton1993,Section5.3].Thisconnectionbetweenpolytopesandtoricvarietieshasbeenveryfruitful,especiallyoverthe ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA125Proposition8.2.Theassignmentoftoconessatis esthefollowingproperties(i)(Invarianceunderlatticeautomorphismsareequivalentunderanautomorphismofwhichpreservestheprescribedorderingoftheraysofthen(ii)(AdditivityundersubdivisionK;K;:::;Kare-dimensionalra-tionalsimpleconeswhoseindicatorfunctionssatisfyyK]= 1[K1]++ l[Kl]moduloconesofsmallerdimensionthen(iii)(SummationformulaLetbethefundamentalparallelepipedforandlet;:::;ubetheprimitivegeneratorsfortheconeThen Thusthefunctionisregularattheoriginandhencede nesapowerseriesinthevariables;:::;ySketchofproof.Invarianceunderlatticeautomorphismscanbeeasilycheckedfromthede nitionof;itisalsoaconsequenceofthesummationformula(Part3above),whichisclearlyinvariantunderlatticeautomorphisms.Tocheckadditivityundersubdivisions,letK;K;:::;Kbeasabove,andapplyCorollary2.8,whichimpliesthattheindicatorfunctions[]ofthedualconessumtotheindicatorfunctionofmodulostraightlines.ButbyPart2ofTheorem3.1,vanishesonconescontainingstraightlines.Thedesirediden-tityisthenaconsequenceoftheadditivityformulaforgiveninPart1ofTheorem3.1.ThesummationformulafollowseasilyfromtheformulaofExample3.3andthede nitions,bearinginmindthat.Finally,theassertionaboutthepowerseries)followsfromthesummationformulafor)andthefactthefunction isregularat=0.Onefurtherusefulpropertyofisitscompatibilityalongcommonfaces:Lemma8.3.Iftheconesmeetatacommonfacethepowerseriesagreewhenrestrictedtothatisifinwesettozeroallvariablescorrespondingtoraysoutsideofweobtainidenticalpowerseriesintheremainingvariables ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA127Theorem8.6.Fora xeddimensionthereexistsapolynomialtimealgorithmwhichgivenacompletefancomputesuptodegreeThustheToddclasscanbeexpressedasapolynomialinthetorus-invariantdivisorsinpolynomialtimeSketchofproof.TheideaisverysimilartotheproofofTheorem4.4.Again,thekeyistheresultof[Barvinok1994b],statedasTheorem4.2above,thatapolynomialtimealgorithmexiststowriteanarbitraryrationalconeasthedi erenceofunimodularcones.TocomputetheToddclass,oneappliesthistheoremtoall-dimensionalconesof,andusestheadditivitypropertyofProposition8.2toexpressthepowerseriesuptodegree.Atthispointwearedone,sincetheseexpressionsfordetermineThewell-knowndictionarybetweenpolytopesandtoricvarietiesallowsustousethisresulttoobtainapolynomial-timealgorithmforcomputingthenumberoflatticepointsinanintegralconvexpolytope.Thefollowingalgorithmappearedin[Pommersheim1997]:Algorithm8.7.Givenasimpleintegralconvexpolytope,thefollowingalgorithmcomputesthenumberoflatticepointsin(1)Supposethatisrepresentedasthesolutiontothe nitelymanyinequalitiesasfollows:;:::lwherethearetheraysoftheinnernormalfanof(2)Using(8.6),computetheToddpowerseries;:::;y)indegreeuptoDenotethisdegreepolynomialby(3)Let=expandletbethedegreepartoftheproduct(4)IntheStanley{Reisnerring,letbetheidealgeneratedbythesetChooseanyvertexof,andlet;:::;vbethecorrespondingconeof.ComputenormalformsofandofwithrespecttoanyGrobnerbasisfortheideal.Thedegreepartofthequotientknowntobeaone-dimensionalvectorspace.Thusthesetwonormalformsmaybedividedtoproducearationalnumber.Thenumberoflatticepointsisthennf( ind()nf( ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA129WenotethatthisvariantofAlgorithm8.7maybeusedtocomputeagivencoecientintheEhrhartpolynomialofindependentlyoftheothercoecients.IfweareinterestedonlyinthetopEhrhartcoecients,wemustconsideronlythosemonomialsinofdegreeatmost,andonlythoseconesofdimensionatmost.Itfollowsthatfor xed,theprocedureabovereducesinpolynomialtimethecomputationofthetopEhrhartcoecientsofanintegralpolytopetothecomputationofthevolumesofitsfaces.ThisprovidesapartialanswertoProblem6.2.Question8.8.The rstpolynomial-timealgorithmforcountinglatticepointsinpolytopeswasthatofTheorem4.4(originallyin[Barvinok1994b]),whichinvolvednotoricvarieties.Algorithm8.7,thoughbasedonalgebraicgeometry,appearsquitesimilarin avor.Inparticular,bothalgorithmsareultimatelybasedonsubdividingconesintounimodularcones,andbotharelinkedquitecloselytothevaluationintroducedinTheorem3.1.Inshouldbenoted,how-ever,thattheoriginalalgorithmisbasedonsubdivisionsofthetangentconesofthepolytope,whereasAlgorithm8.7naturallyinvolvessubdivisionsofthedualcones.Theseobservationsmotivateseveralquestions:Howexactlyarethesealgorithmsrelated?Whatistheprecisenatureofthedualityinvolvedhere?Ifoneweretoimplementthesealgorithms,whatfeaturesofeachalgorithmwouldbeadvantageous?ThepowerseriesalsoplaysakeyroleinthelatticepointformulaofBrionandVergne[1997b,Theorem2.15],whichisageneralizationoftheformulaofPukhlikovandKhovanskii[1992b].Intheseratherremarkableformulas,thepowerseriesisconsideredasanin nite-orderdi erentialoperator,calledtheTodddi erentialoperator.Adeformedpolytopeiscreated,withallfacetsmovedindependently,butparalleltotheoriginalfacets.Thevolumeofthisdeformedpolytopeiscalculatedasafunctionofthedisplacements.ApplyingtheTodddi erentialoperatortothisfunctionyieldsthenumberoflatticepointsinthepolytope.Moregenerally,oneobtainsanEuler{Maclaurinformula,expressingthesumofanypolynomialfunctionoverthelatticepointsinapolytopeastheToddoperatorappliedtotheintegralofthepolynomialfunctionoverthedeformedpolytope.Wenowstatetheseformulasprecisely.Asabove,assumethatisasimpleintegralconvexpolytope.Supposethat;:::lwherethearetheraysoftheinnernormalfanof.For;:::;h,wede nethedeformedpolytope)by;:::lTheorem8.9.LetbeasaboveletbeitsinnernormalfanandletbeapolynomialfunctiononDenotebytheintegralofoverthedeformed ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA131Then;:::;uasadegreerationalfunctiononlivesnaturallyinRat(GrAssuchitcoincideswithMorelli's;:::;uSketchofproof.Wecancheckequalityoftherationalfunctionsaboveonunimodularconeseasily.ByProposition8.2,Part3,;:::;u thedegree0partofwhichequalsthe-thToddpolynomialtd;:::;u).Thisequals),asdiscussedin[Morelli1993b,followingstatementofTheorem4].Equalityforallsimpleconesthenfollowsfromadditivityundersubdivisions,satis edbybothMorelli's,and(cf.Proposition8.2,Part2.)ItisalsopossibletorelateMorelli's)forasimple-dimensionalconewithkd,tothecoecientsoftheLaurentseries.Adiscussionofthisconnectionmaybefoundin[Pommersheim1997].9.GeneralizedDedekindSumsandCountingLatticePointsInExample1.4,wesawtheclassicalDedekindsumappearinaformulaforthenumberoflatticepointsinacertaintetrahedron.InthissectionweexploretheimportantrolethatDedekindsumsandtheirhigher-dimensionalgeneralizationsplayinlatticepointformulas.Inparticular,followingBrion{Vergne,weshowthatthehigher-dimensionalDedekindsumsintroducedbyZagier[1973]appearascoecientsinthepowerseriesofSection8.ItthenfollowsfromtheresultsofSection8thattheseimportantsumsofZagierarecomputableinpolynomialtimewhenthedimensionis xed.TheclassicalDedekindsum rstappearedlongagoinDedekind'sworkonthe-function,andsincethenhasariseninavarietyothercontexts.Forexample,Hirzebruchconnectedthesesumswithgeometrybyshowingthattheyappearnaturallyinformulasforthesignatureofcertainsingularquotientspaces.The1951formulaofMordell(Example1.4)markedthe rstappearanceofDedekindsumsinaformulaforlatticepoints.WenowrelatetheclassicalDedekindsumtothepowerseriesintroducedinSection8.Thisrelation,lessthanadecadeold,putstheMordellformulainamuchmoregeneralandgeometriccontext.Letbeatwo-dimensionalconeinalattice.Allsuchconesaresimplicial,andinfactisequivalentbyalatticeisomorphismtotheconep;q,with0pq.Inthiscase,theconeissaidtohavetypep;q).Itiseasilycheckedthat(whichequalsind())isuniquelydeterminedby,andisdetermineduptomultiplicativeinversesmodulo.(Theconeisequivalenttobyalatticeisomorphismthatswapstheraysof.)This ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA133polygongivesarelationamongtheDedekindsumscorrespondingtoitsangles(see[Pommersheim1993,Theorem8].)Oneeasily ndslatticetrianglesthatdemonstrateDedekind'sreciprocityrelation,Rademacher'sthree-termlaw,aswellasnewrelationsfortheclassicalDedekindsum.Wenowturnourattentiontothehigher-dimensionalDedekindsumsintro-ducedbyZagier.Motivatedbytopologicalconsiderations,Zagiermadethefol-lowingde nition:Definition9.3.Letbeapositiveinteger,andlet;:::;pbeintegersprimeto,witheven.ThehigherdimensionalDedekindsum;:::;pisde nedby;:::;p)=(cot cot Notethatifisodd,thesumaboveclearlyvanishes.Itshouldbenotedthatonecanalsode nethehigher-dimensionalDedekindsumintermsofthehyperboliccotangent:;:::;pcoth coth Thename\higher-dimensionalDedekindsum"isjusti edinpartbytheequal-ity Thatis,when=2,thehigher-dimensionalDedekindsumreducestoaclassicalDedekindsum.ZagiershowedthathissumssatisfyareciprocityrelationwhichgeneralizesthereciprocityformulafortheclassicalDedekindsum:Theorem9.4.Let;:::abecoprimeintegersThen ;:::;;:::;a;:::;a Here;:::;aisthe-polynomialde nedasthecoecientofthepowerseriesexpansionof tanhLiketheclassicalreciprocitylaw,thistheoremmaybeprovedusingtheconnec-tionwithToddclasses:seetheremarkfollowingTheorem9.5.WhileTheorem9.4iseasilyseentobeageneralizationofDedekind'sclassicalreciprocitylaw,thereisanimportantdi erence.Aswehaveseen,theclassicalreciprocitylawallowsforecientcomputationoftheclassicalDedekindsum.However,inthecaseofthehigherdimensionalsums,itisnotatallclearhow ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA135BymultiplyingouttheproductappearinginTheorem9.5,oneobtainsanex-pressionforthiscoecientasasumofhigher-dimensionalDedekindsums.The\leadingterm"isthe-dimensionalDedekindsum;:::;p1).TheformulaabovecanbeusedtogiveasimplegeometricproofofZagier'sreciprocityformula(Theorem9.4).In,taketheunimodularconespannedbythestandardunitvectors.Subdivideintoconesbyintroducingtheraythrough(;:::b),wherethe'sarepairwisecoprimepositiveintegers.Applyingtheadditivityformulafor(Proposition8.2)tothissubdivisionyieldsarelationonthecoecientsinthepowerseriesassociatedtothesecones.SinceTheorem9.5identi escertainofthesecoecientsasDedekindsums,wegetarelationamongDedekindsums.ThisrelationiseasilyseentoyieldZagier'shigherreciprocitylaw.WenowshowthattheresultsofSection8provideforecientcomputationofthehigher-dimensionalDedekindsum,aresultnotobviousfromthereciprocitylaw(Theorem9.4).Theorem9.6.For xeddimensionthereisapolynomialtimealgorithmwhichgivenintegers;:::prelativelyprimetocomputesthehigher-dimensionalDedekindsum;:::;pSketchofproof.Firstnoticethatwecanreducetothecaseinwhich=1.Thisisbecauseoftheeasilyveri edidentity:;:::;p;:::;pwhereisamultiplicativeinverseofmoduloApplyingTheorem8.6,weseethattheproductofTheorem9.5iscomputableinpolynomialtimefor xeddimension.Thisproduct,whenexpanded,canbeexpressedasthesumof2higher-dimensionalDedekindsums(manyofwhicharezero).Ofthesesums,allbuttheleadingterm,;:::;p1)areDedekindsumsofdimensionlessthan.Byinduction,thesemaybecomputedinpoly-nomialtime.Thus,;:::;p1)itselfmaybecomputedinpolynomialtime.Theorem9.5linksacertaincoecientinthepowerserieswiththehigher-dimensionalDedekindsum.ThisDedekindsumappearsintheveryspecialcasewhenallfacetsoftheconeareunimodular.Forgeneralcones,thegeneralcoecientinrepresentsasigni cantfurthergeneralizationofZagier'ssums.Thesecoecientsalsoadmitcotangentformulas,usingtheideasoftheproofofTheorem9.5.Infact,thesemoregeneralcotangentsumscanbeseenintheremarkablelatticepointformulaofDiazandRobins[1997].Thisveryexplicitformulaex-pressesthenumberoflatticepointsinanarbitrarysimplexintermsofcotangentsums.Thesumsthatappearareeasilyseentomatchthecotangentsumsthatappearascoecientsinthepowerseries.ThecotangentformulasDiazand ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA137Thesetcontainsallsucientlylargepositiveintegers,sotheinitialintervalisthemaininterest.Wecanwrite forsomepolynomial)andsomepositiveinteger.ThepolynomialencodesinacompactwayinformationregardingtheinitialintervalofSupposethata;b,andarecoprimepositiveintegers.Let ; ; bethesetofallnonnegativeintegercombinationsofa;b,andThenfor1,wehave forcertainpositiveintegers,and.Thisinterestingfactwasdiscovered,apparently,byG.Denham[1996].Thisresultfollowsalsofromageneralresultfrom[PeevaandSturmfels1996].Thepaper[SzekelyandWormald1986]containsanelementaryproofthatthenumberoftermsinthenumeratorisatmost12,whichistwiceasmanyasthesharpbound.Forexample,if=23,=29,and=44,then Asinthepreviousexample,thesetcontainsallsucientlylargepositiveintegers,sotheinitialintervalofistheinterestingpart.Itcanbeencodedbyashortpolynomial.Question.Whatinformationregardingcanbeextractedfrom)andwhatoperationsonsetsgivenbytheirgeneratingfunctions)canbecarriedouteciently?Forexample,bysubstituting=(1;:::;1),onecangetthenumberofpointsin(since=(1;:::;1)isthepoleofeveryfraction,onemayneedtocomputeanappropriateresidue,asinSection5).OurnextresultisthatonecanecientlyperformBooleanoperationsonsetsgivenbytheirfunctions).Infact,weproveamoregeneralstatement:theHadamardproductofshortrationalfunctionscanbecomputedinpolynomialtime.Theorem10.2.Supposethatarerationalfunctionsincom-plexvariables;:::;x xai1)xa(xi2I2 ixqi where;:::;a;:::;b ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA139ByTheorem4.4,theseriesm;nwhere;:::;;:::;)andcanbecomputedinpolynomialtimeasarationalfunction).Thefunction)isobtainedbyspecializing)for=(1;:::;1)and.OnemayhavetoresolvesingularitiesasinSection5.Remark.Ifthefunctionsandaresucientlygeneric,thatis,ifthevectors;:::;a;:::;bspan,wewillhavedimand Corollary10.3.FixThereexistsapolynomialtimealgorithmwhichforany nitesetsgivenbytheirgeneratingfunctions xai1)xa(S2;xi2I2 ixqi where;:::;a;:::;bcomputesthegeneratingfunctionssS2;x);f(S1\S2;x),andf(S1nS2;x).Proof.Chooseagenericvector,suchthatc;a=0andc;bforallvectorsand.Bymultiplying,ifnecessary,thedenominatorandthenumeratorofeachfractionbyanappropriatemonomial,wecanalwaysassumethatc;a0andc;b0foralland.Thentheset1for;:::;kand1for;:::;kisanonemptyopensetin,andforevery,thereareLaurentexpansions:andThecorollarynowfollowsfromTheorem10.2,sinceeS2;x)=f(S1;x)+f(S2;x)�f(S1\S2;x);f(S1nS2;x)=f(S1;x)�f(S1\S2;x):Themostintriguingquestioniswhethertheprojectionofasetwithashortgeneratingfunctionisasetwithashortgeneratingfunction. ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA141,apolynomialtimealgorithmforthisproblemwasconstructedbyR.Kannan[1992].Sometimesitiseasytoseethattheprojectionindeedhasashortgeneratingfunction.Example10.4.Letbearationalpolytope,andletthesetofintegerpointsin.Thenprojectionhasageneratingfunctionwhosecomplexityispolynomialintheinputsizeof.(Notethatthesetofintegerpointsinarationalpolytope.)Let=(0;:::;beavectorandlet).For),thepreimageisthesetofintegerpointsintheinterval.Itthenfollowsthat)ifandonlyifthereisexactlyoneintegerpointsuchthat.Hence,isthespecializationofthegeneratingfunctionwhen=1.UsingTheorem4.4,weconcludethat)canbecomputedinpolynomialtime.Specialization=1mayrequireresolutionofsingularitiesasinSection5(iftheexpression)containsfractionswithamonomial(1)inthedenominator).HencewegetapolynomialtimealgorithmforcomputingDefinition10.5.Fixthedecomposition,andletbetheprojectiononthesecondsummand.Forasetandapoint,wede nethe bern;mWehave,andwecanconsiderthegeneratingfunctionOnecanprovethatifisdescribedbyashortrationalfunction,the bers)aredescribedbya\consistent"systemofshortrationalfunctionsaschanges.Weusethetermopenpolyhedrontomeantherelativeinteriorofapolyhedron.Theorem10.6.Letbea nitesetwiththegeneratingfunction Thenthespacecanberepresentedasadisjointunionofopenpolyhedraandforeverythereexistvectors;:::;bsuchthatforevery wherearerationalnumbersandInotherwordsaslongasstayswithinthedenominatorsofthefractionsdonotchange ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA143AcknowledgmentBarvinokwaspartiallysupportedbytheAlfredP.SloanResearchFellowship,byNSFgrantsDMS9501129andDMS9734138,andbytheMathematicalSci-encesResearchInstitutethroughNSFgrantDMS9022140.PommersheimwaspartiallysupportedbyNSFgrantDMS9508972.WewishtothankMichelBrion,StavrosGaroufalidis,SinaiRobins,andBerndSturmfelsforusefulconversations.References[Barvinok1992]A.Barvinok,\ComputingtheEhrhartpolynomialofaconvexlatticepolytope",preprintTRITA-MAT-1992-0036,RoyalInstituteofTechnology,Stockholm,October1992.[Barvinok1993]A.I.Barvinok,\Computingthevolume,countingintegralpoints,andexponentialsums",DiscreteComput.Geom.:2(1993),123{141.[Barvinok1994a]A.I.Barvinok,\ComputingtheEhrhartpolynomialofaconvexlatticepolytope",DiscreteComput.Geom.:1(1994),35{48.[Barvinok1994b]A.I.Barvinok,\Apolynomialtimealgorithmforcountingintegralpointsinpolyhedrawhenthedimensionis xed",Math.Oper.Res.:4(1994),[BetkeandKneser1985]U.BetkeandM.Kneser,\ZerlegungenundBewertungenvonGitterpolytopen",J.ReineAngew.Math.(1985),202{208.[Bollobas1997]B.Bollobas,\Volumeestimatesandrapidmixing",pp.151{182inFlavorsofgeometry,editedbyS.Levy,Math.Sci.Res.Inst.PublicationsCambridgeUniversityPress,NewYork,1997.[Brion1988]M.Brion,\Pointsentiersdanslespolyedresconvexes",Ann.Sci.EcoleNorm.Sup.(4):4(1988),653{663.[BrionandVergne1997a]M.BrionandM.Vergne,\AnequivariantRiemann{Rochtheoremforcomplete,simplicialtoricvarieties",J.ReineAngew.Math.(1997),[BrionandVergne1997b]M.BrionandM.Vergne,\Latticepointsinsimplepolytopes",J.Amer.Math.Soc.:2(1997),371{392.[BrionandVergne1997c]M.BrionandM.Vergne,\Residueformulae,vectorpartitionfunctionsandlatticepointsinrationalpolytopes",J.Amer.Math.Soc.:4(1997),[CappellandShaneson1994]S.E.CappellandJ.L.Shaneson,\Generaofalgebraicvarietiesandcountingoflatticepoints",Bull.Amer.Math.Soc.:1(1994),[Cooketal.1992]W.Cook,M.Hartmann,R.Kannan,andC.McDiarmid,\Onintegerpointsinpolyhedra",Combinatorica:1(1992),27{37.[Denham1996]G.Denham,\TheHilbertseriesofacertainmodule",1996.Unpub-lishedmanuscript.[DiazandRobins1997]R.DiazandS.Robins,\TheEhrhartpolynomialofalatticepolytope",Ann.ofMath.(2):3(1997),503{518.Erratumin:1(1997),237. ANALGORITHMICTHEORYOFLATTICEPOINTSINPOLYHEDRA145[KantorandKhovanskii1992]J.M.KantorandA.G.Khovanskii,\Integralpointsinconvexpolyhedra,combinatorialRiemann{RochTheoremandgeneralizedEuler-Maclaurinformula",preprint1992/24,Inst.HautesEt.Scient.,Bures-sur-Yvette,[KantorandKhovanskii1993]J.-M.KantorandA.Khovanskii,\UneapplicationdutheoremedeRiemann{Rochcombinatoireaupolyn^omed'EhrhartdespolytopesentiersdeC.R.Acad.Sci.ParisSer.IMath.:5(1993),501{507.[KhovanskiiandPukhlikov1993]A.G.KhovanskiiandA.V.Pukhlikov,\IntegraltransformsbasedonEulercharacteristicandtheirapplications",IntegralTransform.Spec.Funct.:1(1993),19{26.[Lagarias1995]J.C.Lagarias,\Pointlattices",pp.919{966inHandbookofcombina-torics,vol.1,editedbyE.byR.L.Grahametal.,Elsevier,Amsterdam,1995.[Lawrence1988]J.Lawrence,\Valuationsandpolarity",DiscreteComput.Geom.(1988),307{324.[Lawrence1991]J.Lawrence,\Rational-function-valuedvaluationsonpolyhedra",pp.199{208inDiscreteandcomputationalgeometry(NewBrunswick,NJ,1989/1990),editedbyR.P.JacobE.GoodmanandW.Steiger,DIMACSSer.DiscreteMath.Theoret.Comput.Sci.,Amer.Math.Soc.,Providence,RI,1991.[Lenstra1983]H.W.LenstraJr.,\Integerprogrammingwitha xednumberofvariables",Math.Oper.Res.:4(1983),538{548.[Lenstraetal.1982]A.K.Lenstra,H.W.LenstraJr.,andL.Lovasz,\Factoringpolynomialswithrationalcoecients",Math.Ann.:4(1982),515{534.[Lovasz1986]L.LovAnalgorithmictheoryofnumbers,graphsandconvexity,Soc.Industr.Appl.Mach.,Philadelphia,1986.[McMullen1975]P.McMullen,\Non-linearangle-sumrelationsforpolyhedralconesandpolytopes",Math.Proc.CambridgePhilos.Soc.:2(1975),247{261.[McMullen1978/79]P.McMullen,\Latticeinvariantvaluationsonrationalpolytopes",Arch.Math.Basel:5(1978/79),509{516.[McMullen1989]P.McMullen,\Thepolytopealgebra",Adv.Math.:1(1989),76{[McMullen1993]P.McMullen,\Valuationsanddissections",pp.933{988inHandbookofconvexgeometry,vol.B,editedbyP.M.GruberandJ.M.Wills,North-Holland,Amsterdam,1993.[McMullenandSchneider1983]P.McMullenandR.Schneider,\Valuationsonconvexbodies",pp.170{247inConvexityanditsapplications,editedbyP.M.GruberandJ.M.Wills,Birkhauser,Basel,1983.[Mordell1951]L.J.Mordell,\LatticepointsinatetrahedronandgeneralizedDedekindsums",J.IndianMath.Soc.(1951),41{46.[Morelli1993a]R.Morelli,\The-theoryofatoricvariety",Adv.Math.:2(1993),[Morelli1993b]R.Morelli,\Pick'stheoremandtheToddclassofatoricvariety",Adv.Math.:2(1993),183{231.[Morelli1993c]R.Morelli,\Atheoryofpolyhedra",Adv.Math.:1(1993),1{73. 146ALEXANDERBARVINOKANDJAMESE.POMMERSHEIM[Morelli1993d]R.Morelli,\Translationscissorscongruence",Adv.Math.:1(1993),[PeevaandSturmfels1996]I.PeevaandB.Sturmfels,\Syzygiesofcodimension2latticeideals",1996.Manuscript.[Pick1899]G.Pick,\GeometrischeszurZahlentheorie",Sitzenber.LotosPrague(1899),311{319.[Pommersheim1993]J.E.Pommersheim,\Toricvarieties,latticepointsandDedekindsums",Math.Ann.:1(1993),1{24.[Pommersheim1996]J.E.Pommersheim,\ProductsofcyclesandtheToddclassofatoricvariety",J.Amer.Math.Soc.:3(1996),813{826.[Pommersheim1997]J.E.Pommersheim,\Barvinok'salgorithmandtheToddclassofatoricvariety",J.PureAppl.Algebra(1997),519{533.[PommersheimandRobins1999]J.E.PommersheimandS.Robins,\Higher-dimensionalDedekindsums:reciprocitylaws,computationalcomplexity,andge-ometry".Inpreparation.[PukhlikovandKhovanskii1992a]A.V.PukhlikovandA.G.Khovanski,\Finitelyadditivemeasuresofvirtualpolyhedra",AlgebraiAnaliz:2(1992),161{185.InRussian;translationinSt.PetersburgMathematicalJournal:2(1993),337{356.[PukhlikovandKhovanskii1992b]A.V.PukhlikovandA.G.Khovanski,\TheRiemann{Rochtheoremforintegralsandsumsofquasipolynomialsonvirtualpolytopes",AlgebraiAnaliz:4(1992),188{216.InRussian;translationinPetersburgMathematicalJournal:4(1993),789{812.[RademacherandGrosswald1972]H.RademacherandE.Grosswald,DedekindsumsTheCarusMathematicalMonographs,Math.Assoc.Amer.,Washington,DC,[Schrijver1986]A.Schrijver,Theoryoflinearandintegerprogramming,Wiley,Chichester,1986.[Skriganov1998]M.M.Skriganov,\ErgodictheoryonSL(),Diophantineapproxi-mationsandanomaliesinthelatticepointproblem",Invent.Math.:1(1998),[Stanley1993]R.P.Stanley,\Amonotonicitypropertyof-vectorsand-vectors",EuropeanJ.Combin.:3(1993),251{258.[Stanley1997]R.P.Stanley,Enumerativecombinatorics,vol.1,CambridgeStudiesinAdvancedMathematics,CambridgeUniversityPress,Cambridge,1997.Cor-rectedreprintofthe1986original.[SzekelyandWormald1986]L.A.SzekelyandN.C.Wormald,\GeneratingfunctionsfortheFrobeniusproblemwith2and3generators",Math.Chronicle(1986),[Zagier1973]D.Zagier,\HigherdimensionalDedekindsums",Math.Ann.(1973),[Ziegler1995]G.M.Ziegler,Lecturesonpolytopes,GraduateTextsinMathematics,Springer,NewYork,1995. 150GRAHAMDENHAMANDPHILHANLONasfollows: Letbetheweightassignedtothehyperplane.ThenthematrixisgivenExample1.2.Animportantexamplethatwewillreturntoseveraltimesisthearrangementconsistingofthehyperplanesgivenby;:::;xNotethatconsistsofthere ectinghyperplanesfortherootsystemandsowedenotethisarrangementby.Twopoints(;:::;x)and;:::;y)areinthesameregionofthecomplementifandonlyiftherela-tiveordersoftheircoordinatesarethesame.So,thepermutationsinindextheregionsofthecomplementviathecorrespondence;:::;xLetdenotetheweightassignedtothehyperplane.For;;entryinistheproductofallsuchthatappearstotheleftoftheone-lineformofbuttotherightofintheone-lineformof.Anotherwayofsayingthisisthat;istheproductofallsuchthataninversionof.Inparticular,ifallparametersaresetequalto,thenentryof,where)denotesthenumberofinversionsofExample1.3.Foreach,letdenotethehyperplaneinwhichconsistsofallvectorswitha0inthe-thcoordinate,andconsiderthearrangement;:::;O.Inthiscase,)hassize2andtheindividualregionscanbeindexedbysequences;:::;s),whereeachiseither+1or1.Thesequencecorrespondstotheregionwhichcontainsallvectors(;:::;xwhere0if1and0if=1.GivensequencesS;T,thesetofhyperplanesseparatingandisequaltothesetofsuchthatthe-th 152GRAHAMDENHAMANDPHILHANLONwhereistheVarchenkomatrixforthearrangement(describedinourExample1.2above)withparametersVarchenkoandSchechtmangoontoshowthatthekernelofthiscontragredientformdescribestheSerrerelationsforthequantumKac{MoodyLiealgebraThemaintopicofthispaperwillbelinearalgebraicpropertiesofthematrices.WearegoingtoreportonanumberofresultsandlistanumberofopenquestionsthathavetodowiththenullspaceofandtheSmithnormalformof.Inaddition,wewilldescribeanewapplicationoftheVarchenkomatricestotheproblemofcomputingtheBettinumbersoftheMilnor breofthearrangement2.TheNullspaceoftheMatricesInthissection,wewillconsiderthenullspaceoftheVarchenkomatrices.ThereadermayrecallthatthenullspacesareimportantintheworkofVarchenkoandSchechtmanastheyencodetheanaloguesoftheSerrerelationsforquantumKac{MoodyLiealgebrasinthecasethatthearrangementis.InthissectionwewillsurveysomeknownresultsandstatesomeopenproblemsrelatingtothenullspaceoftheVarchenkomatrix.Astartingpointforthestudyofthenullspaceofisthedeterminantof.Notethatdet()isapolynomialinthehencewillvanishforcertainchoicesofthe.Thefollowingresult,duetoVarchenko,givesanelegantfactorizationofdet().Asanimmediateconsequenceofthistheorem,oneobtainsacharacterizationofthosevaluesoftheparametersforwhichhasanontrivialnullspace.Theorem2.1[Varchenko1993,Theorem1].Thedeterminantofthebilinearformofthecon gurationdet(whereisthesetofnonemptyintersectionsinwhereistheprod-uctoftheoverhyperplanescontainingandwhereisanonnegativeintegerdescribedexplicitlyin[Varchenko1993].Infact,Varchenkogivestwomethodstocomputetheexponents).The rst,whichprecedesthestatementofhistheoremismoregeometric,thesecondwhichcomeslaterinthepaperismorecombinatorial.Forcompleteness,wewillbrie ydescribethesecondmethod.Tocompute), rstchooseahyperplanewhichcontains.Then)ishalfthenumberofregionswhichhavethepropertythatistheminimalintersectioncontaining \H. 154GRAHAMDENHAMANDPHILHANLONWhenyoustudythenullspaceofforvaluesofthehyperplaneweightswheredet()=0,the rstquestionthatarisesishowtodeterminethedimensionofthenullspace.Deformationtheoryargumentsshowthatdimensionofthenullspaceisnolargerthanthesumoftheexponents)takenoverintersectionswith=1.Togetmoreinformationingeneralisdicult.However,acaseofspecialinterestinwhichmoregeneralstatementscanbemadeisthecasewhereallhyperplaneweightsareequaltothesamenumber.Inthiscase,onecande netheSmithnormalformofoverrq]whichcontainstheinformationnecessarytodeterminethedimensionofthenullspace.TheSmithnormalformoverrq]isthetopicofthenextsectioninthispaper.Aswewillseeinthenextsection,itispossibleforthedimensionofthenullspaceof),foracomplexnumber,tobestrictlysmallerthanthedeformationtheoryboundstatedabovewhichinthiscaseisequaltothemultiplicityofasadivisorofdet(Thequestionofdimensioncanbeslightlybroadenedtoaskforthe\structure"ofthenullspace(ormoregenerallythecokernel)meaninganaturalchoiceofbasisforthenullspace(cokernel)aswell.PROBLEM1.Letbeanarrangementandletbeachoiceofparametersforwhichthedeterminantofvanishes.Findanaturalbasisforthenullspace(orforthecokernel)ofintermsofsomekindofcombinatorialandgeometricinformationaboutthearrangementandtheparametersOnecouldaskwhatsortofinformationmightgointoasolutiontoProblem1.Theorem2.1suggeststhatthenecessaryinformationmayincludefactsaboutthecombinatorialstructureof)andinparticularatintersectionsforwhich=1.ThepreviousexamplesuggestsanotherinterestingquestionthatonecanaskaboutthenullspaceoftheVarchenkomatrices.Supposethata nitegroupactsasagroupofanelineartransformationsandpreservesthearrangement.Supposealsothattheweightassignedtohyperplanesis-invariant.Thenthegroupactsontheregions)andthisactioncommuteswith.Soonecanaskforthe-modulestructureofthenullspaceofPROBLEM2.Letbeanarrangementandletbea nitegroupofane-lineartransformationswhichpreservetheset.Inadditionassumethattheweightingonhyperplanesisinvariantundertheactionof.Whatcanyousayaboutthe-modulestructureofthenullspaceofWhatsortofsolutionmightyouhopeto ndforProblem2?AsstatedaboveinProblem1,youwouldliketodeterminethenullspaceofintermsofsomekindofcombinatorialandgeometricinformationrelatedtothelattice)andthechoiceofparameters.YouwouldhopeforananswertoProblem2whichextendsthisideatoincludenotjustcombinatorialinformationabout)butalsoinformationabouthowactson 156GRAHAMDENHAMANDPHILHANLONAsnotedearlier,Problems1and2areparticularlyinterestinginthiscasebecausethenullspaceofhasaninterpretationintermsofquantumKac{MoodyLiealgebrasviaresultsofSchechtmanandVarchenko.Alsointhiscase,thereisanaturalgroupofsymmetriesofthearrangement,namelythegroup.SowewillassumethattheweightingonhyperplanesisinvariantunderwhichinthiscaseisequivalenttotheirallhavingthesamevalueHanlonandStanley[1998]havestudiedthe-modulestructureofthenull-spaceofforthisarrangementwithweightonallhyperplanes.Weendthissectionbycataloguinganumberofresultsandopenproblemsthatappearintheirwork.The rststepistounderstandwhatTheorem2.1saysinthiscaseaboutthedeterminantof.TheintersectionlatticeofisthepartitionlatticeItturnsoutthattheexponent)is0unlessthepartitionhasexactlyonenontrivialblock.Ifhasonenontrivialblockofsize,then2)!(+1)!.Sointhiscase,Theorem2.1specializesto:Corollary2.3.LetbethearrangementandletallhyperplaneshaveweightThendet(2)!(+1)!(2{1)Thisfactorizationofthedeterminantinthiscasewas rstprovedbyZagier[1992],whocameacrossthematrixinthiscaseinanentirelydi erentcontext.InviewofCorollary2.3,weneedonlyconsidervaluesofthatareoftheformis=j;:::;n.The rstresultthatappearsin[HanlonandStanley1998]concernsthespecializationofthatformthatisinsomesensethemostextreme.ThisresultisstatedintermsofthemoduleLiewhichistherepresentationofonthemultilinearpartofthefreeLiealgebra.Therehasbeenagreatdealofstudyofthisrepresentationinpartbecauseitplaysaroleinmanydiversemathematicalsituations.Theorem2.4[HanlonandStanley1998,Theorem3.3].Leti=nThenker=ind(LieLieAninterestingfeatureofTheorem2.4istheappearanceofthemodule=ind(LieLieItisanoldresultthatLieiscontainedinind(Lie).Sothisisagenuine(ratherthanvirtual)modulewhichisoftencalledtheWhitehousemodule.ThisnamereferstoSarahWhitehousewhocameacrosstherepresentationinquiteadi erentcontext.TherepresentationappearsearlierintheworkofKontsevich[1993].Whitehouse,togetherwithAlanRobinson,investigatedthehomologyofthespaceofhomeomorphicallyirreducibletreeswhichhavelabelled 158GRAHAMDENHAMANDPHILHANLONWenextturntoProblem3andseewhatisknownhereinthespecialcaseof,withallhyperplaneweightsequalto.HanlonandStanley[1998]haveprovedaresultthatgivesasolutiontoProblem3,butinordertostateitweneedsomenotation.Foreachpartition,letbethevirtualcharacterwhichhasvalue0onconjugacyclassesnotindexedbyandwhichhasvalue ontheconjugacyclassindexedbywhereistheorderofthecentralizerinofapermutationwithcycletypeItiswell-knownthatwecanwriteexplicitlyaswhereistheirreduciblecharacterofindexedby(see[JamesandKerber1981]or[Sagan1991]formoreontheirreduciblerepresentationsof).ItiseasytoseethatthevirtualcharactersspantherepresentationspaceofThefollowingresult,whichwasoriginallyconjecturedbyStanley,giveanelegantsolutiontoProblem3inthiscase:Theorem2.6[HanlonandStanley1998],Theorem3.7.ForeachletdenotedetThen(i)unlessisoftheformforsomel;d(ii)foralll;dandallNotethat(a)and(b)reducethedeterminationof)tothecaseswhereoftheform(iii)1)!,where,intheexponentontheright-handside,denotesthenumber-theoreticMobiusfunction.(iv)3.TheSmithNormalFormofLetnotationbeasintheprevioussection,sothatisanarrangementofhyperplanesandistheVarchenkomatrixofthearrangement.Inthissectionwewillassumethatallparametersareequaltoaparameter.SoisthematrixwithrowsandcolumnsindexedbyregionswhoseR;SentryisR;SwhereR;S)isthenumberofhyperplaneswhichseparateandWecanspecializeVarchenko'sTheorem(Theorem2.1)bysettingalltogetaformulaforthedeterminantofdet(where)isthenumberofhyperplanesinwhichcontain.Aconsequenceofthisformulaisthatdet()vanishesonlyatqbeingcertainrootsofunity. 160GRAHAMDENHAMANDPHILHANLONThecomputationoftheSmithnormalformoftheVarchenkomatricesarisesasournextproblemofinterestinthispaper.PROBLEM4.(i)DeterminetheSmithnormalformofintermsofsomeinformationaboutthearrangement(ii)IsSNF()determinedjustbytheintersectionlatticeofAsidefromtheintrinsicinterestofcomputingtheSmithnormalformofthematrices,thisproblemisdirectlyrelevanttothedeterminationofthenullspaceinthecasethatallparametersaresetequalto.Asnotedinthelastchapter,factsabouttheSmithnormalformofwereneededbyDenham[1999]toproveaconjectureofHanlonandStanley.Inthenextsection,wewilldescribeanotherapplicationoftheSmithnormalformof(duetoDenham),thistimetocomputingthehomologyoftheMilnor breofthearrangementNotethattheSmithnormalformofisdeterminedbythenumbersforeveryandevery.SoanalternativeformulationofProblem4isthefollowing.PROBLEM4Determinethenumbers0andforeachEquivalently,determinethenumbers0andforeachOnegeneralresultisknownthatgivesanelegantpartialsolutiontoProblem4Theorem3.3[DenhamandHanlon1997].Foranyarrangementandanynonnegativeintegeristhe-thBettinumberofthearrangementEquivalently whereisthecharacteristicpolynomialofthelatticeistherankExample3.4.ToillustrateaninstanceofProblem4,weconsiderthearrange-ments.Foreachintherange25thereisachartbelowwhichgivesthenumbers.Tounderstandthesecharts,assumethatis xed.ByCorollary3.1weknowthatifandonlyifisaprimitive-throotofunityforsomethatdivides1)andsome.Thesenumbersindextherowsofthechartsbelow.InviewofProposition3.2(b)wedonotincludetheform2whereisodd.Sothenumberthatappearsinthed;jentryofthechartbelowisthenumberofentriesinSNF()thatareexactlydivisibleby(i=dWiththesenotationalconventions,theSmithnormalformsofthearrange-mentsforsmallvaluesofareasfollows:=2:=01111=3:=01211323510 162GRAHAMDENHAMANDPHILHANLONthisactioncommuteswiththeactionsofbothanddq].Soactsonthespacesforeachandeach.Problem1asksonetodeterminethedimensionsofthe,orequivalentlytodeterminethecharacteroftheidentityactingoneach.Onecanaskmoregenerallyabouttheir-modulestructuresofthePROBLEM5.Determinethe-modulestructureofthespacesintermsofsomeinformationabouttheactionofonthearrangementAsimpler,butstillinteresting,variantofProblem5istodeterminethe-modulestructureoftheentirecokernelofExample3.5.Toillustratetheseconceptsandproblemswedoanexample.Letbethetwo-dimensionalarrangementwhereistheline=0,istheline=1andistheline1.Letbethegroupoforderfourgeneratedbyand,whereisthere ectionofacrosstheline=0andisre ectionofacrosstheline=0.Indextheregionsinthecomplementofthearrangement;:::;Rsothatarethoseinthehalf-plane0arrangedfromtoptobottomandarethoseinthehalf-plane0arrangedfromtoptobottom.The-matrixofthisarrangementwithrespecttothisorderingisqqqTheSmithnormalformofisgivenby)=diagsothatthecokernelhasdimension14(over.)Abasisfortheimageofgivenbythesixvectors=(1;q;q;q=(11+21+2=(1=(1;q;=(1=(1 164GRAHAMDENHAMANDPHILHANLONForlocalsystemsofrankone,variousauthorshavestudiedthehomology),forthemostpartinconnectionwithgeneralizedhypergeometricfunc-tions:see[Kohno1986;Gel'fand1986],orthereferencesprovidedin[Varchenko1995].Whenthelocalsystemistrivial,onerecoverstheordinaryhomology),whichisisomorphictotheWhitneyhomologyofthelatticeWhenthede ningpolynomialisreal,thereisastrongdeformationretractontoSalvetti'sCW-complex[Salvetti1987].Inthiscase,thereareexplicitchaincomplexesthatcalculate)and;N;).Thematrixappearsaspartofanimportantchainmapbetweenthetwocomplexes.Ourinterestinlocalsystemsoverthearrangement'scomplementcomesfromaspecialcase.Itiswellknownthat,ifisacentralarrangement,therestrictionofthede ningpolynomialtothecomplement,,givesthestructureofa brebundleover[Milnor1968].Thetypical bre(1)isacomplexmanifoldofdimension1,knownastheMilnor breofthepolynomial(orofishomotopicallyequivalenttoanin nitecycliccoveringofsoitssingularhomologyisforalocalsystemmt;tIfthepolynomialisreal,then,wecanexploitthecomplexesde nedby(4{1)tostudythehomologyoftheMilnor bre(Section4C).Milnor[1968]consideredarbitrarypolynomialmapsthatvanishat0.Inparticular,heshowedthatifthepolynomialhasanisolatedsingularityat0,thentheMilnor breofhasthehomotopytypeofabouquetofspheres.TheMilnor breofde ningpolynomialsofarrangements,then,continuetobeofinterestbyformingarestrictedfamilyofexamplesinwhichthesingularityisnotisolated.AlthoughthehomotopytypeoftheMilnor breofarealarrangementisdeterminedbythefacelatticeofanarrangement,anexplicitdescriptionofthehomologyisonlyknowninspecialcases;see[CohenandSuciu1998;OrlikandRandell1993].Moreover,itisnotknownif,ingeneral,theintersectionlatticeofacomplexhyperplanearrangementdeterminestheMilnor bre'shomology.InSection4A,weintroducetheVarchenko{Salvettichaincomplexes.Sec-tion4Bindicatestheroleofthematrices,and4CspecializestheconstructiontoapplytotheMilnor bre.4A.Salvetti'scomplex.Inordertodescribethegeneralsetup,recallthatthefundamentalgroup)isgeneratedbyloopsaroundeachhyperplane[Randell1982].Letbea(complex)localcoecientsystemde nedbyarepresentationEnd().Foreach,let).Werequireinwhatfollowsthattheimageofbeabelian.Subjecttothisconstraint,onecanchooseanysetofcommutingendomorphismsEnd(),sincethen 166GRAHAMDENHAMANDPHILHANLONTheboundarymaps)and)aregivenbyP;RP;QR;QQ;QR)(4{2)andP;RP;QQ;R(4{3)Proposition4.2[Varchenko1995].Thechaincomplexwithboundarymap(4{2)computesthehomologyofthecomplementwithlocalcoecientsystemThechaincomplexwithboundarymap(4{3)computestherelativehomologyofthepairwithlocalcoecientsystem;N;4B.Relationtothematrix.Foranyface,let)denotethesmallestsubspaceofthatcontains.For0,de neamap)byP;R))=R;SP;Sonthebasisof)givenin(4{1).Here,R;S)=0whereandareregionssatisfyingR;S.Notethatthesubarrangementequals)=0,anditsregionscanbeidenti edwiththoseregions.Withthisinmind,one ndsthatwheretheweightsofthehyperplanesofaretakentobeOnecanverifythat;thatis,)isachainmap[Varchenko1995].4C.ApplicationtotheMilnor bre.Inthissection,isareal,centralarrangement.The(complex)homologyoftheMilnor breofisisomorphictoot;t]),where)actsonnt;t]byforall.Sincethedeterminantsofthematricesarenonzeroover 21 ],thechainmapisaninjection,andtheshortexactsequencecoker0(4{4) 168GRAHAMDENHAMANDPHILHANLONwithaconstructionfromD.B.Fuks.Inthiscase,),whereisthederivedsubgroupofthepurebraidgroup.AsinSection2,onecanattempttomakeusethe-modulestructure.UsingFuks'complex,E.V.Frenkel[1988]hasfoundanexpressionforthe-invariantpartofInaparallelvein,CohenandSuciu[1998]constructacomplexthatisusefulforgrouphomologycalculationsforsupersolvable,ratherthanreal,arrangements.Thereaderisinvitedto ndapatterninourcomputationsofthehomologyoftheMilnor breforthearrangement,inparallelwithourExample3.4.Thetablebelowshowsthecharacteristicpolynomialofthemonodromyoperator);inparticular,theBettinumbersofarejustthedegreesofthepolynomials.Thesepolynomialswerealsocalculatedfor5in[CohenandSuciu1998]. 2345 1�t1�t1�t1�t1 )(1)(1 t)3t3t6)2t)t2)23 t)t2)2t6 1�t1�t1 t)t) )(1 t)t3)t5)6t)t3) t)t3)t5)6tt)t3) 5.FactorizationsofInthissection,wewillgivetwocombinatorialrecipesforwritingthematrixofan-dimensionalarrangementasaproduct.The rst,giveninSection5B,showsthatdiag(;:::;Awhereisinvertibleasamatrixofpolynomialsintheweights;:::;aandthedimensionofisthethBettinumberofthearrangement'scomplexcomplement.Thesecondfactorizationisonlyde nedforcentralarrangements.Itdependsonanorderofthehyperplanes,;:::;HThefactorizationhastheform PROPERTIESOFTHESCHECHTMAN{VARCHENKOBILINEARFORMS171For)and),let R;Swhere denotesthetopologicalclosureof)shouldbethoughtofasthetopologicalspaceconsistingofthewallsaroundchamberthatdonotseparatefrom,inthedeconedarrangement.Lemma5.3.Letbeacentralarrangementandtakeasde nedaboveLetbetheMobiusfunctionoftheposet;Z;RThenthereducedEulercharacteristicofDefinition5.4.Foranyhyperplane,de neamapofsets)byletting ,theintersectionofallhyperplanescontaining Itisshownin[Denham1999]thattheMobiusfunctionof;Z;R)hasasimpledescriptionintheseterms.Proposition5.5.ForunlessMoreoverletbethecodimensionofisboundedotherwiseisunboundedotherwise5B.Inductionondimension.Our rstdecompositionisnotunique:itde-pendsonanarbitrarychoiceofa agof atsingeneralpositionwithrespecttothearrangement.Bythis,wemeananesubspacesforwhichcodim,andforifcodim�Xn;otherwise,codim()=codim,for1Letfor0dn,andletconsistofthesingleregioncontainingthepointLeta;bbethesubmatrixofwithrowsandcolumnsindexedbyandrespectively.For0dncanbeidenti edwiththematrixofthearrangement,andLemma5.2applies.Itstatesthatwhereisthematrixwithentriesi;ji;j PROPERTIESOFTHESCHECHTMAN{VARCHENKOBILINEARFORMS173Proof.Forconvenience,wereorderthebasisofthespaceofregionssothat)appears rstinorder.Let2,andlettm]beabijectionforwhichand).Letbethecorrespondingpermutationmatrix,R;i,for)anddm].InthenotationofLemma5.2,SinceR;S),wehaveand.UsingLemma5.2,itfollowsthatataH 0]MHQ:Thepropositionrelatestwomatrices,onewiththehyperplanesweightedar-bitrarily,andtheotherwithonehyperplanegivenweightzero.Onecanapplythepropositiontoeachhyperplaneinsuccessiontoobtainthefollowing.Theorem5.8.Let;:::;HbearealcentralarrangementofhyperplanesForletbeaparalleltranslateofThenwhereisamatrixoververa0;:::;aExplicitly(i)S;S)=1,(ii)R;SR;S=maxR;S(iii)R;SotherwiseHereagainistheMobiusfunctionofwiththesignchosensothatExample5.9.ConsiderthearrangementfromExample1.2.Orderthehy-perplanes,andordertheregions123321.Then,where010010and100001 PROPERTIESOFTHESCHECHTMAN{VARCHENKOBILINEARFORMS175[Kohno1986]T.Kohno,\Homologyofalocalsystemonthecomplementofhyper-planes",Proc.JapanAcad.Ser.AMath.Sci.:4(1986),144{147.[Kontsevich1993]M.Kontsevich,\Formal(non)commutativesymplecticgeometry",pp.173{187inTheGel'fandMathematicalSeminars,1992,editedbyL.Corwinetal.,Birkhauser,Boston,1993.[Milnor1968]J.Milnor,Singularpointsofcomplexhypersurfaces,AnnalsofMathe-maticsStudies,PrincetonUniv.Press,Princeton,NJ,1968.[OrlikandRandell1993]P.OrlikandR.Randell,\TheMilnor berofagenericarrangement",Ark.Mat.:1(1993),71{81.[OrlikandTerao1992]P.OrlikandH.Terao,Arrangementsofhyperplanes,Grund-lehrenderMathematischenWissenschaften,Springer,Berlin,1992.[Randell1982]R.Randell,\Thefundamentalgroupofthecomplementofaunionofcomplexhyperplanes",Invent.Math.:1(1982),103{108.[RobinsonandWhitehouse1996]A.RobinsonandS.Whitehouse,\Thetreerepre-sentationofJ.PureAppl.Algebra:1-3(1996),245{253.[Sagan1991]B.E.Sagan,Thesymmetricgroup:Representations,combinatorialalgorithms,andsymmetricfunctions,Wadsworth&Brooks/Cole,Paci cGrove,CA,1991.[Salvetti1987]M.Salvetti,\TopologyofthecomplementofrealhyperplanesinInvent.Math.:3(1987),603{618.[SchechtmanandVarchenko1991]V.V.SchechtmanandA.N.Varchenko,\Quantumgroupsandhomologyoflocalsystems",pp.182{197inAlgebraicgeometryandanalyticgeometry(Tokyo,1990),editedbyA.Fujikietal.,Springer,Tokyo,1991.[Stanley1986]R.P.Stanley,Enumerativecombinatorics,Wadsworth&Brooks/Cole,Monterey,CA,1986.[Varchenko1993]A.Varchenko,\Bilinearformofrealcon gurationofhyperplanes",Adv.Math.:1(1993),110{144.[Varchenko1995]A.Varchenko,Multidimensionalhypergeometricfunctionsandrep-resentationtheoryofLiealgebrasandquantumgroups,AdvancedSeriesinMathe-maticalPhysics,WorldScienti c,RiverEdge,NJ,1995.[Zagier1992]D.Zagier,\Realizabilityofamodelinin nitestatistics",Comm.Math.Phys.:1(1992),199{210. NewPerspectivesinGeometricCombinatoricsMSRIPublicationsVolume,1999CombinatorialDi erentialTopologyandGeometryROBINFORMANAbstract.Avarietyofquestionsincombinatoricsleadonetothetaskofanalyzingthetopologyofasimplicialcomplex,oramoregeneralcellcomplex.However,therearefewgeneraltechniquestoaidinthisinvestiga-tion.Ontheotherhand,thesubjectsofdi erentialtopologyandgeometryaredevotedtopreciselythissortofproblem,exceptthatthetopologicalspacesinquestionaresmoothmanifolds.Inthispaperweshowhowtwostandardtechniquesfromthestudyofsmoothmanifolds,MorsetheoryandBochner'smethod,canbeadaptedtoaidintheinvestigationofcombina-torialspaces.IntroductionAvarietyofquestionsincombinatoricsleadonetothetaskofanalyzingasimplicialcomplex,oramoregeneralcellcomplex.Forexample,astandardapproachtoinvestigatingthestructureofapartiallyorderedsetistoinsteadstudythetopologyoftheassociatedordercomplex.However,therearefewgeneraltechniquestoaidinthisinvestigation.Ontheotherhand,thesubjectsofdi erentialtopologyanddi erentialgeometryaredevotedtopreciselythissortofproblem,exceptthatthetopologicalspacesinquestionaresmoothmanifolds,ratherthancombinatorialcomplexes.Theseareclassicalsubjects,andnumerousverygeneralandpowerfultechniqueshavebeendevelopedandstudiedovertherecentdecades.Asmoothmanifoldis,looselyspeaking,atopologicalspaceonwhichonehasawell-de nednotionofaderivative.Onecanthenusecalculustostudythespace.Ihaverecentlyfoundwaysofadaptingsometechniquesfromdi erentialtopologyanddi erentialgeometrytothestudyofcombinatorialspaces.Per-hapssurprisingly,manyofthestandardingredientsofdi erentialtopologyanddi erentialgeometryhavecombinatorialanalogues.Thecombinatorialtheories ThisworkwaspartiallysupportedbytheNationalScienceFoundationandtheNationalSe-curityAgency. COMBINATORIALDIFFERENTIALTOPOLOGYANDGEOMETRY179theory,relatingthetopologyofthespacetothecriticalpointsofthefunction,aretrue.Wealsopresentdiscreteanaloguesofsuch(seemingly)intrinsicallysmoothnotionsasthegradientvector eldandthecorrespondinggradient owassociatedtoaMorsefunction.Usingthese,wede neaMorsecomplex,adi erentialcomplexbuiltoutofthecriticalpointsofourdiscreteMorsefunction,whichhasthesamehomologyastheunderlyingspace.Inthesmoothsetting,theMorsecomplexhasbeensubjecttomuchrecentstudy,andhasplayedacrucialroleinsomerecentapplications(see[Klingenberg1982;Floer1988],forexample).Mostofthissectionwillbeaninformalexpositionofthecontentsof[Forman1995;1998d].Thiscombinatorialtheoryisnotreallyanewtheory,butratheranextractionofthecombinatorialessenceofthesmooththeory.Asevidenceforthis,wewillindicatelaterthatitispossibletodeducemuchofthesmooththeoryfromthiscombinatorialtheory,and,conversely,someoftheresultswepresentcanbeprovedby\smoothing"thecombinatorialMorsefunctionandapplyingthecorrespondingsmooththeory(althoughthatisnottheapproachwewilltakeinthispaper).Aswementionedabove,thisdiscreteMorsetheorycanbede nedforanyCWcomplex,buttoavoidveryminorcomplicationswewillrestrictattention,inthispaper,tosimplicialcomplexes.See[Forman1998d]foramoregeneraltreatment.Letbeany nitesimplicialcomplex.Weemphasizethatneednotbeatriangulatedmanifold,norhaveanyotherspecialproperty.Denotebythesetof(nonempty)simplicesof,andthesimplicesofdimensionWritehasdimension,and� (or )ifisafaceofAdiscreteMorsefunctiononwillactuallybeafunctionon.Thatis,weassignasinglerealnumbertoeachsimplexin.Roughlyspeaking,afunctionisaMorsefunctionifusuallyassignshighervaluestohigherdimensionalsimplices,withatmostoneexception,locally,ateachsimplex.Moreprecisely:Definition1.1.AfunctionisadiscreteMorsefunctionif,forevery(1)#+1)1and(2)#Asimpleexamplewillservetoillustratethede nition.Considerthetwocom-plexesshowninFigure1.Hereweindicatefunctionsbywritingnexttoeachcellthevalueofthefunctiononthatcell.ThefunctionontheleftisnotadiscreteMorsefunctionastheedge(0)violatesrule(2),sinceithas2lower-dimensional\neighbors"onwhichtakesonhighervalues,andthevertex(3) COMBINATORIALDIFFERENTIALTOPOLOGYANDGEOMETRY181 Figure2.Thefunctiondecreasesasonemovesfromthe1-simplextoeitherboundarycomponent,andincreasesineachtransversedirection.tothebarycenterofeachsimplex.Onecanthensmoothlyinterpolatebetweenthesevaluestode neasmoothfunctiononallof.Ifthisisdonecarefully,\smoothing"adiscreteMorsefunctionnearacritical-simplexresultsinasmoothMorsefunctionwithacriticalpointofindexOurnextstepistoshowthatthetopologyofageneralsimplicialcomplexisintimatelyrelatedtothecriticalpointsofadiscreteMorsefunctiononBeforestatingthemaintheorems,weneedonemorede nition.SupposeisadiscreteMorsefunctiononasimplicialcomplex.Foranyde nethelevelsubcomplex)byyf( )c[  :Thatis,)isthesubcomplexofconsistingofallsimpliceswithaswellasalloftheirfaces.Theorem1.3.Supposetheintervala;bcontainsnocriticalvaluesofThenisadeformationretractofMoreoversimpliciallycollapsesontoTode nesimplicialcollapse,supposeisasimplicialcomplex,isasimplexofthatisnotafaceofanysimplex,andisa(1)-face Figure3.Simplicialcollapseofonto COMBINATORIALDIFFERENTIALTOPOLOGYANDGEOMETRY183EverysimplicialcomplexsupportsadiscreteMorsefunction.Namely,foranycomplexandanysimplex,set)=dim().ThenisadiscreteMorsefunction,andeverysimplexofiscriticalforTheresultswehavestatedaboveapplytoanysimplicialcomplex.Inthecasethatisacombinatorialmanifold[Glaser1972,p.19]onecanoftensaymore.Forexample,onecanstateacombinatorialanalogueofthestandardSpheretheoremofsmoothMorsetheory;see[Milnor1962,Theorem4.1].Corollary1.7.Supposeisacombinatorial-manifoldwithoutboundarywithaMorsefunctionwithexactlytwocriticalpointsThenisacombinatorial-sphereTheproofofthiscorollaryrestsheavilyonWhitehead'swonderfultheorem[1939]ontheuniquenessofregularneighborhoods,whichimplies,asaspecialcase,thatacombinatorial-manifoldwithboundarywhichsimpliciallycollapsesontoavertexisacombinatorial-ball.Supposeisacombinatorial-manifoldwithadiscreteMorsefunctionwithexactlytwocriticalpoints.Thenthemaximummustoccuratan-simplexwhichisacriticalsimplexofindex.Thus,restrictsontoaMorsefunctionwithexactlyonecriticalsimplex.Theminimumofmustoccuratavertexwhichisacriticalsimplexofindex0,andthisistheonlycriticalsimplexofrestrictedto.Theorem1.3impliesthatsimpliciallycollapsestothatvertex.NowweapplyWhitehead'stheoremtoconcludethatisacombinatorialn-ball.Itfollowsthatt isacombinatorialn-sphere.Ratherthanprovethemaintheoremshere,wewillillustratethemainideaswithanexample;seeFigure5.Rigorousproofsappearin[Forman1998d]. 1381011Figure5.ExampleofaMorsefunction.Here(0)isacriticalsimplexofindex0,(9)isacriticalsimplexofindex1,andtherearenoothercriticalsimplices.Thus,itfollowsfromtheabovecorollarythatishomotopyequivalenttoaCWcomplexbuiltfromasingle0-cell,andasingle1-cell.TheonlyCWcomplexwhichcanbebuiltfromtwosuchcellsisacircle.Therefore,wecanconcludethatishomotopyequivalenttoacircle,asisevidentfromthepicture.ConsiderthesequenceoflevelsubcomplexesshowninFigure6.Wecanseewhythetheoremsaretrue.Ifisnotcritical,thenoneoftwocasesmustoccur. COMBINATORIALDIFFERENTIALTOPOLOGYANDGEOMETRY185 Figure7.Thegradientvector eldoftheMorsefunction.beprecise,whenwesay\gradientvector eld"wearereallyreferringtothenegativeofthegradientvector eld.)Itisbettertothinkofthisgradientvector eld,whichwenowcall,asamapoforientedsimplices.Thatis,ifisaboundaryvertexofanedgewith),wewanttothinkof)asadiscretetangentvectorleavingi.e.,withgiventheorientationindicatedbythearrowinFigure8. Figure8.Edgeorientation.Moregenerally,if+1)areorientedsimplicesandsatisfythenwesetwiththesignchosensothat ;@Vwhereisthecanonicalinnerproductonorientedchainswithrespecttowhichthesimplicesareorthonormal(inotherwords, ;@Vistheincidencenumberofwithrespectto)).De ne)tobe0forallsimpliceswhichthereisnosuch.Nowcanbeextendedlinearlytoamapwhere,foreach)isthespaceofinteger-chainsonInthecaseofsmoothmanifolds,thegradientvector eldde nesadynamicalsystem,namelythe owalongthevector eld.ViewingtheMorsefunctionfromthepointofviewofthisdynamicalsystemleadstoimportantnewinsights[Smale1961b].Toproceedfurtherinourcombinatorialsetting,wenowde nea(discrete-time) owalongthegradientvector eld.De neamapthediscrete-time ow,by=1+V@:Weillustratebyanexample.ConsiderthecomplexshowninFigure9,withtheindicatedgradientvector eld.Letbethetopedgeorientedfromleft COMBINATORIALDIFFERENTIALTOPOLOGYANDGEOMETRY187usethefactthatforsome.If=1,thenworks.Thegeneralcaseisnotmuchharder.Ourgoalinintroducingthiscomplexwastofurtherourunderstandingofthecriticalsimplices.Withthisinmind,wenowshowthattheMorsecomplexcanbealternatelyde nedintermsofthecriticalsimplices.Foreach,let)denotethespanofthecritical-simplices.Wethenobviouslyhavedimcriticalsimplicesofdimension(1.1)Foreach,wecanapplythestabilizationmaptogetamapfromTheorem1.9.ForeachthemapisanisomorphismThus,theMorsecomplexcanbede nedequivalentlyasthecomplex�!whereisthedi erentialinducedbytheaboveisomorphism(thatis,).Inparticular(1.2)Itisinterestingtonotethattogether(1.1)and(1.2)implytheMorseinequalities,sothisgivesanalternateproofofCorollary1.6.From(1.2),weseethattheMorsecomplexcontainsamorecompletedescriptionoftherelationshipbetweenthecriticalsimplicesof,andthehomologyof.Allthatremainsistogetaexplicitdescriptionofthedi erential.Thisrequirestheintroductionofthenotionofacombinatorialgradientpath.Letand~-simplices.Agradientpathfrom~isasequenceofsimplices+1)+1);:::; +1)suchthat)foreach;:::;r.Equivalently,werequire,and.InFigure11weshowasinglegradientpathfromtheboundaryofacritical2-simplextoacriticaledge,wherethearrowsindicatethegradientvector eld Figure11.Agradientpathfrom COMBINATORIALDIFFERENTIALTOPOLOGYANDGEOMETRY189Suchpairingswerestudiedin[Stanley1993;Duval1994]asatoolforinvesti-gatingthepossible-vectorsforasimplicialcomplex.In[Forman1998b]weinvestigatedthedynamicalpropertiesofthediscrete-time owcorrespondingtoageneraldiscretevector eld.isacombinatorialvector eld,wede nea-pathtobeanypathasinFigure11(wherenowthearrowsindicatethemap).Moreprecisely,a-pathisasequenceofsimplices+1)+1);:::; +1)suchthatforeach;:::;r)and.Wesaysuchapathisanontrivialclosedpathif0and.Thereisasimplecharacterizationofthosediscretevector eldswhicharethegradientofadiscreteMorsefunction.Theorem1.12.Adiscretevector eldisthegradientvector eldofadiscreteMorsefunctionifandonlyiftherearenonontrivialclosed-pathsThistheoremhasaverynicepurelycombinatorialdescription,usingwhichwecanrecasttheMorsetheoryinanappealingform.WebeginwiththeHassediagramof,thatis,thepartiallyorderedsetofsimplicesoforderedbythefacerelation.ConsidertheHassediagramasadirectedgraph.Theverticesofthegraphareinone-to-onecorrespondencewiththesimplicesof,andthereisadirectededgefromifandonlyifisacodimension-onefaceof.Nowletbeacombinatorialvector eld.Wemodifythedirectedgraphasfollows.thenreversetheorientationoftheedgebetweenand(sothatitnowgoesfrom).A-pathisjustadirectedpathinthismodi edgraph.FromTheorem1.12,isagradientvector eldifandonlyiftherearenocloseddirectedpaths.Thatis,inthiscombinatoriallanguage,adiscretevector eldisapartialmatchingoftheHassediagram,andadiscretevector eldisagradientvector eldifthepartialmatchingisacyclicintheabovesense.Wecannowrestatesomeofourearliertheoremsinthislanguage.ThereisaveryminorcomplicationinthatoneusuallyincludestheemptysetasanelementoftheHassediagram(consideredasasimplexofdimension1)whilewehavenotconsideredtheemptysetpreviously.Theorem1.13.LetbeanacyclicpartialmatchingoftheHassediagramofofthesortdescribedaboveAssumethattheemptysetismatchedwithavertexLetdenotethenumberofunpaired-simplicesThenishomotopyequivalenttoaCWcomplexwithverticesforeachcellsofdimensionAnimportantspecialcaseofTheorem1.13iswhenisacompletematching,thatis,everysimplexispairedwithanother(possibleempty)simplex.Theorem1.14.LetbeacompleteacyclicmatchingoftheHassediagramofthencollapsesontoavertexsothatinparticulariscontractible COMBINATORIALDIFFERENTIALTOPOLOGYANDGEOMETRY191ornot�is-connecteduntilweaskquestions.Weobservethatinducesacompletepairingofthesetofgraphson.Namely,pair�and�ifwecannotdistinguishbetweenthemuntilallquestionshavebeenasked.Byde nition,anot--connectedgraphisanevaderofifandonlyifitispairedwitha-connectedgraph,andviceversa.Themainresultof[Forman1998c]isthatthisisanacyclicpairing,andhence,byTheorem1.13,thegradientvector eldofaMorsefunction.Wecanrestrictthisvector eldto,togetthegradientofaMorsefunctionon.Thecriticalsimplicesofthisrestrictedgradientvector eldarethesimplicesofwhichwerepairedwithsimplicesnotin.Thesearepreciselythenot--connectedgraphswhichwerepairedwitha-connectedgraph,i.e.,theevadersof.WecannowusetheweakMorseinequalities(Corollary1.6)alongwithTheorem1.15toconclude:Theorem1.16.Supposeourgoalistodeterminewhetherornotanunknowngraphis-connectedForanyquestionalgorithmthereareatleast2)!evadersofwhicharenot-connected2)!evadersofwhichare-connectedBeforeendingthissection,wemakesome nalremarksaboutthecombinatorialMorsetheory,anditsrelationtothesmooththeory.OneofthemainproblemsinMorsetheoryis ndingaMorsefunction,foragivenspace,withthefewestpossiblecriticalpoints.Ingeneralthisisaverydicultproblem,since,inparticular,itcontainsthePoincareconjecture|spherescanberecognizedasthosespaceswhichhaveaMorsefunctionwithpreciselytwocriticalpoints.(See[Milnor1965]foracompletelyMorsetheoreticpresentationofSmale'sproof[1961a]ofthehigher-dimensionalPoincareconjecture.)AsanapplicationofTheorem1.12,weeasilyprovea\cancellation"theorem,whichenablesone,undercertainconditions,tosimplifyaMorsefunction(thisresultisadiscreteanalogueofin[Milnor1965,Theorem5.4],the\FirstCancellationTheorem").Thatis,ifand+1)aretwocriticalsimplices,andifthereisexactlyonegradientpathfrom,thenandcanbecancelled.Moreprecisely:Theorem1.17.SupposeisadiscreteMorsefunctiononsuchthat+1)arecriticalandthereisexactlyonegradientpathfromThenthereisanotherMorsefunctionwiththesamecriticalsimplicesexceptthatarenolongercriticalMoreoverthegradientvector eldassociatedisequaltothegradientvector eldassociatedtoexceptalongtheuniquegradientpathfromInthesmoothcase,theproof,eitheraspresentedoriginallybyMorse[1965]oraspresentedin[Milnor1965],israthertechnical.Inourdiscretecasetheproofissimple.If,inFigure11,theindicatedgradientpathistheonlygradientpathfrom,thenwecanreversethegradientvector eldalongthispath,replacingthe gurebythevector eldinFigure12. COMBINATORIALDIFFERENTIALTOPOLOGYANDGEOMETRY193thatthecurvatureislocalizedtothelower-dimensionalcells.Thecurvatureisthende nedintermsofhowtheneighborhoodofacelldi ersfromwhatonewouldseeina atcomplex.Thissectionisalsorelatedtoe ortstode-rivelocalcombinatorialformulasforthecharacteristicclassesofcombinatorialmanifolds;see[Bancho andMcCrory1979;Gabrielovetal.1974;GelfandandMacPherson1992;HalperinandToledo1972;Levitt1989;LevittandRourke1978;MacPherson1993;Stone1981;Yu1983].Inthecaseofsmoothmani-folds,suchlocalformulasareexpressedintermsofcurvature,so,presumably,localcombinatorialformulasforcharacteristicclassescanbethoughtofascom-binatorialformulasforcurvature;thisconnectionismadeexplicitin[Cheeger1983].Inthemathematicalphysicsliterature,similarquestionshavebeenstud-iedunderthenameoflatticegaugetheory;see[PhillipsandStone1990],forexample.Themainresultof[LuoandStong1993]isalsosimilarinspirittotheresultswewillpresent,inthatthecombinatoricsoftheedgesandfacesofacombinatorial3-manifoldarerelatedtothetopologyoftheunderlyingmani-fold.Oneshouldalsocomparewith[Alexandrov1951;Gromov1987],andthereferencestherein,inwhichonede nesnotionsofcurvatureoncombinatorialspacesbycomparingdistancesbetweenpointswiththedistancesonewould ndonsmoothRiemannianmanifoldswithconstantcurvature.Aswillsoonbecomeclear,ourapproachiscompletelydi erentfromthosefollowedintheseworks,andisbasedinsteadonananalysisofthecombinatorialLaplaceoperator(thisoperatoralsoappearsin[Yu1983],butplaysaverydi erentrolethere).ThecombinatorialLaplaceoperatorhasalonghistory.Inthecaseofaone-dimensionalsimplicialcomplex,thisoperatorappeared,implicitly,inKircho 'sworkonelectricalnetworks[1847].See[Chung1997;Forman1993]formorerecentworkonthiscase.ThecombinatorialLaplaceoperatorongeneralcomplexeswasintroducedbyEckmann[1945].ThecloserelationshipbetweenthecombinatorialandRiemann-ianLaplaceoperatorshasbeenexploredinanumberofpapers,mostnotablybyDodziukandhiscollaborators;see,forexample,[Dodziuk1974;1981;Dodz-iukandKarp1988;DodziukandPatodi1976].TheworkbyGarland[1972;1973;1975],isverycloselyrelatedtoours,inthathealsousesthecombina-torialLaplaceoperatortode necombinatorialcurvatures,whicharethenusedtodeduceglobaltopologicalpropertiesofthecomplex.Thereadercanconsult[Friedman1996;FriedmanandHandron1997;Kooketal.1998]forsomefasci-natingrecentapplicationsofthecombinatorialLaplaciantosomeproblemsincombinatorics.Letusbeginwithsomeexamplesofthetheorywedevelop.Althoughthetheorycanbeappliedtoverygeneralcellcomplexes,inthisintroductionwewillrestrictattentiontoCWcomplexessatisfyingacombinatorialconditionmodelledonthenotionofconvexity.Thereadermaythinkonlyofsimplicialcomplexes,butitisinsightfultoallowmoregeneralconvexcells. COMBINATORIALDIFFERENTIALTOPOLOGYANDGEOMETRY195Ofparticularinterestisthecase=1.Inthiscasewegivethecurvaturefunctionaspecialname.Foranyedge(1-cell),de netheRiccicurvatureRic(Moreexplicitly,Ric(2-cells�feparallelneighborsofForexample,inFigure13Ric()=2+24=0Thus,thestandardlatticecelldecompositionoftheplaneisa\Ricci at"cellcomplex.Infact,thereadercaneasilycheckthatforallvanishesonthestandardlatticecelldecompositionofEuclideanspaceofanydimension.Attherightweshowa2-dimensionalspherewith\cubic"celldecomposition.Inthiscasetheedgehas2parallelneighbors(theedgesand)sothatRic()=2+22=2 ThepurposeofFigure14istodemonstratethatthede nitionsandtheoremsdiscussedinthispapercan,withafewexceptions,beappliedtoverygeneralcomplexes.Thecomplexneednotbeamanifold,orhaveanyotherspecialstructure. Figure14.TheRiccicurvature|indicatedhereforeachedge|canbecom-putedforarbitrarycomplexes.IntheRiemanniancaseBochnershowedthatonedoesnotneedthe-thcurvaturefunctiontobestrictlypositive,aswerequiredinTheorem2.4,inordertodrawsometopologicalconclusions.Infact,nonnegativityalsohasstrongimplications.Inthecombinatorialsetting,wecanproveacorrespondingresultinthecasep=1.Theorem2.5.Letbeaconnectedquasi-convexcomplex(i)SupposethatRic(foralledgesIfthereisavertexsuchthatRic(forallthen COMBINATORIALDIFFERENTIALTOPOLOGYANDGEOMETRY197Stone[Stone1976]de nesadi erentnotionofcurvature,inasomewhatmorerestrictedsetting,fromwhichaversionofMyers'theoremisdeduced.EventhoughtheproofofTheorem2.6isverysimilartoStone'sproof(andtheproofin[Myers1941]),therelationshipbetweenthetwonotionsofcombinatorialcur-vatureisnotcleartothisauthoratpresent.Thesetheoremsshowthattherearestrongtopologicalrestrictionsforatopo-logicalspacetohaveaquasi-convexcelldecompositionwithRic(0(orforeachedge.Itisnaturaltoconsidertheotherextreme,andtoinvestigatethepossibilityofdecompositionswithRic(0foreveryedge.In[Gao1985;GaoandYau1986;Lohkamp1994a;1994b]itwasshownthateverysmoothmanifoldofdimension3hasaRiemannianmetricwitheverywherenegativeRiccicurvature.Thesame,andmore,istrueinthecombinatorialsetting.Theorem2.7.Letbeanotnecessarilycompactcombinatorial-manifoldThenthereisa nitesubdivisionsuchthatRic(foralledgesItisinterestingtonotethatthecorrespondingRiemanniantheoremisonlytrueformanifoldsofdimension3.TheGauss{BonnetTheoremprovidesanobstructionforasurfacetohaveametricwithnegativeRiccicurvature(whichistosayGaussiancurvatureif=2).Theorem2.7impliesthatthereisnosimpleGauss{BonnettheoremforcombinatorialRiccicurvature.See[Forman5]forawaytorecoveraversionofGauss{Bonnetinthissetting.WewillnowgiveanideaoftheproofsofTheorems2.4and2.5.ReadersfamilarwithBochner'soriginalproofwillnoticethatwearesimplyfollowinghisproof(nowknownas\Bochner'smethod")inacombinatorialsetting.Letbea niteCWcomplex.Considerthecellularchaincomplex�!Endoweach)withapositivede niteinnerproductsuchthatthecellsareorthogonal.Thisinvolveschoosingapositive\weight"foreachcellandsetting ; (Theformulaspresentedinthispaperresultfromsetting=1foreverycell.)Let)denotetheadjointofandthecorrespondingLaplacian.ThecombinatorialHodgetheoremfollowsfrombasiclinearalgebra.Tomotivatewhatfollows,wenowpresentaverybriefoverviewofBochner'soriginalproofinthesmoothcategory.WewillfreelyusestandardnotationandterminologyofRiemanniangeometry.Thereadermayfeelfreetoskip COMBINATORIALDIFFERENTIALTOPOLOGYANDGEOMETRY199Thelinearmapde nedbythematrixisnonnegative(withrespecttothestandardinnerproducton).Thisisaspecialcaseofthefactthatanysym-metricmatrix()suchthatforeachisnonnegative.Thisisoneofthoseveryusefulfactsinmatrixtheorywhichisconstantlybeingre-discovered.Forthehistoryofthisresult(notstatedinquitethesameway)andextensions,see[Taussky1949].Thedesiredconclusionisalsoimpliedbytheclassicaleigenvalueestimateknownas\theGershgorincirclemethod"[Gersh-gorin1931],whichsaysthattheeigenvalueslieincirclescenteredatwithradiusThenonnegativityofimpliesthatinthissimpleexamplewecanalreadymaketheBochner-likestatementthatifeachofthe3numbers)ispositivethentheoriginal33matrixhasatrivialkernel.ToapplythisdecompositiontothecombinatorialLaplaceoperator,wemust rstrepresenttheLaplaceoperatorasasymmetricmatrix,andthisrequireschoosinganorderedorthonormalbasisforthespaceofchains.Wecande nesuchabasisbychoosinganorientationforeachcellof,andthenchoosinganorderingofthecells.Makingadi erentchoicefortheorientationofacellhasthee ectofmultiplyingthecorrespondingrowandcolumnofthesymmetricmatrix1.Permutingtheorderingofthecellshasthee ectofapplyingthesamepermutationtoboththerowsandthecolumnsofthematrix.Therefore,foradecompositionofsymmetricmatricestoinduceawell-de neddecompositionofthecombinatorialLaplaceoperator,thedecompositionmustbeequivariantundermultiplyingarowandcolumnby-1,andapplyingasinglepermutationtoboththerowsandthecolumns.Itiseasytoseethatthedecompositionshownin(2.2)hasthisproperty,andhenceinducesadecomposition.InanalogywiththeBochner{Weitzenbockformula,wecallthecombinatorialBochnerLaplacian,and-thcombinatorialcurvaturefunction.Itfollowsimmediatelythatif0then0,sothat)=0.Forany-cell,wede neOurde nitionofRiccicurvature,Ric()wasmotivatedbyformula(2.1).Wenotethat(2.1)isatheoremintheRiemanniansetting,sinceRiccicurvaturewasoriginallyde nedinacompletelydi erentmanner,butitisade nitioninthecombinatorialcase.ProvingTheorem2.4isnowreducedtoexplicitlycalculatingasde nedabove,andshowingthatthisisequivalenttotheformulagiveninDe nition2.3.See[Forman1998a]forthedetailsofthisstraight-forwardcalculation.IntheRiemanniancase(Ihopethereaderisnotgettingdizzyfromallofthisbouncingbackandforthbetweencategories),Theorem2.5followsfromtheBochner{Weitzenbockformulawithjustabitmorework.Namely,ifisa COMBINATORIALDIFFERENTIALTOPOLOGYANDGEOMETRY201weknewthat,thenwouldbedeterminedbyand.Puttingtheseideastogether,itisnottoohardtogettothegeneralresultthatifisconnected,and,thenforanyvertexiscompletelydeterminedby.Since=Kerthedesiredtheoremfollows.ToseehowTheorem2.5(i)follows,supposeRic(0foreachedge.Then,sinceisalsoanonnegativeoperator,=KerKerRic=(KerKerRic=(KerKerRicNowsuppose.ThenKer(Ric).SinceRic(0foreachedge,wemusthave=0foreachedge.Nowweobservethatsinceiscompletelydeterminedby,andhencewemusthave=0.Thisdemonstratesthat)=0.Theresultswehavepresentedhere,aswellasthoseinthereferencescitedearlier,indicatethatthereshouldexistmorecompletetheoriesofcombinatorialdi erentialtopologyandgeometry.However,atthispointthecombinatorialtheoriescaptureonlyasmallportionofthesebeautifulandfar-reachingclassicalsubjects.Thereremainsmuchtobedone.AcknowledgementsTheauthorthanksthesta oftheMathematicalSciencesResearchInstitute,aswellastheorganizersofthespecialyearinCombinatoricsandTopology,fortheirhospitalitywhilesomeofthisworkwascompleted.Theauthoralsothankstherefereesandeditor,whosethoughtfulcommentshavedrasticallyimprovedthispaper.References[Alexandrov1951]A.D.Alexandrov,\Atheoremontrianglesinametricspaceandsomeofitsapplications",TrudyMat.Inst.Steklov(1951),5{23.InRussian.[AllendoerferandWeil1943]C.B.AllendoerferandA.Weil,\TheGauss{BonnettheoremforRiemannianpolyhedra",Trans.Amer.Math.Soc.(1943),101{129.[Babsonetal.1999]E.Babson,A.Bjorner,S.Linusson,J.Shareshian,andV.Welker,\Complexesofnot-connectedgraphs",Topology:2(1999),271{299.[Bancho 1967]T.Bancho ,\Criticalpointsandcurvatureforembeddedpolyhedra",J.Di erentialGeometry(1967),245{256.[Bancho 1983]T.F.Bancho ,\Criticalpointsandcurvatureforembeddedpolyhedra,II",pp.34{55inDi erentialgeometry(CollegePark,MD,1981/1982),editedbyR.Brooksetal.,Progr.Math.,Birkhauser,Boston,1983. COMBINATORIALDIFFERENTIALTOPOLOGYANDGEOMETRY203[Floer1988]A.Floer,\MorsetheoryforLagrangianintersections",J.Di erentialGeom.:3(1988),513{547.[Forman1993]R.Forman,\DeterminantsofLaplaciansongraphs",Topology(1993),35{46.[Forman1995]R.Forman,\AdiscreteMorsetheoryforcellcomplexes",pp.112{125Geometry,topology,andphysicsforRaoulBott,editedbyS.-T.Yau,Internat.Press,Cambridge,MA,1995.[Forman1998a]R.Forman,\CombinatorialRiccicurvature",preprint,1998.Availableathttp://math.rice.edu/forman/ricci.tex.[Forman1998b]R.Forman,\Combinatorialvector eldsanddynamicalsystems",Math.Z.:4(1998),629{681.[Forman1998c]R.Forman,\Morsetheoryandevasiveness",preprint,1998.Availableathttp://math.rice.edu/forman/evade.tex.[Forman1998d]R.Forman,\Morsetheoryforcellcomplexes",Adv.Math.(1998),90{145.[Forman1999]R.Forman,\Ontriangulationsofvector elds".Inpreparation.[Friedman1996]J.Friedman,\ComputingBettinumbersviacombinatorialLapla-cians",pp.386{391inProceedingsoftheTwenty-eighthAnnualACMSymposiumontheTheoryofComputing(Philadelphia,1996),ACM,NewYork,1996.[FriedmanandHandron1997]J.FriedmanandP.Handron,\OntheBettinumbersofchessboardcompexes",preprint,1997.[Gabrielovetal.1974]A.M.Gabrielov,I.M.Gel'fand,andM.V.Losik,\Thecombinatorialcomputationofcharacteristicclasses",Funktsional.Anal.iPrilozhen.:1(1974),54{55.InRussian;translatedinFunc.Anal.andAppl.(1976),12{15.[Gao1985]L.Z.Gao,\TheconstructionofnegativelyRiccicurvedmanifolds",Math.Ann.:2(1985),185{208.[GaoandYau1986]L.Z.GaoandS.-T.Yau,\TheexistenceofnegativelyRiccicurvedmetricsonthree-manifolds",Invent.Math.:3(1986),637{652.[Garland1972]H.Garland,\-adiccurvatureandaconjectureofSerre",Bull.Amer.Math.Soc.(1972),259{261.[Garland1973]H.Garland,\-adiccurvatureandthecohomologyofdiscretesubgroups-adicgroups",Ann.ofMath.(2)(1973),375{423.[Garland1975]H.Garland,\Onthecohomologyofdiscretesubgroupsofsemi-simpleLiegroups",pp.21{30inDiscretesubgroupsofLiegroupsandapplicationstomoduli(Bombay,1973),TataInstituteStudiesinMathematics,OxfordUniv.Press,Bombay,1975.[GelfandandMacPherson1992]I.M.GelfandandR.D.MacPherson,\Acombinato-rialformulaforthePontrjaginclasses",Bull.Amer.Math.Soc.:2(1992),[Gershgorin1931]S.Gershgorin,\UberdieAbgrenzungderEigenwerteeinerMatrix",Izv.Akad.Nauk.USSROtd.Fiz.-Mat.Nauk(1931),749{754.[Glaser1972]L.C.Glaser,Geometricalcombinatorialtopology,v.1,VanNostrandReinholdMathematicalStudies,VanNostrandReinhold,NewYork,1972. COMBINATORIALDIFFERENTIALTOPOLOGYANDGEOMETRY205[Morse1925]M.Morse,\Relationsbetweenthecriticalpointsofarealfunctionofindependentvariables",Trans.Amer.Math.Soc.(1925),345{396.[Morse1934]M.Morse,Thecalculusofvariationsinthelarge,ColloquiumPublications,Amer.Math.Soc.,Providence,1934.[Morse1965]M.Morse,\Bowlsofanon-degeneratefunctiononacompactdi eren-tiablemanifold",pp.81{103inDi erentialandCombinatorialTopology,editedbyS.S.Cairns,PrincetonUniv.Press,Princeton,NJ,1965.[Myers1941]S.B.Myers,\Riemannianmanifoldswithpositivemeancurvature",DukeMath.J.(1941),401{404.[PhillipsandStone1990]A.V.PhillipsandD.A.Stone,\Thecomputationofcharacteristicclassesoflatticegauge elds",Comm.Math.Phys.:2(1990),[Regge1961]T.Regge,\Generalrelativitywithoutcoordinates",NuovoCimento(10)(1961),558{571.[Shareshian1997]J.Shareshian,\DiscreteMorsetheoryforcomplexesof2-connectedgraphs",preprint,1997.[Smale1961a]S.Smale,\GeneralizedPoincare'sconjectureindimensionsgreaterthanfour",Ann.ofMath.(2)(1961),391{406.[Smale1961b]S.Smale,\Ongradientdynamicalsystems",Ann.ofMath.(2)(1961),199{206.[Stanley1993]R.P.Stanley,\Acombinatorialdecompositionofacyclicsimplicialcomplexes",DiscreteMath.:1-3(1993),175{182.[Stone1976]D.A.Stone,\AcombinatorialanalogueofatheoremofMyers",IllinoisJ.Math.:1(1976),12{21.Correctionin:3(1976),551{554.[Stone1981]D.A.Stone,\OnthecombinatorialGaussmapforsubmanifoldsofEuclideanspace",Topology:3(1981),247{272.[Taussky1949]O.Taussky,\Arecurringtheoremondeterminants",Amer.Math.Monthly(1949),672{676.[Turchin1997]V.E.Turchin,\Homologyofcomplexesofbiconnectedgraphs",UspekhiMat.Nauk:2(issue314)(1997),189{190.InRussian;translatedinRussianMath.Surveys:2(1997),426{427.[Vassiliev1993]V.A.Vassiliev,\Complexesofconnectedgraphs",pp.223{235inTheGel'fandMathematicalSeminars,1992,editedbyL.Corwinetal.,BirkhBoston,1993.[Whitehead1939]J.H.C.Whitehead,\Simplicialspaces,nuclei,and-groups",Proc.LondonMath.Soc.(1939),243{327.[Williams1992]R.M.Williams,\Discretequantumgravity:theReggecalculusapproach",Internat.J.ModernPhys.B:11-12(1992),2097{2108.[Yu1983]Y.L.Yu,\CombinatorialGauss{Bonnet{Chernformula",Topology(1983),153{163. NewPerspectivesinGeometricCombinatoricsMSRIPublicationsVolume,1999MacdonaldPolynomialsandGeometryMARKHAIMANAbstract.Weexplainsomeremarkableconnectionsbetweenthetwo-parametersymmetricpolynomialsdiscoveredin1988byMacdonald,andthegeometryofcertainalgebraicvarieties,notablytheHilbertschemeHilb)ofpointsintheplane,andthevarietyofpairsofcommutingmatrices.Contents1.Introduction2072.SymmetricFunctionsandMacdonaldPolynomials2103.The!Conjecture2184.TheHilbertSchemeand5.FrobeniusSeries2296.TheIdeals7.DiagonalHarmonics2448.TheCommutingVariety250References2521.IntroductionThisarticleisanexplicationofsomeremarkableconnectionsbetweenthetwo-parametersymmetricpolynomialsdiscoveredbyMacdonald[1988]andthegeometryofcertainalgebraicvarieties,notablytheHilbertschemeHilb)ofpointsintheplaneandthevarietyofpairsofcommutingmatrices(\commutingvariety",forshort).Theconjecturesondiagonalharmonicsintro-ducedin[Haiman1994;GarsiaandHaiman1996a]alsorelatetothisgeometricsetting. MathematicsSubjectClassi cation.Primary05-02;Secondary14-02,05E05,13H10,14M05.Keywordsandphrases.Macdonaldpolynomials,Hilbertscheme,commutingvariety,sheafcohomology,Cohen{Macaulay,Gorenstein.SupportedinpartbyNSFMathematicalSciencesgrantDMS-9400934. MACDONALDPOLYNOMIALSANDGEOMETRY209Moregenerally,thegeometryoftheblowupdependsonmodule-theoreticpropertiesofthepowers.Weareledtoextend(1.1)andconjecturethat(1.2)thatis,thepowersofarethesymbolicpowersoftheidealofthecoinci-dencelocus.Infact,weconjecturethatthevariables;:::;xformaregularsequencefortheex;y]-module,forall.Asweshow,thisconjectureim-plies(1.2).Itfurtherimpliesthatthe'sformaregularsequenceon(thatis,onitsstructuresheaf,viewedasasheafoffx;y]-algebras).Assumingthisregular-sequenceconjecture,weareabletogiveaninductivesheaf-cohomologicalargumenttoshowthatisCohen{Macaulay,andthusthe!andMacdonaldpositivityconjecturesfollow.Animportantpointtoremarkonhereisthatthe!conjectureandmanyoftherelatedgeometricconjectureshaveevidentanalogousstatementsinmorethantwosetsofvariablesX;Y;Z;:::.Forthemostpart,theseanalogsfailtohold.However,theaboveconjecturesontheidealsareanexception,asweexpectthemtoholdinanynumberofsetsofvariables(thelastconjecturethenbeingthatanyoneofthesetsofvariablesformsaregularsequence).Ofcoursethereasoningleadingfromtheretothe!conjecturemakesessentialuseofhavingonlytwosets.TheisospectralHilbertschemealsoprovidesthegeometricsettingforthestudyofdiagonalharmonics,thesubjectofaseriesofconjectures[GarsiaandHaiman1996a;Haiman1994].Thespaceofdiagonalharmonicsmaybeiden-ti edwiththequotientringngx;y]bytheidealgeneratedbyallinvariantpolynomialswithzeroconstantterm.Itisconjectured,amongotherthings,thatthedimensionofasavectorspaceis(+1).Furtherconjec-turesin[Haiman1994]describeaspectsofitsstructureasagradedmoduleincombinatorialterms.In[GarsiaandHaiman1996a]weconjecturedacompleteformulaforthedoublygradedcharacterof,intermsofMacdonaldpolyno-mials,andprovedthatthismasterformulaimpliesalltheearliercombinatorialconjectures.Ingeometrictermsisthecoordinateringofthescheme-theoretic berovertheoriginunderthenaturalmap(fromordered-tuplesofpointsintheplanetounordered-tuples.Now,thereisa bersquareHilb The!conjecturehasacquiredaminorhistoryofexcitingbutunsuccessfulideasforsimpleproofs,bytheauthorandothers.Agoodrealitycheckonacontemplatedproofistoaskwheretheargumentbreaksdown|asitmust|inthreesetsofvariables. MACDONALDPOLYNOMIALSANDGEOMETRY211Weworkthroughoutwithsymmetricfunctionsinin nitelymanyindetermi-nates,withcoecientsinthe eldq;t)ofrationalfunctionsoftwovariablesand.Thevariousclassicalbasesoftheringofsymmetricfunc-tionsareindexedbyintegerpartitions,anddenotedasfollows:themonomialsymmetricfunctionsby,thepower-sumsby,theelementarysymmetricfunctionsby,thecompletehomogeneoussymmetricfunctionsby,andtheSchurfunctionsby.Ineachbasis,asrangesoverpartitionsofagiveninteger,weobtainabasisforthesymmetricpolynomialshomogeneousofdegreeThestandardpartialorderingonpartitionsofisthedominanceorder,de- nedbyforall.Thetriangularityoftransitionmatricesbetweencertainbasesofsymmetricfunctionswithrespecttodominanceplaysacrucialroleinthede nitionanddevelopmentofMac-donaldpolynomials,aswellasinthereasoningwewilluselatertodeducetheMacdonaldpositivityconjecturefromthe!conjecture.Wenowturntotheimportantdeviceofplethysticsubstitution.Thefactthatthepower-sumsformabasismeans,equivalently,thattheringofsymmet-ricfunctionscanbeidenti edwiththeringofpolynomialsinthepower-sums.Inparticular,the'smaybespecializedarbitrarilytoelementsofanyalgebraoverthecoecient eld,andthespecializationextendsuniquelytoanalgebrahomomorphismonallsymmetricfunctions.NowletbeaformalLaurentserieswithrationalcoecientsinindetermi-nates,whichmayincludeourparametersand.Wede ne neA]tobetheresultofreplacingeachindeterminate.ExtendingthespecializationnA]toarbitrarysymmetricfunctions,weobtaintheplethysticsubstitutioninto,denotededA].IfAismerelyasumofindeterminates,,thenweseethattA]=pk(a1;a2;:::;a),andhenceforeverywehaveveA]=f(a1;a2;:::;aThisiswhyweviewtheoperationasakindofsubstitution.Similarly,ifhasaseriesexpansionasasumofmonomials,,A]isevaluatedonthesemonomials;forexample,,=(1�t)]=;t;tOurconventionwillbethatinaplethysticexpressionstandsforthesumoftheoriginalindeterminates,sothattX]isthesameassX=(1�t)]=;:::;tx;tx;:::;tandsoforth.Amongthevirtuesofthisnotationisthatthesubstitutionof)forasabovehasanexplicitinverse,namelytheplethysticsubsti-tutionof)forTheonecautionthatmustbeobservedwithplethysticnotationisthatinde-terminatesmustalwaysbetreatedasformalsymbols,neverasvariablenumericquantities.Forinstance,ifishomogeneousofdegreethenitistrue(and MACDONALDPOLYNOMIALSANDGEOMETRY213validforallf;g.Inotherwords,theplethysticsubstitutionofself-adjoint.Macdonaldde neshispolynomialsby rstintroducingaq;t-analogoftheHallinnerproduct,whichinplethysticnotationissimplyf;gq;t Inviewof(2.7),thisde nitionissymmetricinand.Ifandareq;t-dualbases,thenand areHalldual,sotheCauchyidentitygives or X]v[Y]:(2.8)Notethatthenonplethysticexpressionfor ,asin[Macdonald1995],istherathermysteriousproduct where(Asaparticularcaseof(2.8),weseethattheq;t-dualbasistothemonomialsisthebasisoftransformedcompletesymmetricfunctions (denotedin[Macdonald1995]).TheMacdonaldpolynomialsq;t)maybede nedbyrequiringthattheyareorthogonalwithrespecttoq;t,andlowerunitriangularwithrespecttothemonomials,thatis,q;tq;t(2.9)forsomecoecients.Here,however,weshallde nethemdirectlyaseigen-functionsoftheplethysticoperatororX�(1�q)=z] [(2.10)wheretheverticalbarindicateswearetotaketheconstanttermwithrespectBeforefurtherexaminingtheoperatorwede neanimportantquantitythatappearsintheeigenvaluesoftheoperator,andwillturnouttohavegeometricsigni cancelateron.(ThetheoryofMacdonaldpolynomialsisrifewithnumerology.Quantitiessuchasandvariousq;t-hookproductscropupagainandagain;see[GarsiaandHaiman1998;1996a]formanyexamples.Inourgeometriccontext,thesequantitieswillturnouttohavenaturalinterpretations.)Firstrecallthatthediagramofapartitionisthearrayoflatticepointsi;jj(2.11) MACDONALDPOLYNOMIALSANDGEOMETRY215From(2.14),usingtheidentity),weseethatforanyfunction andtherefore,sinceceX�xi(1�q)]= Notethatthesubstitutionofinsidetheplethysmispermissible,sincewearesubstitutingoneindeterminateforanother.RecalltheJacobiformula)=detFromthisweseethatthecoecientofintheSchurfunctionexpansionofanysymmetricfunction)isthecoecientof),where;:::;0).Inparticularthecoecientingivenby(2.15)whereisthecoecientof,so=1.Nowineachsummandabove,theleadingtermindominanceorderisclearly,establishingthetriangularity.Thistermarisesfromtheterm,multipliedbytheterm).Inthe-thsummandtheindicatedsubstitutionsmultiplyitby.Thuswe ndWiththeunderstandingthatiszeroforexceedingthenumberofparts,wereadilyverifythattheaboveexpressionisindependentof�nlasitmustbe,andreducestoq;tCorollary2.3.Theoperatorhasdistincteigenvaluesq;tanditscorrespondingeigenfunctionisalinearcombinationofthemonomialsymmetricfunctionswithnonzerocoecientofDefinition.Macdonaldpolynomialq;t)istheeigenfunctionoftheoperatorq;t MACDONALDPOLYNOMIALSANDGEOMETRY217whereq;tq;tInparticularsinceitisknownthat[Macdonald1995]),isnormalizedsothatitscoecientofNowtheoperatorissymmetricinand,whilet;qq;t).HenceweobtainProposition2.5.Forallwehaveq;tt;qconse-quentlyq;tt;qAsmentionedearlier,thefunctionscanbecharacterizedbycertaintriangu-larityrelations.Proposition2.6.ThetransformedMacdonaldpolynomialssatisfyandareuniquelycharacterizedbytheseconditions(1))X(1�q);q;tq;t(2))X(1�t);q;tq;t(3)Proof.NotethattX(1�t);q;tt�X(1�t�1);q;t]isascalarmulti-pleoff�X;q;t]andthusofq;t).Sincebelongstothespaceq;t,andconjugationreversesthedominanceorder,be-longstoq;t,whichis(2)above.FromthesymmetrygivenbyProposition2.5wethenobtain(1).ThenormalizationfromProposition2.4is(3).Foruniqueness,suppose)isanothersolutionof(1)and(2).Then(1)impliesthattX(1�q)]2Q(q;ttX(1�q)]:andhencethatq;t.Similarly,(2)impliesthatq;tTogetherthesemeanthatisascalarmultipleof,and(3) xesthescalarfactoras1.Corollary2.7.Forallwehaveq;tconsequentlyq;tProof.Oneveri eseasilythat)satis es(1)and(2)ofProposition2.6,andhenceisascalarmultipleof.To xthescalaras1requiresthat.Butthisisknown[Macdonald1995],asitisequivalenttoToconclude,wewillrecovertheorthogonalityofthe'swithrespecttoq;tasinMacdonald'soriginalde nition.Replacing,wearetoshowthatq;t q;t,orequivalentlythatq;t q;t MACDONALDPOLYNOMIALSANDGEOMETRY219Itisknown[Macdonald1995]that1)=(1),thedegreeofthecharacterorthenumberofstandardYoungtableauxofshape.Hence,accordingtoConjecture3.2,wemusthavemult(ch())=(1),sothatwhenweignorethegrading,a ordstheregularrepresentationof,andhencehasdimension!.ThusConjecture3.2impliesConjecture3.1.OneofthechiefthingswewillachieveinthegeometricsettingofSections4and5istoprovetheconverseimplication.Itwillbehelpfultoreformulatetheconjecturesintwoways.The rstistointroduceamoreconvenientnotationfor(3.2).RecallthattheFrobeniusmapfromcharacterstosymmetricfunctionshomogeneousofdegreeisde nedby (3.3)where)isthepartitionwhosepartsarethelengthsofthecyclesofthepermutation,andwheretheindeterminatesarenottobeconfusedwiththecoordinates.Fortheirreduciblecharacterswehavethesymmetricfunctionidentity(),fromwhichfollows,foranycharacter,mult(Now,byanalogytotheHilbertseries,wede netheFrobeniusseriesofadoublygradedrepresentationtobeq;tr;sch(r;sThisgiven,Conjecture3.2takesthesimpleform(3.4)InSection5weextendthenotionofFrobeniusseriestoactionsonmodulesoverageometricregularlocalringwithanequivarianttwo-dimensionaltorusaction,providingthebasictooltolinkConjecture3.2withthegeometry.Thesecondreformulationweneedisofthede nitionofitself|thedef-initionintermsofderivativesissimple,butgeometricallymisleading,andweneedaderivative-freeversion.Thisisgivenbythenextpropositions.Wewillneedthefollowingde nitionhereandlater.Definition.alternationoperatoroverthesymmetricgroupisAltSincethepolynomialsformabasisofallthe-alternatingpolynomialsinnx;y],itmakessensetospeakofthecoecientofinAlt.Indeed,itismerelythecoecientofthemonomial MACDONALDPOLYNOMIALSANDGEOMETRY221(compareCorollary2.7).Proof.IntheproofofProposition3.4therearetwoisomorphismsoffx;y]=Jwith.The rstistheinclusionoffx;y],followedbyprojectionmod,whichisanisomorphismofgradedrepresentations.Thesecondisthe.As-alternatingandhomogeneousofdegrees)),thismapreversesdegreesandtensorscharactersbythesigncharacter.RecallingthattheFrobeniusmapsatis es(),weseethatreversingdegreesandtensoringwiththesigncharacteronyieldsaspacewithFrobeniusseries).CombiningthetwoisomorphismsshowsthisisequaltoRemark:ThealgebraiccorrelateofthissymmetryofisthattheringGorenstein.Moregenerally,foranyhomogeneousidealalx],thequotienttx]=Jis nite-dimensional(asavectorspace)andGorensteinifandonlyifistheidealofdi erentialoperatorsannihilatingsomehomogeneouspolynomial.Proposition3.7.WehavetheidentityProof.Theleft-handsideistheFrobeniusseriesofthesubspaceex]\D.TheGarnirpolynomial)isde nedastheproductoftheVandermondedeterminantsinthe rstvariables,thenextvariables,andsoon.Itisnothardtoseethatthespaceex]\Disspannedbyallderivativesofanditsimagesunderpermutationofthevariables.Thisspacehasbeenwellstudied[BergeronandGarsia1992;DeConciniandProcesi1981;GarsiaandProcesi1992;HottaandSpringer1977;Kraft1981;Springer1978],anditsFrobeniusseries(inonevariable)isknowntobethetransformedHall{LittlewoodpolynomiallX=(1�t�1);t�1].Since),theresultfollows.Itisalsopossibletogiveanelementaryproof(see[GarsiaandHaiman1996b])thatthe!conjectureimplies).Since1)de-terminesthecharacterandthusthedimensionof,onemustofcourseassume!conjectureforthis.Butaswearegoingtoprovethatthe!conjectureimplies,theproofforthe=1specializationwouldberedundanthere.4.TheHilbertSchemeandLet=Speccx;y]betheaneplaneover.Byde nition,closedsub-schemescorrespondtoidealssx;y].Thesubschemeis0dimensional,oflength,iffx;yhasdimensionasavectorspace.Thegenericexampleofsuchasubschemeisasetofpointsin,withthere-ducedsubschemestructure.Inthiscaseisaradicalidealanddx;ycanbeidenti edwiththeringofcomplex-valuedfunctionsonthe niteset,whichisclearly-dimensional. MACDONALDPOLYNOMIALSANDGEOMETRY223 atand niteofdegreeover,thereisauniquemorphismHilbsuchthatisthe berproductHilb.Theuniversalproperty,asusual,characterizesHilb)andtheuniversalfamilyuptocanonicalisomorphism.Thefollowingresult,whichisuniquetoandfailsinmorethantwodimen-sions,isoneofthetruemiraclesofthemathematicaluniverse.Theorem4.1[Fogarty1968].TheHilbertschemeHilbisirreducibleandnonsingularofdimensionGivenHilb),theoperatorsandofmultiplicationbyandrespectively,arecommutingendomorphismsofthevectorspaceex;yS;PwhichpreservethedirectfactorsS;P.ForandarenilpotentonS;P,sothatS;Pisthecharacteristicsubspaceassociatedwiththejointeigenvalue()of(X;Y).Thusthepoints(;:::;)of,eachincludedwithitsmultiplicityin,arethejointspectrumof(X;Y).Inparticular,thepolarizedpowersumsh;ksatisfytheidentityh;k)=tr(4.4)Notethattracemapassociatedtothe nitemorphismHilb)sendstheregularfunction(comingfrom)totr,sothelatterisaregularfunctiononHilbNowthesymmetricgroupactsonthevariety=Speccx1;y1;:::;xofordered-tuplesofpointsintheplane,andwemayidentifySpecoftheringofinvariantsasthevarietyofunordered-tuples,or-elementmultisets,=Speccx;y]Sn.ByatheoremofWeyl[1946],thepolarizedpower-sumsh;kgeneratethisringofinvariants.Itfollowsfromthisandtheprecedingparagraphthatthemap:Hilbsendingtothemultisetofpointsofthecorrespondingsubscheme,withtheirmultiplicitiesin,isamorphism.Itextendstoamorphism^:Hilb,withbeingtherestrictionto^).SinceHilb)isaprojectivevariety,isaprojectivemorphism,calledtheChowmorphism.Notethatrestrictstoanisomorphismoftheopensetswherethepointsaredistinct,andsoisbirational. MACDONALDPOLYNOMIALSANDGEOMETRY225inducedby(4.6).Proof.Sinceisreduced,asectionofbelongstotheidealsheafofifandonlyif,regardedasaregularfunctionon,itvanishesonanydenseopensubset.Henceitisenoughtocheckthepropositiongenerically,overthelocuswhereconsistsofdistinctpoints.Supposeisasectionthatvanishes.ThensodoandAlt,foranysection.Butsinceitisalternating,AltalsovanishesatanypointI;P;:::;Pforwhichtwoofthepointscoincide.Henceitvanishesonandthusonallof,whichmeansitiszeroin.Theconditionthatbelongstothekernelof(4.7)ispreciselythatAlt=0forallConversely,supposedoesnotvanishon,andchooseapointI;P;:::;Poutsidethevanishinglocus),withthealldistinct.Aftermultiplyingbyasuitablewecanarrangethatvanishesatallpointsoforbitof,except.ThenAltdoesnotvanishat,soAlt=0.Nowconsiderthesituationoveroneofthedistinguishedpoints.The ber)ofthevectorbundleex;y,andthatofofx;y]=�I(x1;y1)++I(xn;yn):Noticethateveryalternatingpolynomialasin(3.1)vanishesmoduloexceptfor.Inotherwords,the1-dimensionalspace)isspannedbytheimageof,andthelinearfunctionalAlt:,composedwiththenaturalprojectionnx;y]!B n(I),isjustthemapsendingtothecoecientofinAlt.TogetherwithProposition3.3,thisprovesthenextresult:Proposition4.3.Theidealofpolynomialsthatasdi erentialoperatorsannihilateisthekernelofthemapmapx;y]!B n(I)!(B n)(I) VnB(I)inducedbythemap(4.7).ComparingthiswithProposition4.2wemightwellexpectthe beroftheidealsheafofovertobe,andthescheme-theoretic berofovertobeSpec.Wecannotyetdrawthisconclusion,however,sincethemapisonlyasheafhomomorphism,notnecessarilyahomomorphismofvectorbundles,andthusthe berofitskernelatneednotequalthekernelofits ber.Whatwecansayisisthatthe berofthekernelfactorsthroughthekernelofthe ber,whichgivesthefollowingresult.Proposition4.4.Theimageoftheidealcontainstheimageofthe bermapwhereisthe beroftheidealsheaf MACDONALDPOLYNOMIALSANDGEOMETRY227ofidealswhicharestableandforwhichhx;y]=JhasagivencharacterisclosedinHilb,soforeveryeryx;y]=Ja ordstheregularrepresentationofNowthereisanaturalmapfromtoHilb),whichmaybedescribedasfollows.Sinceex;y]=Ja ordstheregularrepresentation,itsonlyinvariantsaretheconstants.Thismeansthatmodulowehaveh;kh;ksomeconstanth;k,forallh;k.ByWeyl'stheorem,the-invariantsinnx;y],fortheactionofthrough,aregeneratedbyandthepolarizedpower-sumsh;k;:::;x).Modulo,thelatterarecongruenttoh;k,sotheinvariantsofofx;y]=Jaregeneratedbyand.Inotherwords,,x1;y1]=(J\C[x1;y1])=((x;y]=J)Sn�1.Itfollowsthattx1;y1]belongstoHilb),afteridentifyingwithx;yTheaboveconstructionde nesthemapHilb),whichalsohasthefollowgeometricdescription.Letbetheuniversalfamilyover.Ithasanatural-action,inwhichevery bera ordstheregularrepresentation.ThenW=Sis atand niteofdegreeover,andbytheabovecalculationcanbeidenti edwithafamilyofsubschemesof.ThemapHilb)istheonegivenbytheuniversalpropertyofHilb),forthefamilyW=SIftheequivalentconditionsofTheorem4.5hold,thenisa atfamilyofsubschemesof(,ofdegree!overHilb).TheuniversalpropertyofHilbthenyieldsamapHilbHilb,whoseimagelies.Generically,forsetsdistinctpointsinandtheircorrespondingregularorbitsin(,thesetwomapsaremutuallyinverse.Hence,assuming!conjecture,theyareinverseeverywhere,andthenaturalmapHilb)isanisomorphism.Conversely,ifHilb)isanisomorphism,thenitsinversede nesafamilyHilbthatis atoverHilb)andcoincideswithgenerically.Butthenisreducedandhenceequalto,sois at,andthe!conjectureholds.ItwouldevensucetoshowthatHilb)isinjective.Foritisproperandbirational,hencesurjective,andabijectivemorphismontoanonsingularvariety(oranynormalvariety)isanisomorphism,byZariski'stheorem.Tosummarize,wehaveProposition4.6.TheequivalentconditionsofTheorem4.5,forallpartitionsarealsoequivalentto(4)ThenaturalmapHilbisinjective(5)ThismapisanisomorphismProposition4.6impliesthatthe!conjectureisequivalenttoaninstanceofaconjectureofNakamura[1996],citedin[Reid1997],connectedwiththeMcKaycorrespondence,aswenowexplain.Letbea nitesubgroupof),where.Forany nitelineargroupactiononV=G=SpecisCohen{Macaulay,anditscanonical MACDONALDPOLYNOMIALSANDGEOMETRY2295.FrobeniusSeriesLetdenotethetwodimensionalalgebraictorusgroup,i.e.,themultiplicativegroup.Itactsalgebraicallyonbytherulet;qx;y)=(tx;qyfor(t;qx;yTheuniversalconstructionoftheHilbertschemeisfunctorialwithrespecttoautomorphismsof,soalsoactsonHilb).Thisactionsendsasub-schemeto(t;q,soonidealssx;y]itisgivenbythepullbackthroughtheringendomorphism(t;q),thatis,t;qx=t;y=qSimilarlyactsonthetheschemesand,andthevariousmapsbetweentheseschemesare-equivariant.Observethatapolynomial)isdoublyhomogeneousofdegree(r;s)ifandonlyifitisaneigenfunctionfortheactionwitheigenvalue.HencethebivariateHilbertseriesofa nite-dimensionaldoublygradedspaceofpolynomi-alsissimplythecharacterofthe-action,asafunctionofand.SimilarconsiderationsapplytotheFrobeniusserieswhenacts,asitisjustagener-atingfunctionfortheHilbertseriesofthethevarious-isotypicsubspaces.Inthegeometricsituationwehavetodealwithactionsonlocalringsandsheavesofmodulesthatmaybeneithergradednor nite-dimensional.Forthisweneedrecoursetoa\formal"Hilbertseriesthatcapturesthenaivecharacterinthe nitedimensionalcase,andextendstothemoregeneralsetting.Definition.Letbethelocalringofaschemeof nitetypeoveraclosedpointwithmaximalideal.Assumeisnonsingularatandthatisanisolated xedpointforanalgebraicactionof.Leta nitelygenerated-modulewithanequivariantaction.ThentheformalHilbertseriesisgivenbyq;ttr(Tor det(witht;q(5.1)Toseethatthede nitionissound,observe rstthatthemodulesTorandthecotangentspaceare nitedimensionalrepresentationsof,sothetraceanddeterminantintheformulamakesense.Sinceisregular,thesyzygytheoremimpliesthatthesuminthenumeratoris nite.Sinceisanisolated xedpoint,theactiononthecotangentspacedoesnothave1asaneigenvalue,sothedenominatordoesnotvanishidentically,butisaproductoffactorsoftheform(1)withr;snotbothzero.Notethatq;t)isarationalfunctionofandProposition5.1.(1)isanexactsequencethen MACDONALDPOLYNOMIALSANDGEOMETRY231Proposition5.3.TheformalFrobeniusserieshasthefollowingproperties(1)Ifthecharacterhasmultiplicityzerointhen=0.(2)Letbea nite-dimensionaldoublygradedmoduleThentensoringwehavewhereistheinternalproductofsym-metricfunctions(3)Supposeisan-equivariant-modulewhereisa nite-algebrawithanactionSuppose;:::;xisan-regularsequencethatactsontheelementst;qandthatactsontheseelementsbypermutingthemThenq;ttX(1�t);q;tProof.(1)LetbetheReynoldsoperator,thecentralidempotentinthegroupalgebraofthatactsineachrepresentationastheprojectionontheisotypiccomponentwithcharacter.Ifisa nitelygenerated-modulewithactionthenithasacanonicalisotypicdecompositionandeachisalsoa nitelygeneratedmodulewithaction.Thedecompositionmeansthattheidentityfunctorisnaturallyisomorphictothedirectsumofthefunctors.Inparticularthefunctorsareexact,andcommutewithTor,sincetheactiondoes.Now,comparingthede nitionsoftheformalHilbertandFrobeniusseries,andusingthefactthat,weseethat (1)ByNakayama'sLemma,if=0,then=0.(2)Recallthattheinternalproductisde nedby,andsatis estheidentity)=(forallcharacters.Fromthisitisclearthat(2)holdsinthecasewherehas nitelength,byProposition5.2.ForthegeneralcasewehaveTorTor),whichreducestheidentitytothecorrespondingonewiththe nite-lengthmodulesTor)inplaceof(3)Letdenotethespacespannedbyelementsoftheregularsequenceasanmoduleita ordsthepermutationrepresentationoftensoredbytheone-dimensionalrepresentationofwithcharacter.Sinceisareg-ularsequencewehavethefollowingexactsequence,theKoszulresolutionof!!(5.2)wherethetensorproductsareover.ThemapsintheKoszulcomplexareequivariantifwetaketheactionontobemultiplicationby MACDONALDPOLYNOMIALSANDGEOMETRY233Viathemap,thecoordinates;:::;xon(de neglobalregularfunctionsonandthuselementsofthelocalringLemma5.5.isCohen{Macaulayatthen;:::;yisaregularse-quenceProof.Wearetoshowthat;:::;ycutoutacompleteintersectionin.Sincedim(wemustshowthatdim.Now)consistsofthosepoints(I;P;:::;Pforwhichallthepointslieonthe-axis,whichisthesameassayingthat)liesonthe-axis.EllingsrudandStromme[EllingsrudandStrmme1987],studyingthecoho-mologyofHilb),constructedacelldecompositionthatcontainswithinitacelldecompositionofthesubsetHilb)consistingofpointsforwhich)liesonthe-axis.EverycellintheirdecompositionofhasdimensionSincethelocusis niteoveritsdimensionisaswell.Thelocalringisnotonly niteover,itisfree,andbytheproofofTheorem4.5,whereisthemaximalidealof.ByNakayama'slemma,isfreelygeneratedasanmodulebyanysubspacecomplementarytotheideal.Wemaychoosetobestable(infact,wecanchoosetobethespaceofderivatives),andthenwillhavethesameFrobeniusseriesas.Thisshowsthatq;tq;tq;t(5.3)Incidentally,thequantityq;t)hasatantalizingexplicitvalue.In[Haiman1998]weconstructedanexplicitsystemofdoublyhomogeneousregularlocalparametersfor.Fromtheirdegreesoneobtainsq;t wherethearms)andlegs)areasin(2.16).Afterthereplacementthe rstfactorinthedenominatorisexactlythenormalizingfactorforthede nitionofMacdonald'sintegralforms.ThiscoincidenceisatypicalexampleofthelinksbetweenthenumerologyassociatedwithMacdonaldpolynomialsandgeometricallysigni cantquantitiesattachedtotheHilbertscheme.Nowconsiderthering).Justasisgeneratedasanmodulebyanysubspacerepresenting)isgenerated(nolongerfreely,however)byrepresentativesof).Thislastspacecanbeidenti edwiththecomponentof,orof,homogeneousofdegreezeroin.AsmentionedintheproofofProposition3.7,thisspaceiswell-understood,anditsFrobeniusseriesiswhereisaHall{Littlewoodpolynomialand)denotestheclassicalone-variableKostkacoecient.Inparticular,since)=0unless,the MACDONALDPOLYNOMIALSANDGEOMETRY235Proof.Theproofisbyinductionon.Notethatfor=1and=2wetriviallyhave,andwehavetheremainingcasesthrough1byinduction.Firstconsiderthesituationlocallyatapointtx;y]wherethe(arenotallequal.Withoutlossofgeneralitywecanassumethatnoneof;:::;)isequaltoanyof(;:::;).Inthelocalring,thedi erencesandareinvertiblewheneverisinthe rstgroupandinthesecond.Hencereduceslocallytotheproductoftheidealsinthe rstindicesandthelastseparately.Lessobvious,butstilltrue,isthat,andhence,decomposessimilarly.Toseethis,letbeageneratorof;:::;x;:::;xalternatinginthe rstandlastindices,i.e.,thesubgroupactsonbythesigncharacter.Letbeanypolynomialthatbelongstothelocalizationateverypointintheorbitof,butdoesnotvanish.Now=Altbelongsto.Thetermsinthealternationcorrespondingtoelementsthatdonotstabilizebelongto,byconstructionofSinceisalreadyalternatingwithrespecttothestabilizerof,theremainingtermssumto,andthesumhereisinvertiblein.Thisshows,andso.Thereverseinclusionisclear.Usingtheinductionhypothesis,weconcludethatlocallyoutsidethelocuswhereallpointscoincide.Nowsinceandbelongtheidealof,ourhypothesisimpliesdepth2,andthelocalcohomologyexactsequenceforthesheafofidealsassociatedtogives)=0(6.3)where.Thus).Thelatteristheidealofallpolynomialswhoserestrictionstobelonglocallyto,sowehaveshown.Aswehadtobeginwith,wemusthaveThereisofcoursenothingspecialaboutthechoiceofandintheaboveProposition;it'sjustanexplicitwaytoguaranteethatdepthThiswouldalsofollowifdepth1,whichmeanstheidealofcontainsanelementthatisanon-zero-divisormodulo.Note,bytheway,thattheproofofProposition6.2worksequallywellwithmorethantwosetsofvariables.Someexplorationswehavedoneforsmallvaluesofusingthecomputeralge-brasystemMacaulay[BayerandStillman1989]suggestthefollowingconjecture.Conjecture6.3.denotestheidealgeneratedbythealternantsinnx;y;:::;foranynumberofsetsofvariablesisthelocuswhereallthepoints;:::;z),(;:::;zcoincidethenisamaximal-regularsequenceintheidealofforallparticular,depth MACDONALDPOLYNOMIALSANDGEOMETRY237Lemma6.6.LetI;P;:::;PbeapointofLetthedistinctpoints;:::;P;:::;Qwithmultiplicities;:::;rTheninthereisaneigborhoodofisomorphictoanopensetintheproductProof.Withoutlossofgeneralitywecanassume,andsoon.Forourneighborhoodofwecantakethepreimageinoftheopensetofpointswheretheonlycoincidencesthatoccurhavei;jwithinoneoftheseconsecutiveblocks.ThentheresultisclearfromProposition6.4,togetherwiththeproductdecomposition,validon,oftheideal;:::;r;:::;rfromtheproofofProposition6.2.Forsomedimensionargumentsbelowwewillneedthefollowingresults.Lemma6.7.ThereisadecompositionofHilbintolocallyclosedanecellssuchthateverypointofcontainsintheclosureofitsorbitdimwhereisthenumberofpartsofLemma6.8.Thereisadecompositionofthezero- ber(0)HilbintolocallyclosedanecellssuchthateverypointofcontainsintheclosureofitsorbitdimProof.See[EllingsrudandStrmme1987].Lemma6.9.LetbetheclosedlocusofidealsHilbforwhichsomepointofhasmultiplicityatleastThenhascodimensionhasonlyoneirreduciblecomponentofmaximaldimensionProof.Itisknown[Briancon1977]thatthezero- ber(0)isirre-ducibleofdimension1.Thelocuswhereallthepointscoincideisjusttheproductof(forthechoiceoforigin)by,soitisirreducibleofdimension+1.ByLemma6.6,itfollowsthatthe(locallyclosed)locuswherethemultiplicitiesare;:::;rhasdimension+1)=andcodimension.Ifonemultiplicityisatleast,thiscodimensionisatleast1,withequalityonlyformultiplicities;:::;1.AgainbyLemma6.6,thelocusinwhere,andtheotherpointsaredistinctfromandeachother,isirreducible.ItsurjectsonthelocusinHilb)wherethemultiplicitiesare;:::;1,sothelatterisirreducibleaswell.AsasteptowardtheCohen{MacaulaypropertyweneednormalityresultsforandDefinition.AnidealHilb)iscurvilinearifthelocalringsS;Phaveembeddingdimension1,i.e.,theirmaximalidealsareprincipal.Thisisequivalentto)beingasubschemeofasmoothcurveinwhencethename. MACDONALDPOLYNOMIALSANDGEOMETRY239Proof.Recallthatanidealinanormaldomainissaidtobeintegrallyclosedifeveryelementsatisfying(6.6)alreadybelongsto.TheaboveconditionforisequivalenttosayingthatbelongstotheintegralclosureofftJ]innt],soalltheidealsareintegrallyclosedifandonlyifftJ]isnormal.Forourand,Conjecture6.3implies,byProposition6.2.Itiswell-knownthatthepowersofanidealgeneratedbyaregularsequenceareintegrallyclosed,anditisobviousthatanintersectionofintegrallyclosedidealsisintegrallyclosed,soisintegrallyclosed.ThisshowsthatttJ]isnormal,so=ProjjtJ]is,byde nition,arith-meticallynormalinthegivenprojectiveembedding.Inparticularitisnormal.Nowwecometothegeometricconstructionthatsuppliestheinductivemachin-ery.Definition.nestedHilbertschemeisthesubvarietyofpairsHilbHilbProposition6.13[Cheah1998;Tikhomirov1992].ThenestedHilbertschemeisirreducibleofdimensionandnonsingularIf()isapointofthenthecorrespondingsubschemeisasubschemeof),sothemultiset)contains)alongwithoneadditionalpoint,orelsewiththemultiplicityofoneoftheoriginalpointsincreasedby1.Soifthespectrumofis(;:::;)thenthatofis(;:::;)foradistinguishedpointNowboththeinvariantsh;k;:::;x)andtheinvari-antsh;k;:::;x)areregularfunctionson,hencesoare;:::;x;:::;x)andsimilarly.Thismeanswehaveamor-phism=Speccxn;yn];mappingapairtoitsdistinguishedpoint.Ofcourse(),andbysuitablechoiceof,given,thedistinguishedpointcanbeanypointof).HencethecombinedmapHilb)factorsHilb)throughasurjectivemorphism(6.7)totheuniversalschemeoverHilb).Wherethepointsaredistinct,thismapislocallyanisomorphism,soitisbirational.TheabovemapandthemapHilb)areprojective.Infact,givenisdeterminedbyitssinglegeneratormod,soisa MACDONALDPOLYNOMIALSANDGEOMETRY241eachpointbyequations(6.5).Onthelocuswhereistheidealofareducedsubscheme;:::;,the rstequation�mustbethepolynomial),sotheparametersaretheelementarysymmetricfunctions).Fromthesecondequation,arethecoecientsoftheinterpolatingpolynomial)thatsatis es)whenthe'sarealldistinct.Itiswell-knownthattheelementarysymmetricfunctionssatisfy^^^^,where)istheVandermondedeterminant.Inparticular,sincethe)and)areglobalregularfunctionsonHilband)isinvariant,^^^^^^)makessenseasarational-formonHilbMoreover,theequations)saythatthevector(;:::;y)istheproductof(;:::;a)bytheVandermondematrix,so^^^^),andhence^^^^Inparticular,therational2-formisregularandhasnozeroesonButisinvariantundertheactionof,soitfollowsthatisregularandnowherevanishingonevery.Sincewehavealreadyseenthatthecomplementofhascodimensiongreaterthan1,itfollowsthatisregulareverywhereandvanishesnowhere,whichshowsthatLemma6.17.Thecanonicalsheafofregular-formsonisisomor-phictowhereisthelinebundlede nedbytheexactsequence0(6.8)inducedonthetautologicalbundlesoverbythecontainmentProof.Wearetoshowthatthelinebundleistrivial,anditsucestodothisonanopensetwhosecomplementhascodimension2.ByLemma6.15,wecanusetheopensetwhereiscurvilinearandthemaprestrictstoanisomorphism,whichmeanswecanverifyitonthecurvilinearlocusinByLemma6.16anddualityforthe nite, atmorphismHilb),wehave,whereisthecanonicalsheafontheHilbertscheme.Sowehavetoshowthatasa-module,sinceNowlet'sexamineasasubbundleofonthecurvilinearlocusin.Toavoidconfusion,sincewealreadyhaveregularfunctionsx;y,wewriteforthevariablesof,sothe berofat(I;P)issx0;y0]=I(x0;y0).Then MACDONALDPOLYNOMIALSANDGEOMETRY243isaproperclosedsubvarietyoftheirreduciblevariety.Sinceis atoveritcannothaveacomponentcontainedinthecoincidencelocus,sothenoncoincidencelocusisdensein.Thisshowsisirreducibleandthemorphismisbirational.wehave,bypullbackfrom,thetwotautologicalbundlesand.Setk;l.ByLemma6.17thecanonicalsheafon1)inthisnotation.ByLemmas6.16and6.18therelativecanonicalsheafofover,whichispulledbackfromthatofoverHilb),is0).Hencethecanonicalsheaf1).Inparticular,itisapullbackfromNowwearegoingtoprovethatforthederivedfunctorofthepushforwardwehave.Since1)thisalsoproves1).Bydualityfortheprojectivemorphismweconcludethatthesheaf1)isthedualizingcomplexon,soisCohen{Macaulay.(ThisalsoshowsisGorensteinwith1),sowecouldhavemadeLemma6.18partoftheinduction.)Sinceisproperandbirational,andisnormalbyLemma6.12,wehave.Wehavetoprovethat=0forall0.Nowthe bersarealso bersofthemap,andthusthe berdimensionsareboundedby,byLemma6.14.Inparticular,sinceweareassuming4,thisimpliesdn2(exerciseforthereader).ItfollowsthatFor2weusethefollowinglemma.Lemma6.19.Letbeamorphismandlet;:::;xbeglobalregularfunctionsonandsoalsoonSupposethatisan-regularsequenceateverypointofbothinandinLetThenimpliesforProof.Thehypothesisandconclusionarebothlocalwithrespectto,sowecanassumeisane.Thenwearetoshow)=0for01.Let)(inbothand,byabuseofnotation).Theregularsequenceconditionimplies)=0forik,onbothand.Thehypothesisimpliesthat).Thenfromthelocalcohomologyexactsequences!!and!!weobtain)=0,for0Conjecture6.1impliesthat(;:::;x)isaregularsequenceonntJ],andhence,byProposition6.4,on.ToapplytheLemmausingthis MACDONALDPOLYNOMIALSANDGEOMETRY245InparticularthediagonalharmonicsaresolutionsoftheLaplaceequationsotheyareharmonicpolynomialsintheclassicalsense.ItiseasytoseethatthepolynomialsofSection3arediagonalharmonics,andhencethespacesaresubspacesofLettx;y]betheidealgeneratedbythepolarizedpowersumsh;k0.Wemaydescribeinderivative-freetermsasfollows.Proposition7.1[Haiman1994].Thequotientringgx;y]=InisisomorphicasadoublygradedmoduletoForgeometricpurposeswewillworkinsteadwiththeringgx;y]=In;Inbeingagaingeneratedbythepolarizedpowersums,whichofcoursehasthesameFrobeniusseriesassx;y]=InorDn.ComputationshavesuggestedaseriesofsurprisingcombinatorialconjecturesconcerningtheHilbertandFrobeniusseriesoftherings.Asthesearetreatedatlengthin[Haiman1994],weherementiononlythreethataresimpletostate.Conjecture7.2.Thedimensionofasavectorspace1),equalto+1)Moreoverq;q)=(1+Conjecture7.3.Thespecializationenumeratesspanningtreesonthevertexset;:::;neachcountedwithweightwhereisthenumberofinversionsininversionisapairijforwhichvertexliesontheuniquepathinfromvertextovertexConjecture7.4.Asanmoduleisisomorphictothesigncharactertensoredwiththepermutationrepresentationofonthe niteAbeliangroup+1)whereactsbypermutingthefactors+1);:::;isthesubgroupof-invariantelementsTheaboveconjecturesarecorollariestoapairofmoregeneralconjecturesgiv-ingtheFrobeniusseriesspecializations1)and).In[GarsiaandHaiman1996a]weshowedthatthesespecializationsareinturncorollariestothefollowingmasterformula.Conjecture7.5.TheFrobeniusseriesofisgivenbyq;tq;tq;tq;t (7.1) MACDONALDPOLYNOMIALSANDGEOMETRY247Asascheme niteoverHilb),wehave=Spec,andsinceweareassumingthe!conjecture,islocallyfreeofrank!,thatis,itisthesheafofsectionsofavectorbundle,theimageofthehomomorphism(4.7).Then)=Specasaschemeover(0).Hencewecanidentifytheglobalsections)withProposition7.7[Haiman1998].Theschemetheoreticzero ber(0)intheHilbertschemeisreducedCohen{Macaulayandhasa-equivariantresolutionbylocallyfreesheavesonHilb!!(7.2)whereisasummandofthetautologicalbundledenotethetrivialbundletensoredbythe-dimensionalrepresentationofwithcharacterrespectivelyToproceedfurtherwewillneedtoassumethevalidityofthefollowingconjecture.Conjecture7.8.Forallwehave)=0,andfor=0,thecanonicalmapmapx01;y01;:::;x)(7.3)issurjectiveToclarify,recallthattx0;y0]=I,whereex0;y0]reallymeansthetrivialbundleex0;y0],andweuseprimestoavoidconfusionwiththevari-ables.Themapin(7.3)isinducedbythemapssx0;y0]!B,withtheidenti cationssx0;y0] k=C[x01;y01;:::;x]anddx0;y0] k)=C[x0;y0] H0(Xn;O)=C[x0;y0;x;y].Notethattx;y]becausethemapisproperandbirational,and(isobviouslynormal.Notealsothattheexteriorpowerisasummandof,sotheconjectureextendstotensorsofexteriorpowersaswell.WedonotusethefullstrengthofConjecture7.8below,onlythevanishingpropertyforbundlesandthesurjectivitypropertyforandProposition7.9.AssumethatConjecture7.8holdsThenthecanonicalho-momorphismisanisomorphismProof.Sinceweareassumingis atoverHilb),thepullbackfunctoronsheavesisexact.Applyingtotheresolution(7.2)wegetaresolution!!(7.4) MACDONALDPOLYNOMIALSANDGEOMETRY249Thisleavesusonlytoconsiderthe rstmap(7.6).Thesummandisde nedtobethekernelofthetracemap.Henceif)representsasectionin),thenisthezerosectionin).Nowforeachthereisahomomorphismofsheavesofalgebrasmapping()to().Thisissobecause,andthehomomorphismcorrespondstotheprojectiononthe-thfactor.Applyingthesehomomorphismstothesumabove,weseethat)=0innx;y];forall.By(7.7)thisimpliesthatforeach.Summingoverandusing(7.7)againwe ndthatThemapX;B)ismultiplicationin,whichsends)to).Modulo,thetracemapisthesameasevaluationat()=(00),againby(7.7).Hencetheimageof)in)isgivenmodulo),andsincethelatterbelongstotheproofiscomplete.Theorem7.10.AssumingtheconjectureandConjecture7.8holdtheFrobe-niusseriesofisgivenbythemasterformula(7.1)inConjecture7.5.Proof.In[Haiman1998]wederivedanAtiyah{BotttypeLefschetzformula-equivariantvectorbundleson,usingtheresolution(7.2)andexplicitlocalparametersforHilb)atthe- xedpoints.Thisformulatakestheformq;tq;tq;tq;t (7.8)Actually,thisformulawasderivedforHilbertseries,butwhenisabundlemodulesitgeneralizesimmediatelytoFrobeniusseries.Theq;t-Catalannumbersstudiedin[Haiman1998]correspondtothelinebundle(1).Ifthe!conjectureandConjecture(7.8)hold,thenbyProposition7.9,theFrobeniusseriesofisequalto,where.Moreover,usingtheresolution(7.4),weseethatConjecture7.5implies)=0for0,orequivalently,sinceis nite,)=0.ThereforetheEulercharacteristicontheleft-handsideof(7.8)reducestoq;t MACDONALDPOLYNOMIALSANDGEOMETRY251kernelisanidealHilb).Theninducesanisomorphismmx;y,underwhichtheunitcoordinatebasis;:::;ecorrespondstoabasis1;:::;v;vx;y.Itiseasytoseethatthesetwoconstructionsaremutuallyinverseandsode neasmooth brationHilbwith ber,whereisthestabilizerofparametrizesorderedbasesofwhose rstvectorisgiven).Inparticularthisshowsthatnonsingular.Definition.isospectralcommutingvarietyisthevarietyoftuplesX;Y;suchthat(;:::;)isthejointspectrumofandinsomeorder.Inotherwords,wehavetheidentitydet((1+(8.1)wherer;sareindeterminates.Notethatifandcommutethereisasuchthatandarebothuppertriangular,byLie'stheorem.Inparticulartheyhaveajointspectrumasde nedabove,givenbythediagonalentriesofthetriangularform.Notealsothatthereisanactionof,permutingthepairs(Underthisactionwehave,sincetheinvariantsh;k)areequaltotrandsoreducetofunctionsonLetdenotetheopensubsetoflyingover.Fromthede nitionoftheisospectralHilbertschemeitfollowsimmediatelythatwehave(set-theoretically)a bersquare������HilbSincethebottomarrowisasmoothmorphism,soisthetoparrowinthescheme-theoretic bersquare.Hencethescheme-theoretic berproductisreducedandthereforeequaltotheset-theoretic berproduct.ThisprovesProposition8.1.TheopensetisCohen{MacaulayandhenceGorensteinifandonlyifConjecture8.2.TheisospectralcommutingvarietyisGorensteinNotethatthisimpliestheconjecturethatthecommutingvarietyisCohen{Macaulay,aswellasthe!conjecture.Weshouldpointoutherethattheidealofiscertainlygeneratedbytheidealof(conjecturally)togetherwithequations(8.1).Thisfailsevenfor=2. MACDONALDPOLYNOMIALSANDGEOMETRY253[Grothendieck1961]A.Grothendieck,\Techniquesdeconstructionettheord'existenceengeometriealgebrique,IV:LesschemasdeHilbert",pp.249{276(exposeno.221)ineminaireBourbaki1960/1961(exposes205{222),IHP,Paris,1961.ReprintedbyBenjamin,NewYork,1966,andSoc.Math.France,Paris,1995.[Haiman1994]M.D.Haiman,\Conjecturesonthequotientringbydiagonalinvari-ants",J.AlgebraicCombin.:1(1994),17{76.[Haiman1998]M.Haiman,\t;q-CatalannumbersandtheHilbertscheme",DiscreteMath.:1-3(1998),201{224.[HottaandSpringer1977]R.HottaandT.A.Springer,\AspecializationtheoremforcertainWeylgrouprepresentationsandanapplicationtotheGreenpolynomialsofunitarygroups",Invent.Math.:2(1977),113{127.[Iarrobino1972]A.Iarrobino,\Reducibilityofthefamiliesof0-dimensionalschemesonavariety",Invent.Math.(1972),72{77.[KirillovandNoumi1998]A.N.KirillovandM.Noumi,\AneHeckealgebrasandraisingoperatorsforMacdonaldpolynomials",DukeMath.J.:1(1998),1{39.[Knop1997]F.Knop,\IntegralityoftwovariableKostkafunctions",J.ReineAngew.Math.(1997),177{189.[Kraft1981]H.Kraft,\ConjugacyclassesandWeylgrouprepresentations",pp.191{205inYoungtableauxandSchurfunctionsinalgebraandgeometry(Torun,Poland,1980),Asterisque,Soc.Math.France,Paris,1981.[Macdonald1988]I.G.Macdonald,\Anewclassofsymmetricfunctions",pp.131{171ActesdueminaireLotharingien,I.R.M.A.Publ.372/S{20,Strasbourg,1988.[Macdonald1995]I.G.Macdonald,SymmetricfunctionsandHallpolynomials,2nded.,OxfordUniv.Press,1995.[MotzkinandTaussky1952]T.S.MotzkinandO.Taussky,\PairsofmatriceswithpropertyL",Trans.Amer.Math.Soc.(1952),108{114.[Nakamura1996]I.Nakamura,\Simplesingularities,McKaycorrespondence,andHilbertschemesof-orbits",preprint,HokkaidoUniversity,1996.[Reid1997]M.Reid,\McKaycorrespondence",preprint,1997.Availableathttp://xxx.lanl.gov/abs/math.AG/9702016.[Richardson1979]R.W.Richardson,\CommutingvarietiesofsemisimpleLiealgebrasandalgebraicgroups",CompositioMath.:3(1979),311{327.[Sahi1996]S.Sahi,\Interpolation,integrality,andageneralizationofMacdonald'spolynomials",Internat.Math.Res.Notices(1996),457{471.[Springer1978]T.A.Springer,\AconstructionofrepresentationsofWeylgroups",Invent.Math.:3(1978),279{293.[Tikhomirov1992]A.S.Tikhomirov,\OnHilbertschemesand agvarietiesofpointsonalgebraicsurfaces",preprint,1992.[Weyl1946]H.Weyl,Theclassicalgroups:theirinvariantsandrepresentations,2nded.,PrincetonUniversityPress,Princeton,NJ,1946. NewPerspectivesinGeometricCombinatoricsMSRIPublicationsVolume,1999EnumerationofMatchings:ProblemsandProgressJAMESPROPPDedicatedtothememoryofDavidKlarner(1940{1999)Abstract.Thisdocumentisbuiltaroundalistofthirty-twoproblemsinenumerationofmatchings,the rsttwentyofwhichwerepresentedinalectureatMSRIinthefallof1996.Ibeginwithacapsulehistoryofthetopicofenumerationofmatchings.Thetwentyoriginalproblems,withcommentary,comprisethebulkofthearticle.Igiveanaccountoftheprogressthathasbeenmadeontheseproblemsasofthiswriting,andincludepointerstoboththeprintedandon-lineliterature;roughlyhalfoftheoriginaltwentyproblemsweresolvedbyparticipantsintheMSRIWorkshoponCombinatorics,theirstudents,andothers,between1996and1999.Thearticleconcludeswithadozennewopenproblems.1.IntroductionHowmanyperfectmatchingsdoesagivengraphhave?Thatis,inhowmanywayscanonechooseasubsetoftheedgesofsothateachvertexofbelongstooneandonlyonechosenedge?(SeeFigure1(a)foranexampleofaperfectmatchingofagraph.)Forgeneralgraphs,itiscomputationallyhardtoobtaintheanswer[Valiant1979],andevenwhenwehavetheanswer,itisnotsoclearthatweareanythewiserforknowingthisnumber.However,formanyin nitefamiliesofspecialgraphsthenumberofperfectmatchingsisgivenbycompellinglysimpleformulas.Overthepasttenyearsagreatmanyfamiliesofthiskindhavebeendiscovered,andwhilethereisnosingleuni edresultthatencompassesallofthem,manyofthesefamiliesresembleoneanother,bothintermsoftheformoftheresultsandintermsofthemethodsthathavebeenusefulinprovingthem. ENUMERATIONOFMATCHINGS:PROBLEMSANDPROGRESS257Atapproximatelythesametime,scientistsweretryingtounderstandthebehaviorofliquids.Asanextensionofamorebasicmodelforliquidscontainingonlymoleculesofonetype,FowlerandRushbrooke[1937]devisedalattice-basedmodelforliquidscontainingtwotypesofmolecules,onelargeandonesmall.Inthecasewherethelargemoleculewasroughlytwicethesizeofthesmallmolecule,itmadesensetomodelthesmallmoleculesasoccupyingsitesofathree-dimensionalgridandthelargemoleculesasoccupyingpairsofadjacentsites.Inmodernparlance,thisisamonomer-dimermodel.Inlateryears,thetwo-dimensionalversionofthemodelwasfoundtohaveapplicabilitytothestudyofmoleculesadsorbedon lms;iftheadsorptionsitesareassumedtoformalattice,andanadsorbedmoleculeisassumedtooccupytwosuchsites,thenonecanimagine ctitiousmoleculesthatoccupyalltheunoccupiedsites(oneeach).MajorprogresswasmadewhenTemperleyandFisher[1961]andKasteleyn[1961]independentlyfoundwaystocountpuredimercon gurationsonsub-graphsofthein nitesquaregrid,withnomonomerspresent.Althoughthephysicalsigni canceofthisspecialcasewas(andremains)unclear,thisresult,alongwithOnsager'searlierexactsolutionofthetwo-dimensionalIsingmodel[Onsager1944],pavedthewayforotheradvancessuchasLieb'sexactsolutionofthesix-vertexmodel[Lieb1967],culminatinginanew eldattheintersec-tionofphysicsandmathematics:exactlysolvedstatisticalmechanicsmodelsintwo-dimensionallattices.(Intriguingly,virtuallynoneofthethree-andhigher-dimensionalanaloguesofthesemodelshavesuccumbedtoresearchers'e ortsatobtainingexactsolutions.)Forbackgroundonlatticemodelsinstatisticalmechanics,seethebookbyBaxter[1982].Anin nitetwo-dimensionalgridhasmany nitesubgraphs;inchoosingwhichonestostudy,physicistswereguidedbytheideathattheshapeofboundaryshouldbechosensoastominimizethee ectoftheboundary|thatis,tomaximizethenumberofcon gurations,atleastintheasymptoticsense.Forexample,Kasteleyn,inhisstudyofthedimermodelonthesquaregrid,countedthematchingsofthe-by-rectangle(seethedouble-productformulaatthebeginningofSection5)andofthe-by-rectangulartorus,andshowedthatthetwonumbersgrowatthesamerateasm;ngotoin nity,namelyaknownconstant.(Analytically,,whereisCatalan'sconstant 9+1 1 1 �;numerically,isapproximately134.)Kasteleyn[1961]wrote:\Thee ectofboundaryconditionsis,however,notentirelytrivialandwillbediscussedinmoredetailinasubsequentpaper."(SeethearticleofCohn,KenyonandPropp[Cohnetal.1998a]forarigorousmathematicaltreatmentofboundaryconditions.)Kasteleynneverwrotesuchafollowuppaper,butotherphysicistsdidgivesomeattentiontotheissueofboundaryshape,mostnotablyGrensing,CarlsenandZapp[Grensingetal.1980].Theseauthorsconsideredaone-parameterfamilyofgraphsofthekindshowninFigure1(a),andtheyassertedthateverygraphinthisfamilyhas2 ENUMERATIONOFMATCHINGS:PROBLEMSANDPROGRESS259 (a)(b)Figure2.Amatchinganditsassociatedtiling.Similarly,variantsofMacMahon'sprobleminwhichtheplanepartitionissubjectedtovarioussymmetryconstraints(consideredbyMacdonald,Stanley,andothers[Stanley1986a;1986b])correspondtotheproblemofenumeratingmatchingspossessingcorrespondingkindsofsymmetry.Kuperberg[1994]usedthiscorrespondenceinsolvingoneofStanley'sopenproblems,andthiscreatedfurtherinterestinmatchingsamongcombinatorialists.OneofKuperberg'schieftoolswasanoldresultofKasteleyn,whichshowedthatforanyplanargraph,thenumberofmatchingsofisequaltothePfaanofacertainmatrixofzerosandonesassociatedwith.Aspecialcaseofthisresult,enunciatedbyPercus[1969],canbeusedwhenisbipartite;inthiscase,onecanuseadeterminantinsteadofaPfaan.Percus'determinantisamodi edversionofthebipartiteadjacencymatrixofthegraph,inwhichrowscorrespondto\white"verticesandcolumnscorrespondto\black"vertices(underacoloringschemewherebywhiteverticeshaveonlyblackneighborsandviceversa);the(i;j)-thentryis1ifthe-thwhitevertexand-thblackvertexareadjacent,and0otherwise.Formoredetailsonhowthesignsoftheentriesarechosen,seetheexpositionsofKasteleyn[1967]andPercus[1969].Percus'theorem,incorporatedintocomputersoftware,makesiteasytocountthematchingsofmanyplanargraphsandlookforpatternsinthenumbersthatarise.Twosuchprogramsare,writtenbyGregKuperberg,DavidWilsonandmyself,and,writtenbyDavidWilson.Mostofthepat-ternsdescribedbelowwerediscoveredwiththeaidofthissoftware,whichisavailablefromhttp://math.wisc.edu/propp/software.html.Bothprogramstreatsubgraphsofthein nitesquaregrid;thismightseemrestrictive,butitturnsoutthatcountingthematchingsofanarbitrarybipartiteplanargraphcanbe tintothisframework,withabitoftweaking.Themathematicallyinterestingpartofeachprogramistheroutineforchoosingthesignsofthenonzeroentries.Therearemanychoicesthatwouldwork,butWilson'ssign-ruleisfarandawaythesimplest:Ifanedgeishorizontal,wegiveitweight+1,andifanedgeisvertical,joiningavertexinonerowtoavertexintherowbelowit,wegivethe ENUMERATIONOFMATCHINGS:PROBLEMSANDPROGRESS261hasturnedouttobearichavenueofcombinatorialinquiry,andmanymorebeautifulpatternsundoubtedlyawaitdiscovery.UpdatesonthestatusoftheseproblemscanbefoundontheWebathttp://math.wisc.edu/propp/update.ps.gz.2.LozengesWebeginwithproblemsrelatedtolozengetilingsofhexagons.Alozengearhombusofside-length1whoseinternalanglesmeasure60and120degrees;allthehexagonswewillconsiderwilltacitlyhaveintegerside-lengthsandin-ternalanglesof120degrees.Everysuchhexagoncanbedissectedintounitequilateraltrianglesinauniqueway,andonecanusethisdissectiontode neagraphwhoseverticescorrespondtothetrianglesandwhoseedgescorrespondtopairsoftrianglesthatshareanedge;thisisthe\ nitehoneycombgraph"dualtothedissection.Itiseasytoseethatthetilingsofbylozengesareinone-to-onecorrespondencewiththematchingsofa;b;csemiregularhexagonisthehexagonwhosesidelengthsare,incyclicalorder,a;b;c;a;b;c.Lozengetilingsofthisregionareincorrespondencewithplanepartitionswithatmostrows,atmostcolumns,andnopartexceeding.SuchhexagonsarerepresentedinVAX-formatbydiagramslikeAVAVAVAVAAVAVAVAVAVAAVAVAVAVAVAVAAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVVAVAVAVAVAVAVVAVAVAVAVAVVAVAVAVAVwhereA'sandV'srepresentupward-pointinganddownward-pointingtriangles,respectively.Inthisarticlewewillusetrianglesinstead: MacMahon[1915{16]showedthatthenumberofsuchplanepartitionsis (ThisformofMacMahon'sformulaisduetoMacdonald;ashort,self-containedproofisgivenbyCohnetal.[1998b,Section2].) ENUMERATIONOFMATCHINGS:PROBLEMSANDPROGRESS263Problem2.Enumeratethelozengetilingsoftheregionobtainedfromthe+1,+1,+1hexagonbyremovingthecentraltriangle.Progress.MihaiCiucuhassolvedthemoregeneralproblemofcountingtherhombustilingsofan(+1,+1,+1)-hexagonwiththecentraltriangleremoved[Ciucu1998].IraGesselprovedthisresultindependentlyusingthenon-intersectinglattice-pathsmethod[HelfgottandGessel1999].SoichiOkadaandChristianKrattenthalerhavesolvedtheevenmoregeneralproblemofcountingtherhombustilingsofan(+1,+1,+1)-hexagonwiththecentraltriangleremoved[OkadaandKrattenthaler1998].Onecanalsotakea2+3,2+3,2+3hexagonandmakeitlozenge-tilablebyremovingatrianglefromthemiddleofeachofitsthreelongsides,asshown: Hereoneobtainsanequallytantalizingsequenceoffactorizations:Problem3.Enumeratethelozengetilingsoftheregionobtainedfromthe2+3,2+3,2+3hexagonbyremovingatrianglefromthemiddleofeachofitslongsides.Progress.TheresiaEisenkolblsolvedthisproblem.Whatshedoesinfactistocomputethenumberofallrhombustilingsofahexagonwithsides+3,+3,+3,whereanarbitrarytriangleisremovedfromeachofthe\long"sides ENUMERATIONOFMATCHINGS:PROBLEMSANDPROGRESS265oflength.FortheproofoftheirformulatheycomputeHankeldeterminantsfeaturingBernoullinumbers,whichtheydobyusingfactsaboutcontinuedfrac-tions,orthogonalpolynomials,and,inparticular,continuousHahnpolynomials.ThespecialcasesolvesthesecondpartofProblem4.ImentionedearlierthatKasteleyn'smethod,asinterpretedbyPercus,al-lowsonetowritethenumberofmatchingsofabipartiteplanargraphasthedeterminantofasignedversionofthebipartiteadjacencymatrix.Inthecaseoflozengetilingsofhexagonsandtheassociatedmatchings,itturnsoutthatthereisnoneedtomodifysignsofentries;theordinarybipartiteadjacencyma-trixwilldo.GregKuperberg[1998]hasnoticedthatwhenrow-reductionandcolumn-reductionaresystematicallyappliedtotheKasteleyn{Percusmatrixofa;b;csemiregularhexagon,onecanobtainthe-by-Carlitzmatrix[Car-litzandStanley1975]whose(i;j)-thentryis.(ThismatrixcanalsoberecognizedastheGessel{Viennotmatrixthatarisesfrominterpretingeachtilingasafamilyofnonintersectinglatticepaths[GesselandViennot1985].)Suchreductionsdonota ectthedeterminant,sowehaveapleasingwayofun-derstandingtherelationshipbetweentheKasteleyn{PercusmatrixmethodandtheGessel{Viennotlattice-pathmethod.Infact,suchreductionsdonota ectcokernelofthematrix(anabeliangroupwhoseorderisthedeterminant).Ontheotherhand,thecokerneloftheKasteleyn{Percusmatrixforthea;b;chexagonisclearlyinvariantunderpermuting,and.Thisgivesrisetothreedi erentCarlitzmatricesthatnontriviallyhavethesamecokernel.Forexample,=1,thenonegetsan-by-matrixanda-by-matrixthatbothhavethesamecokernel,whosestructurecanbedetermined\byinspection"ifonenoticesthatthethirdCarlitzmatrixofthetrioisjusta1-by-1matrixwhosesoleentryis(plusorminus)abinomialcoecient.Inthisspecialcase,thecokernelisjustacyclicgroup.GregKuperbergposesthischallenge:Problem5.DeterminethecokerneloftheCarlitzmatrix,orequivalentlyoftheKasteleyn{Percusmatrixofthea;b;chexagon,andifpossible ndawaytointerpretthecokernelintermsofthetilings.ThiscombinesQuestions1and2ofKuperberg[1998].Ashepointsoutinthatarticle,inthecase=2,onegetsthenoncyclicgroupasthecokernel.Aswasremarkedabove,onenicethingabouttheKasteleyn{Percusmatricesofhoneycombgraphsisthatitisnotnecessarytomakeanyoftheentriesnega-tive.Forgeneralgraphs,however,thereisnocanonicalwayofde ning,inthesensethattheremaybemanywaysofmodifyingthesignsofcertainentriesofthebipartiteadjacencymatrixofagraphsothatallnonzerocontributionstothedeterminanthavethesamesign.Thus,oneshouldnotexpecttheeigenvaluesoftopossesscombinatorialsigni cance.However,thespectrumoftimesitsadjointisindependentofwhichKasteleyn{Percusmatrixonechooses(as ENUMERATIONOFMATCHINGS:PROBLEMSANDPROGRESS267candoasimilar(buteveneasier)calculationyourselfforthecase=1,toseethatthe\momentsofinertia"oftheverticaledge-probabilitiesaroundthehorizontalandverticalaxesare0and1,respectively.Usingtostudythecaseforlargervaluesof,I ndthatthemomentofinertiaaboutthehorizontalaxisgoeslike100;:::andthemomentofinertiaabouttheverticalaxisgoeslike;::::Itiseasytoshowthattheformermomentsofinertiaaregiveningeneralbythepolynomial(6(infact,thenumberofverticallozengesthathaveanyparticular-coordinatedoesnotdependonthetilingchosen).Thelattermomentsofinertiaaresubtler;theyarenotgivenbyapolynomialofdegree4,thoughitisnoteworthythatthe-thtermisanintegerdivisibleby,atleastforthe rstfewvaluesofProblem7.Findthe\momentsofinertia"forthemassonedgesarisingfromedge-probabilitiesforrandommatchingsofthea;b;choneycombgraph.3.DominoesNowletusturnfromlozenge-tilingproblemstodomino-tilingproblems.Adominoisa1-by-2or2-by-1rectangle.Althoughlozengetilings(intheguiseofconstrainedplanepartitions)werestudied rst,itwasreallythestudyofdominotilingsinAztecdiamondsthatgavecurrentworkonenumerationofmatchingsitscurrentimpetus.HereistheAztecdiamondoforder5: Atilingofsucharegionbydominosisequivalenttoamatchingofacertain(dual)subgraphofthein nitesquaregraph.Thisgridisbipartite,anditisconvenienttocoloritsverticesalternatelyblackandwhite;equivalently,itisconvenienttocolorthe1-by-1squaresalternatelyblackandwhite,sothateverydominocontainsone1-by-1squareofeachcolor.Elkies,Kuperberg,Larsen,andProppshowedin[Elkiesetal.1992]thatthenumberofdominotilingsofsucharegionis2+1)(where2isthenumberofrows),andGessel,Ionescu,andProppprovedin[Gesseletal.1999]anexactformula(originallyconjectured ENUMERATIONOFMATCHINGS:PROBLEMSANDPROGRESS269factor73mighthaveledustoexpect.(OneofthefactorsinHelfgott'sproductformulaisasingle-indexedsum;73arisesas12860+5.)Onecanalsolookat\Aztecrectangles"fromwhichsquareshavebeenre-movedsoastorestorethebalancebetweenblackandwhitesquares(anecessaryconditionfortileability).Forinstance,onecanremovethecentralsquarefrom-by-Aztecrectangleinwhichanddi erby1,withthelargerofa;bodd: Problem9.Findaformulaforthenumberofdominotilingsofa2-by-(2+1)Aztecrectanglewithitscentralsquareremoved.Progress.ThishadalreadybeensolvedwhenIposedtheproblem;itisaspecialcaseofaresultofCiucu[1997,Theorem4.1].EricKuosolvedtheproblemindependently.Whatabout(21)-by-2rectangles?Fortheseregions,removingthecen-tralsquaredoesnotmaketheregiontilable.However,ifoneremovesanyoneofthefoursquaresadjacenttothemiddlesquare,oneobtainsaregionthatistilable,andmoreover,forthisregionthenumberoftilingsappearstobeaniceroundnumber.Problem10.Findaformulaforthenumberofdominotilingsofa(21)-by-Aztecrectanglewithasquareadjoiningthecentralsquareremoved.Progress.Thisproblemwassolvedindependentlythreetimes:byHaraldHelfgottandIraGessel[1999],byChristianKrattenthaler[1997],andbyEricKuo(privatecommunication).GesselandHelfgottsolveamoregeneralprob-lemthanProblem10.Krattenthaler'spreprintgivesseveralresultsconcerningtheenumerationofmatchingsofAztecrectangleswhere(asuitablenumberof)collinearverticesareremoved,ofwhichProblem10isjustaspecialcase.ThereissomeoverlapbetweentheresultsofHelfgottandGesselandtheresultsofKrattenthaler.Atthispoint,somereadersmaybewonderingwhy-by-rectangleshavenotplayedabiggerpartinthestory.Indeed,oneofthesurprisingfactsoflifeinthestudyofenumerationofmatchingsisthatAztecdiamondsandtheirkinhavebeenmuchmorefertilegroundforexactcombinatoricsthattheseeminglymorenaturalrectangles.Thereare,however,afewcasesIknowofinwhichsomethingratherniceturnsup.OneistheproblemofIraGesselthatappearsasProblem20inthisdocument.AnotheristheworkdonebyJockusch[1994]and,later,Ciucu[1997]onwhythenumberofdominotilingsofthesquareisalwayseitheraperfectsquareortwiceaperfectsquare.Inthespiritofthework ENUMERATIONOFMATCHINGS:PROBLEMSANDPROGRESS271ifnotalloftheirentriesnonzero.)Nonetheless,someexploratory\numerology"leavesroomforhopethatthisisdo-able.ConsidertheKasteleyn{PercusmatrixfortheAztecdiamondoforderinwhicheveryverticaldominowithitswhitesquareontop(relativetosome xedcheckerboardcoloring)hasitssigninverted|thatis,thecorresponding1inthebipartiteadjacencymatrixisreplacedbyProblem12.Showthatthesumoftheentriesofthematrixinverseof 1)(+3)+2.(Thisformulaworksfor=1through=8.)Progress.HaraldHelfgotthassolvedasimilarproblemusingthemainresultofhisthesis[1998],anditislikelythattheresultassertedinProblem12canbeprovedsimilarly.(AslighttechnicalhurdlearisesfromthefactthatHelf-gott'sthesisusesadi erentsign-conventionfortheKasteleyn{Percusmatrix,whichresultsindi erentsigns,andadi erentsum,fortheinversematrix;how-ever,Helfgott'smethodsarequitegeneral,sothereisnoconceptualobstacletoapplyingthemtoProblem12.)Ishouldmentionthatmyoriginalreasonforexaminingthesumoftheen-triesoftheinverseKasteleyn{Percusmatrixwastoseewhethertheremightbeformulasgoverningtheindividualentriesthemselves.Helfgott'sworkprovidessuchformulas.Also,inthisconnection,GregKuperbergandDouglasZarehavesomehigh-techruminationsontheinversesofKasteleyn{Percusmatrices,andthereisachancethatrepresentation-theorymethodswillgiveadi erentwayofprovingtheresult.NowweturntoaclassofregionsIcall\pillows".Herearea\0mod4"pillowof\order5"anda\2mod4"pillowof\order7": Itturnsout(empirically)thatthenumberoftilingsofthe0-mod-4pillowoforderisaperfectsquaretimesthecoecientofintheTaylorexpansionof(5+3).Thisfactcametolightinseveralsteps.Firstitwasnoticedthatthenumberoftilingshasacomparativelysmallsquare-freepart.Thenitwasnoticedthatinthederivedsequenceofsquare-freeparts,manytermswereroughlythreetimestheprecedingterm.Thenitwasnoticedthat,byjudiciouslyincludingsomeofthesquarefactors,onecouldobtainasequenceinwhicheachtermwasroughlythreetimesthepreceding ENUMERATIONOFMATCHINGS:PROBLEMSANDPROGRESS273Moregenerally,allthepolynomialsinthatariseinthisfashionappearto\factor"inthesenseoffunctionalcomposition.Herearethefactoredformsofthepolynomialsfor10: 2228x2x�x2241 2x+7 8�x+3 22221 4+7 3+ 1442+ 18�x2241 3+ 5762+ 2304+ 1024�x+5 Ingeneraltherightmostpolynomialis(,andtheleftmostpolynomialiseitheraperfectsquare,twiceafourthpower,orhalfafourthpower,dependingmod8.Apatternforthemiddlepolynomialhoweveriselusive.Problem14.FindageneralformulaforthenumberofdominotilingsofAztecwindows.Progress.ConstantinChiscanufoundapolynomialboundonthenumberofdominotilingsoftheAztecwindowofinnerorderandouterorder[Chiscanu1997].DouglasZareusedthetransfer-matrixmethodtoshowthatthenumberoftilingsisnotjustboundedbyapolynomial,butgivenbyapolynomial,foreach xed[Zare1997{98].4.MiscellaneousNowwecometosomeproblemsinvolvingtilingthat tneitherthedomino-tilingnorthelozenge-tilingframework.Herethemoregeneralpictureisthatwehavesomeperiodicdissectionoftheplanebypolygons,suchthatanevennumberofpolygonsmeetateachvertex,allowingustocolorthepolygonsalternatelyblackorwhite.Wethenmakeasuitablechoiceofa niteregioncomposedofequalnumbersofblackandwhitepolygons,andwelookatthenumberof\diform"tilingsoftheregion,whereadiformistheunionoftwopolygonalcellsthatshareanedge.Inthecaseofdominotilings,theunderlyingdissectionofthein niteplaneisthetilingbysquares,4aroundeachvertex;inthecaseoflozengetilings,theunderlyingdissectionofthein niteplaneisthetilingbyequilateraltriangles,6aroundeachvertex.Othersortsofperiodicdissectionshavealreadyplayedaroleinthetheoryofenumerationofmatchings.Forinstance,thereisatilingoftheplanebyisoscelesrighttrianglesassociatedwithadiscretere ectiongroupintheplane;inthiscase,therightchoiceof(seeFigure3)givesusaregionthatcanbetiledinwayswhenisevenandin5or2wayswhenisodd[Yang1991]. ENUMERATIONOFMATCHINGS:PROBLEMSANDPROGRESS275 Figure5.Adragonoforder10(tiled).ofhexagons[Cohnetal.1998b]anddominotilingsofAztecdiamonds[Cohnetal.1996].Onewaytogetanewdissectionoftheplanefromanoldoneistore neit.Forinstance,startingfromthedissectionoftheplaneintosquares,onecandrawinevery-thsouthwest-to-northeastdiagonal.Whenis1,thisisjustadistortionofthedissectionoftheplaneintoequilateraltriangles.Whenis2,thisisadissectionthatleadsto niteregionsforwhichthenumberofdiformtilingsisaknownpowerof2,thankstoatheoremofChrisDouglas[1996].Butwhatabout=3andhigher?Forinstance,wehavetheroughlyhexagonalregionshowninFigure6;certainboundaryverticeshavebeenmarkedwithadotsoastobringoutthelarge-scale2hexagonalstructuremoreclearly. Figure6.AregionforProblem16. ENUMERATIONOFMATCHINGS:PROBLEMSANDPROGRESS277andafterthesubstitution,onecancheckthatthesumoftheweightsofthematchingsofequalsthesumoftheweightsofthematchingsofdividedbyItisrequiredthatthefourinnermostverticeshavenoneighborsotherthanthefourverticesshown;thisconstraintisindicatedbycirclingthem.Noncircledverticesmayhaveanynumberofneighbors. Figure8.RickKenyon'ssubstitution.ThesubstitutionshowninFigure8(astraightforwardgeneralizationofacleversubstitutionduetoRickKenyon)hasalsobeenofuse.Herethenewweightsarenotentirelydeterminedbytheold,buthaveasingledegreeoffree-dom;therelevantformulascanbewrittenasaegcdf b;D E;F E1 withfree.Asbefore,thecircledverticesmustnothaveanyneighborsotherthantheonesshown.Inthiscase,thesumoftheweightsinthebefore-graphisexactlyequaltothesumoftheweightsintheafter-graph;thereisnoneedforacorrectionfactorlikethe1)thatarisesinurbanrenewal.Theextremelypowerful\wye-delta"substitutionofColbourn,Provan,andVertigan[Colbournetal.1995]shouldalsobementioned.Uptillnowwehavebeendealingexclusivelywithbipartiteplanargraphs.Wenowturntothelesswell-explorednonbipartitecase.Forinstance,onecanlookatthetrianglegraphoforder,showninFigure9inthecase=4.(Hereisthenumberofverticesinthelongestrow.)Let)denotethenumberofmatchingsofthetrianglegraphoforderWhenis1or2mod4,thegraphhasanoddnumberofverticesand)is0;henceletusonlyconsiderthecasesinwhichis0or3mod4.Herearethe rstfewvaluesof),expressedinfactoredform:2,23,261,229,2461,233721523657, Figure9.Thetrianglegraph. ENUMERATIONOFMATCHINGS:PROBLEMSANDPROGRESS279NowI'llde newhatIcall\dimertableaux."Takean2by2rectangleandsplititintotwopartsbyapathfromthelowerleftcornertotheupperrightcorner.Forexample(with=6and=10) Then llintheupperleftpartwithentriesfrom1,2,...,1sothatforadjacententries wehaveij1andforadjacententries wehave+1,and llinthelower-rightpartitionwithentriesfrom1:::;mwiththereverseinequalities( implies+1and implies1).Weweightanintheupper-leftpartbyandainthelower-rightpartbyTheorem1.ThesumoftheweightsofthedimercoveringsisequaltothesumoftheweightsofthedimertableauxMyproofisnotveryenlightening;itessentiallyinvolvesshowingthatbothofthesearecountedbythesameformula.Problem20.Istherean\explanation"forthisequality?Inparticular,isthereareasonablebijectiveproof?Notes:(1)Thecase=2iseasy:the210dimercoveringabovecorrespondstothe5dimertableau 2 x5 x7 y1 (there'sonlyonepossibility!).(2)Ifweset=0wheniseven(sothateverytwo-by-twosquareofthedimercoveringmaybechosenindependently),thentheequalityisequivalenttotheidentitycompare[Macdonald1995,p.37].ThisidentitycanbeprovedbyavariantofSchensted'scorrespondence,soabijectiveproofofthegeneralequalitywouldbeessentiallyageneralizationofSchensted.SeveralpeoplehavelookedattheproblemofaSchenstedgeneralizationcorrespondingtothecaseinwhich=0wheniseven.(3)Theanalogousresultsinwhichisoddareincludedinthecaseinwhichandarebotheven.Forexample,ifwetake=4andset=0,thenthefourthrowofadimercoveringmustconsistof2horizontaldominoes,whichcontribute totheweight,soweareessentiallylookingatdimercoveringswiththreerows. ENUMERATIONOFMATCHINGS:PROBLEMSANDPROGRESS281inthe-by-grid;thisgivesus2\mutilated"versionsofthegraph.Wecansetuprecurrencesthatlinkmatchingsofmutilatedgraphsofwidthwithmatchingsofmutilatedgraphsofwidthand1,andstandardalgebraicmethodsallowustoturnthissystemofjointmutualrecurrencesoflowdegreeintoasinglerecurrenceofhighdegreegoverningtheparticularsequenceofinterest,whichenumeratesmatchingsofunmutilatedrectangles.Therecurrenceobtainedinthiswayisnot,however,bestpossible,asonecanseeeveninthesimplecase=2.Problem23(Stanley).Proveordisprovethattheminimumdegreeofalinearrecurrencegoverningthesequence;:::is2+1)Progress.ObservationsmadebyStanley[1985,p.87]implythattheconjec-tureistruewhen+1isanoddprime.Theideaofmutilatingagraphbyremovingsomeverticesalongitsboundaryleadsustothenextproblem.Ithasbeenobservedforsmallvaluesofthatifoneremovesequalnumbersofblackandwhiteverticesfromtheboundaryof-by-2squaregrid,thenumberofmatchingsofthemutilatedgraphislessthanthenumberofmatchingsoftheoriginalgraph.Infact,itappearstobetruethatonecandeletesubsetoftheverticesofthesquaregridandobtainaninducedgraphwithstrictlyfewermatchingsthantheoriginal.Itisworthpointingoutthatnoteverygraphsharesthispropertywiththesquaregrid.Forinstance,ifistheAztecdiamondgraphoforder5andthegraphobtainedfrombydeletingthemiddleverticesalongthenorthwestandnortheastborders,thenhas32768matchingswhilehas59493.Problem24.Proveordisprovethateverysubgraphofthe2-by-2gridgraphhasstrictlyfewermatchings.NextwecometoavariantontheAztecdungeonregionshowninFigure4.Figure10showsan\hexagonaldungeon"withsides24.MattBlum'sinvestigationoftheseshapeshasledhimtodiscovermanypatterns;themoststrikingofthesepatternsformsthebasisofthenextproblem.Problem25.Showthatthehexagonaldungeonwithsidesa;b;a;a;bhasexactlydiformtilings,forallUnmatchablebipartitegraphscansometimesgiverisetointerestingquasi-matchingproblems,eitherbywayof(seeProblem6)orbysystematicadditionordeletionofverticesoredges.Theformersortofproblemsimplyasksforthedeterminantof(wherewemayassumethathasmorecolumnsthanrows).Whentheunderlyinggraphhasequalnumbersofblackandwhite ENUMERATIONOFMATCHINGS:PROBLEMSANDPROGRESS283 Figure11.Ahexagonwithextraedges.Progress.InthecaseofAztecrectangles,MattBlumhasfoundgeneralfor-mulasfordet()whenis1,2,or3.Forfool'sdiamonds,weget(Onemightalsolookat\fool'srectangles".)Anotherthingonecandowithanunmatchablegraphisaddextraedges.Evenwhenthisruinsthebipartitenessofthegraph,therecanstillbeinterestingcombinatorics.Forinstance,considerthe24hexagon-graph;ithasanevennumberofvertices,butithasasurplusofblackverticesoverwhitevertices.Wethereforeintroduceedgesbetweeneveryblackvertexandthesixnearestblackvertices.(Thatis,ineachhexagonofthehoneycomb,wedrawatriangleconnectingthethreeblackvertices,asinFigure11.)Thenthegraphhas5187=319matchings.Problem28.Countthematchingsofthea;b;c;d;e;fhexagon-graphinwhichextraedgeshavebeendrawnconnectingverticesofthemajoritycolor.Whatworksforhoneycombgraphsworks(orseemstowork)forsquare-gridgraphsaswell.Ifoneaddsedgesjoiningeachvertexofmajoritycolortothefournearestlike-coloredverticesinthe+2AztecrectanglegraphasinFigure12,onegetsagraphforwhichthenumberofmatchingsgrowslike27,211,231,etc.Ifonedoesthesamefortheholey21by2Aztecrectanglefromwhichthecentralvertexhasbeenremoved,asinFigure13,onegetsthenumbers27,217,231,etc. ENUMERATIONOFMATCHINGS:PROBLEMSANDPROGRESS285 Figure14.Anisoscelesrighttrianglegraphwithextraedges.modulo4.Herearethedataforthe rstfewcases,courtesyofMattBlum:numberofmatchingsfactorization33346271065386276211459495633128073431282152217970805948013161181229925380302422460895677875631911706649125094394956776331549900237171420120191008032503971486078526402881534305952328473ThefollowingproblemdescribessomeofBlum'sconjectures:Problem30.Showthatfortheisoscelesrighttrianglegraphwithextraedges,thenumberofmatchingsisalwaysamultipleof3.Furthermore,showthattheexactpowerof2dividingthenumberofmatchingsis2whenis0modulo4,and2(=1)whenis3modulo4.Thispropertyofdivisibilityby3popsupinanotherproblemofasimilar avor.ConsiderthegraphshowninFigure15,whichisjustliketheoneshowninFigure9,exceptthathalfofthetriangularcellshaveanextravertexinthem,connectedtothethreenearestvertices.(NotealsotheresemblancetoFigure11.)Problem31.Showthatfortheequilateraltrianglegraphwithextraverticesandedges,thenumberofmatchingsisalwaysamultipleof3. ENUMERATIONOFMATCHINGS:PROBLEMSANDPROGRESS287verticesoredges.Mightthisinvariancenonethelesshavesomedeepersigni -cance?Cohn[1999]hasfoundanotherexampleofgratuitoussymmetryrelatedtotilings.AcknowledgementsThisresearchwasconductedwiththesupportoftheNationalScienceFoun-dation,theNationalSecurityAgency,andtheM.I.T.Classof1922CareerDe-velopmentfund.IamdeeplyindebtedtothepastandpresentmembersoftheTilingsResearchGroupfortheirmanyformsofassistance:PramodAchar,KarenAcquista,JosieAmmer,FedericoArdila,RobBlau,MattBlum,CarlBosley,RuthBritto-Pacumio,ConstantinChiscanu,HenryCohn,ChrisDou-glas,EdwardEarly,NicholasEriksson,DavidFarris,LukaszFidkowski,MarisaGioioso,DavidGupta,HaraldHelfgott,SharonHollander,DanIonescu,SameeraIyengar,JuliaKhodor,NeelakantanKrishnaswami,EricKuo,YvonneLai,ChingLaw,AndrewMenard,AlyceMoy,Anne-MarieOreskovich,BenRaphael,VisTaraz,JordanWeitz,BenWieland,LaurenWilliams,DavidWilson,JessicaWong,JasonWoolever,andLaurenceYogman.IalsoacknowledgethehelpfulcommentsonthismanuscriptgivenbyHenryCohnandRichardStanley,andtheinformationprovidedbyJerryDias,MichaelFisherandHorstSachsconcerningtheconnectionsbetweenmatchingtheoryandthephysicalsciences.ReferencesManyofthepapersinthebibliographyareincludedase-printsinthemathematicsarchive;thisisindicatedbytheinclusionofaidenti er.Suche-printscancurrrentlybeaccessedacrosstheWorldWideWebbyappendingtheidenti ertotheURLhttp://front.math.ucdavis.edu/orhttp://xxx.lanl.gov/abs/.[Andrews1976]G.E.Andrews,Thetheoryofpartitions,vol.2,EncyclopediaofMathematicsanditsApplications,Addison-Wesley,Reading,MA,1976.ReprintedbyCambridgeUniversityPress,NewYork,1998.[Baxter1982]R.J.Baxter,Exactlysolvedmodelsinstatisticalmechanics,AcademicPress,London,1982.Reprinted1989.[CarlitzandStanley1975]L.CarlitzandR.P.Stanley,\Branchingsandpartitions",Proc.Amer.Math.Soc.:1(1975),246{249.[Chiscanu1997]C.Chiscanu,\CommentsonPropp'sproblem14",1997.Availableathttp://math.wisc.edu/propp/chiscanu.ps.gz.[Ciucu1997]M.Ciucu,\Enumerationofperfectmatchingsingraphswithre ectivesymmetry",J.Combin.TheorySer.A:1(1997),67{97.[Ciucu1998]M.Ciucu,\Enumerationoflozengetilingsofpuncturedhexagons",Combin.TheorySer.A:2(1998),268{272. ENUMERATIONOFMATCHINGS:PROBLEMSANDPROGRESS289[GesselandViennot1985]I.GesselandG.Viennot,\Binomialdeterminants,paths,andhooklengthformulae",Adv.Math.(1985),300{321.[Gesseletal.1999]I.Gessel,A.Ionescu,andJ.Propp,Inpreparation.[GordonandDavison1952]M.GordonandW.H.T.Davison,\Theoryofresonancetopologyoffullyaromatichydrocarbons,I",J.ofChem.Phys.(1952),428{435.[Grensingetal.1980]D.Grensing,I.Carlsen,andH.-C.Zapp,\Someexactresultsforthedimerproblemonplanelatticeswithnon-standardboundaries",Phil.Mag.(1980),777{781.[Helfgott1998]H.Helfgott,Edgee ectsonlocalstatisticsinlatticedimers:astudyoftheAztecdiamond nitecase,Bachelor'sthesis,BrandeisUniversity,1998.Availableathttp://www.math.wisc.edu/propp/helfgott.ps.[HelfgottandGessel1999]H.HelfgottandI.Gessel,\Tilingsofdiamondsandhexwithdefects",Electron.J.Combin.(1999),R16.[Jockusch1994]W.Jockusch,\Perfectmatchingsandperfectsquares",J.Combin.TheorySer.A(1994),100{115.[JohnandSachs1985]P.JohnandH.Sachs,\WegesystemeundLinearfaktoreninhexagonalenundquadratischenSystemen",pp.85{101inGrapheninForschungundUnterricht,BarbaraFranzbeckerVerlag,BadSalzdetfurth,1985.[Kasteleyn1961]P.W.Kasteleyn,\ThestatisticsofdimersonalatticeI:Thenumberofdimerarrangementsonaquadraticlattice",Physica(1961),1209{1225.[Kasteleyn1967]P.W.Kasteleyn,\Graphtheoryandcrystalphysics",inGraphtheoryandtheoreticalphysics,editedbyF.Harary,AcademicPress,1967.[Kenyon1997]R.Kenyon,\Localstatisticsoflatticedimers",Ann.Inst.H.PoincarProbab.Statist.(1997),591{618.[Krattenthaler1997]C.Krattenthaler,\Schurfunctionidentitiesandthenum-berofperfectmatchingsofholeyAztecrectangles",1997.Availableathttp://radon.mat.univie.ac.at/People/kratt/artikel/holeyazt.htmlormath.CO/9712204.[Kuperberg1994]G.Kuperberg,\Symmetriesofplanepartitionsandthepermanent-determinantmethod",J.Combin.TheorySer.A:1(1994),115{151.[Kuperberg1998]G.Kuperberg,\Anexplorationofthepermanent-determinantmethod",Electron.J.Combin.(1998),R46.[Lieb1967]E.H.Lieb,\Residualentropyofsquareice",Phys.Rev.(1967),[LovaszandPlummer1986]L.LovaszandM.D.Plummer,Matchingtheory,Elsevier,AmsterdamandNewYork,1986.[Macdonald1995]I.G.Macdonald,SymmetricfunctionsandHallpolynomials,2nded.,OxfordUniv.Press,1995.[MacMahon1915{16]P.A.MacMahon,Combinatoryanalysis(2v.),CambridgeUniversityPress,1915{16.ReprintedbyChelsea,NewYork,1960.[Millsetal.1983]W.H.Mills,D.P.Robbins,andH.RumseyJr.,\Alternatingsignmatricesanddescendingplanepartitions",J.Combin.TheorySer.A(1983), ENUMERATIONOFMATCHINGS:PROBLEMSANDPROGRESS291[Yang1991]B.-Y.Yang,TwoenumerationproblemsabouttheAztecdiamonds,Ph.D.thesis,Mass.Inst.Tech.,1991.[Zare1997{98]D.Zare,emailfromMay20,1997andMarch2,1998.Availableathttp://math.wisc.edu/propp/zare.JamesProppDepartmentofMathematicsUniversityofWisconsinMadison,WI53706UnitedStatespropp@math.wisc.edu NewPerspectivesinGeometricCombinatoricsMSRIPublicationsVolume,1999TheGeneralizedBauesProblemVICTORREINERAbstract.WesurveythegeneralizedBauesproblemofBilleraandSturm-fels.Theproblemisoneofdiscretegeometryandtopology,andasksaboutthetopologyofthesetofsubdivisionsofacertainkindofaconvexpoly-tope.Alongwithadiscussionofmostoftheknownresults,wesurveythemotivationfortheproblemanditsrelationtotriangulations,zonotopaltilings,monotonepathsinlinearprogramming,orientedmatroidGrass-mannians,singularities,andhomotopytheory.Includedareseveralopenquestionsandproblems.1.IntroductionThegeneralizedBauesproblem,orGBPforshort,isaquestionarisingintheworkofBilleraandSturmfels[1992,p.545]on berpolytopes;seealso[Billeraetal.1994,3].Thequestionaskswhethercertainpartiallyorderedsetswhoseelementsaresubdivisionsofpolytopes,endowedwithacertaintopology[Bjorner1995],havethehomotopytypeofspheres.Casesareknown[RambauandZiegler1996]wherethisfailstobetrue,butthegeneralquestionofwhenitistrueorfalseremainsanexcitingsubjectofcurrentresearch.Thegoalofthissurveyistoreviewthemotivationfor berpolytopesandtheGBP,anddiscussrecentprogressontheGBPandtheopenquestionsremain-ing.Somerecommendedsummarysourcesonthissubjectaretheintroductorychaptersinthedoctoraltheses[Rambau1996;Richter-Gebert1992],Lecture9in[Ziegler1995],andthepaper[Sturmfels1991].Thearticles[Billeraetal.1990;1993],thoughnotdiscussedinthetext,arenonethelessalsorelevanttotheGBP.Beforedivingintothegeneralsettingof berpolytopesandtheGBP,itisworthwhiletoponderthreemotivatingclassesofexamples. PartiallysupportedbySloanFoundationandUniversityofMinnesotaMcKnightLandGrantFellowships. THEGENERALIZEDBAUESPROBLEM295 Figure2.AlltriangulationsandbistellaroperationsforasetpointsinThepointsofformtheverticesoftwohomotheticandconcentricequilateraltriangles.Adaptedfrom[deLoera1995b].ofsuch ips.Thereisawell-knownbijectionbetweentriangulationsofanandnonassociativebracketingsofaproduct,andunderthisiden-ti cationbistellaroperationscorrespondto\rebracketings".Fromthispointofview,thegraphoftriangulationsofan-gonanddiagonal ipswasperhaps rststudiedinthe1950'sbyTamari[1951]andlaterincollaborationwithothers[Tamari1962;FriedmanandTamari1967;HuangandTamari1972;HuguetandTamari1978].Theseauthorsdistinguishedadirectiononeachrebracketingandde nedaposetonthetriangulationshavingthesedirectededgesasitscoverrelations.TheywereabletoshowthatthisTamariposetisalattice[FriedmanandTamari1967;HuangandTamari1972].ItsHassediagramisdepictedinFigure3for=6,forachoiceofaparticularconvex6-gonwhoseverticeslieonasemicircle.Theseauthorsseemalsotohavebeenaware(withoutproof)thatthisgraphappearstobethe1-skeletonofacellular(4)-sphere,andprovedresultsabouthowits\facial"structureinteractswiththeTamarilatticestructure.Meanwhile,similarissuesofassociativityappearedintheearly1960'sinStashe 'swork[1963]onhomotopyassociativity.Stashe vindicatedthisapparentsphericity 296VICTORREINER Figure3.Triangulationsofaconvex6-gon:theassociahedron.byshowing(essentially)thatthesetofallpolygonalsubdivisionsofanindexesthecellsinaregularcellcomplex[Bjorner1995,(12.3)]homeomorphictothe(4)-sphere.Notethatinthiswayofthinking,adiagonal ipbistellaroperationcorrespondstoapolygonalsubdivisionwhosemaximalcellsarealltrianglesexceptforonequadrangle(containingthe ippingdiagonal),andlessre nedsubdivisionsofthe-goncorrespondtohigherdimensionalcellsinthesphere.Inanunpublishedwork(see[Kapranov1993,p.120]),Milnorproducedasetofvertexcoordinatesfortheverticesofthis(4)-spherewhichembeditastheboundarycomplexofan(3)-dimensionalpolytope.Unfortunately,theexistenceofthispolytopalembeddingseemstohavebeenunknowninthecombinatorialgeometrycommunity,andwasrediscoveredinthemid1980'safterPerlesposedtheproblemofwhetherthiscomplexwaspolytopal;see[Lee1989].Independently,Haiman[1984]andLee[1989]constructedthispolytope,whichHaimandubbedtheassociahedron.In[KapranovandVoevodsky1991;Gel'fandetal.1994]itissometimescalledtheStashe polytope.KapranovandSaito[1997]documentitsoccurrenceinothersurprisinggeometriccontexts.Theassociahedronalsomakesitsappearanceincomputerscience,wheretri-angulationsofan-gonshowupintheequivalentguiseofbinarytrees,andbistellaroperationscorrespondtoanoperationonbinarytreescalledrotationHereSleator,TarjanandThurston[Sleatoretal.1988]wereabletodetermine THEGENERALIZEDBAUESPROBLEM299 Figure6.Theincoherenttriangulationsandtheirneighbors:twoequivalentpictures.Weremarkthatinthecasewhereisthesetofverticesofaconvex-gon,everysubdivisioniscoherent,andhencethesecondarypolytope()istheassociahedronencounteredearlier.Thefactthatthesubgraphofcoherenttriangulationsandbistellaroperationsishighlyconnectedandformsthe1-skeletonofacellular(evenpolytopal)sphereraisesthefollowingbasicquestion:Question1.2.Isthegraphofalltriangulationsofandtheirbistellaropera-tionsconnectedAglanceatFigure2illustratesthateveninsmallcaseswherethereareinco-herenttriangulations,thegraphstillappearstobeconnected.WecanprovidesomemotivationfortheGeneralizedBauesProblembyperformingthefollowingmentalexercisewhilestaringatFigure2.Firstpicturetheplanarsubgraphofcoherenttriangulations,byignoringthetwoverticescorrespondingtotheinco-herenttriangulationsinFigure2(callthemand).Whenoneimaginesthisplanarsubgraphasatwo-dimensionalsphericalcellcomplex,thatistheboundaryofthethree-dimensionalsecondarypolytope(),theunionoftheneighborsofandformtheverticesofahexagonalcell,correspondingtotheunboundedregionintheplanarembedding;seeFigure6.Now\in ate"thishexagonalcellonthe2-sphereintoacubical3-dimensionalcellwiththeextratwoverticescorrespondingto.Thisgivesa3-dimensionalcellcomplexwhichisstillhomotopyequivalent(butnothomeomorphic)toa2-sphere.Roughlyspeaking,theBauesquestioninthiscontextaskswhetherthisbe-haviorisgeneral:Dotheincoherenttriangulationsandsubdivisionsofattachthemselvestothesphericalboundaryof()insuchawayastonotchangeitshomotopytype?Zonotopaltilings.ConsiderFigure7,similarto[BilleraandSturmfels1992,Figure1],depictingthetilingsofacentrallysymmetricoctagonhavingunitside THEGENERALIZEDBAUESPROBLEM301 Figure9.Thegraphoftilingsofadecagon,seeninfromin nity(left)andfromanearbypoint.Compare[Ziegler1993,Figure3].Theseoperationshavebeengivenvariousnamesintheliterature,dependinguponthecontextinwhichthetilingsarise.Inthecrystallinephysicsliterature[Destainvilleetal.1997;MosseriandBailly1993],wherethesetoftilingsisamodelforthepossiblestatesofacrystallinesolid,thesemovesarecalledelementary ipslocalizedphasons.Ratherthanconsideringtilingsofa2-gon,anequivalent(anduseful)viewpointcomesfromconsiderationofarrangementsofpseudolines(see[Bjorneretal.1993,Chapter6]forde nition,backgroundandreferences).Anarrangementofanepseudolinesintheplanelabelled;:::;ncounterclockwisegivesrisetoarhombictilingofacentrallysymmetric-gonwhichis\dual"tothelinearrangementinthesenseofplanarmaps;seeFigure10.Inthepseudolinepicture,themovedepictedinFigure8correspondstomovingonepseudolinelocallyacrossthenearbycrossingpointoftwootherpseudolines; 12233445566 Figure10.Acon gurationofanepseudolinesanditsassociatedtiling. THEGENERALIZEDBAUESPROBLEM303 V Z Figure11.Acoherenttiling,inducedbyliftingintothegeneratingseg-mentsofthe-dimensionalzonotope,thenprojectingtheupperfacetsoftheresulting-dimensionalzonotopebackintotheplane.ThisraisestheanalogousquestiontoQuestion1.2:Question1.3.Isthegraphofallcubicaltilingsofazonotopeandtheircube ipsconnectedOnecanalsoviewcoherenceoftwo-dimensionaltilingsintermsofpseudolinesandstraightlines.Acoherenttilingisonewhosepseudolinearrangementisisomorphictoa(straight)linearrangementinwhicheachlinehasslopeperpen-diculartotheslopeoftheedgeinthepolygontowhichitcorresponds(thatis,totheedgeofthepolygonlabelledwiththesamenumberinFigure10).SomeofthisviewpointisexplainedintheinstructionsforthedelightfulpuzzleHexa-Grid[MRIn.d.],whichsuppliesfoamrubberversionsoftherhombictilesoccurringinFigure10,andaskstheconsumertoassemblethemintoatilingofazonotopal12-gon!Instudyingtilingsandzonotopalsubdivisionsofhigherdimensionalzono-topes,theorientedmatroidpointofviewhasbecomeindispensable;see[Bjorneretal.1993,2.2;Ziegler1996].TheBohne{DressTheorem[Bohne1992;Richter-GebertandZiegler1994]statesthatzonotopalsubdivisionsofbijectwiththesingle-elementliftingsoftherealizedorientedmatroidassociatedwiththegeneratingsegments,orusingorientedmatroidduality,tothesingle-elementextensionsofthedualorientedmatroid(see[Bjorneretal.1993,7.1]).Fromthispointofview,thesubsetofcoherentzonotopalsubdivisionsofcor-respondstothecoherentliftings[BilleraandSturmfels1992,5].Ifoneviewsrealizedorientedmatroidsandtheirliftingsintermsofsphereandpseu-dospherearrangements,thenthenotionofacoherentliftingwasexploredintheworkofBayerandBrandt[1997]ondiscriminantalarrangements,generalizing THEGENERALIZEDBAUESPROBLEM305 Figure13.Monotonepaths(thicklines)inacyclic-polytopewith vevertices.isisomorphictothe1-skeletonofthewell-knownpermutohedron[Ziegler1995,Example0.10];seealso[Milgram1966].Whathappensforotherpolytopesandfunctionals?Figure13showsthegraphof-monotonepathsina(cyclic)3-polytopewith veverticesinwhichistheconvexhullofthepointst;t,andAlthoughthisgraphisconnected,itisperhapsdisappointingthatitisnotcircularasinthecaseofFigure12.Onceagain,geometrycomestotherescueinsinglingoutawell-behavedsubsetof-monotonepaths.Saythatan-monotonepathcoherentifthereexistssomelinearfunctionalwhichinducesinthefollowingway:eachpointof(notnecessarilyavertex)isthe-maximalpointamongallthosepointsofwiththesamevalue,orinotherwords,istheunionoverallpointsofthe-maximalpointsinthe bers).Withthisde nition,themonotonepathinthemiddleofthegraphinFigure13isincoherent.Toseethis,assumethereissomefunctionalinducingthismonotonepath,andidentifyasthedotproductwithsome xedvector.Thenthisvectormustpointroughlytowardthefront(thevisibleside)ofthepolytopeinordertoinducetherightportionofthepath,butalsopointtowardtheback(theinvisibleside)inordertoinducetheleftportionofthepath;contradiction.TheremainingsixpathsinFigure13areeasilyseentobecoherent(byimaginingappropriatefunctionals)andthesubgraphonthecorrespondingsixverticesisindeedcircular.Ingeneral,itfollowsasaspecialcaseofBilleraandSturmfels' berpoly-topeconstruction[BilleraandSturmfels1992,7]thatthegraphofcoherent-monotonepathsinapolytopeisthe1-skeletonofapolytopecalledthemonotonepathpolytope.Higherdimensionalfacesofthemonotonepathpoly-topecorrespondtoobjectscalledcoherentcellularstringswithrespecttocellularstringwithrespecttoisasequence(;:::;F)ofboundaryfacesofwiththefollowingproperties: THEGENERALIZEDBAUESPROBLEM3072.FiberPolytopesandtheBauesProblemThetheoryof berpolytopes[BilleraandSturmfels1992]providesacom-monframeworkinwhichtodiscusstriangulations,tilings,andmonotonepaths,andalsoacommonnotionofcoherencefortheseobjects.The berpolytope),isapolytopenaturallyassociatedtoanylinearprojectionofpoly-topes.Letbea-dimensionalpolytopein-dimensionalpolytopeinandalinearmapwithpolytopalsubdi-visionisapolytopalcomplexwhichsubdivides.Apolytopalsubdivisioninduced(i)itisoftheformforsomespeci edcollectionoffacesofhavingall)distinct,and(ii))implies)),andinparticularItispossiblethatdi erentcollectionsoffacesofprojecttothesamesub-division,sowedistinguishthesesubdivisionsbylabellingthemwiththefamily.Wepartiallyorderthe-inducedsubdivisionsofifandonlyif.Theresultingpartiallyorderedsetisdenotedby)andcalledtheBauesposet.Theminimalelementsinthisposetarethetightsubdivisions,thatisthoseforwhichand)havethesamedimensionforallWenextexplainhow-inducedsubdivisionsofgeneralizetriangulations,tilings,andmonotonepaths.Thisisperhapseasiesttoseeformonotonepathsandcellularstrings.Givenapolytopeandfunctional,letbethe1-dimensionalpolytope)in.Thenacellularstring(;:::;F)onwithrespecttogivesrisetoafamilysatisfyingthede nitionfora-inducedsub-divisionofasfollows:consistofthe'salongwiththeir-minimizingand-maximizingfaces.Tight-inducedsubdivisionsofcorrespondtomonotonepathsonFortriangulationsandtilings,thereisaconcealedprojectionofpolytopeslurkinginthebackground.Givenapointsetwithcardinality,letdenoteitsconvexhull.Thereisanaturalsurjectionfromasimplexhavingvertices,whichsendseachvertexofthesimplextooneofthepointsof.Onecanthencheckthatthe-inducedsubdivisionsofde nedabovecorrespondtothefollowingnotionofasubdivisionof,whichreplacesthenaivede nitiongiveninSection1.Asubdivisionofisacollectionofpairs,wherearesubsetsofeachistheconvexhullofandis-dimensional,theunionofthecovers,andforany ; ,theintersectionisaface(possiblyempty)ofeach,and THEGENERALIZEDBAUESPROBLEM309coherentsubdivisionsofapointsetandforcoherentzonotopalsubdivisionsofazonotopeLetcoh)denotetheinducedsubposetoftheBauesposetonthesetof-coherentsubdivisionsof.ThefollowingbeautifulresultofBilleraandSturmfelswhichexplainsallofourprettypolytopalpicturesisthefollowing:Theorem2.1[BilleraandSturmfels1992,Theorem3.1].Letbea-polytope-polytopealinearsurjectionThentheposetcohisthefaceposetofa-polytopeInparticularthetight-coherentsubdivisionsofcorrespondtotheverticesThe()-polytope()iscalledthe berpolytopeofthesurjectionItgeneralizesthesecondarypolytopes berzonotopes,andmonotonepathpolytopesencounteredinSection1.Astrikingfeatureof()isthatitcanalsobeconstructedasthe\Minkowskiaverage"overpoints(inawell-de nedsense;see[BilleraandSturmfels1992,2])ofallofthepolytopal bers).Foranalgebro-geometricinterpretationofthe berpolytope(intermsofChowquotientsoftoricvarieties;see[Kapranovetal.1991;Hu1999].AsaconsequenceofTheorem2.1,ifoneremovesthetopelement1fromcoh),correspondingtotheimproper-coherentsubdivisiononeobtainsthefaceposetofapolytopal(1)-sphere,thatistheboundaryof().ThegeneralizedBauesproblemasksroughlyhowclosethewholeBauesposet1istopologicallytothissphere.Beforephrasingtheproblemprecisely,wemust rstgivetheposet1atopology.Thestandardwaytodothisistoconsideritsordercomplex,theabstractsimplicialcomplexofchainsintheposet[Bjorner1995,(9.3)].Fromhereon,wewillabusenotationandusethenameofanyposetalsotorefertothetopologicalspacewhichisthegeometricrealizationofitsordercomplex.WecannowstatetheGeneralizedBauesProblem,inatleasttwoforms,onestrongerthantheother.Bothoftheseformsappear,implicitlyorexplicitly,eitherinthe rstmentionoftheproblembyBilleraandSturmfels[1992,p.545]orinthelaterformulationof[Billeraetal.1994,3].Question2.2(WeakGBP).homotopyequivalenttoa-sphereQuestion2.3(StrongGBP).Istheinclusioncohastrongdeformationretraction THEGENERALIZEDBAUESPROBLEM311sucharegularcellcomplexdoesnotexistingeneral;relativelysmallexamplesshowthatlowerintervalsin1neednotbehomeomorphictospheres,whichisthenecessaryconditionforaposettobetheposetoffacesofaregularcellcomplex[Bjorner1995,(12.5)].Onewaytoobtainsuchanexampleistoaddaseventhpointtothepointcon gurationinFigure2,inanylocationinthesameplane.Thentheuniquepropersubdivisionoffa0gwhichleavestheconvexhullofcompletelyunre nedliesatthetopofalowerintervalthatisnothomeomorphictoasphere.3.RelationstoOtherProblemsHavingstatedtheGBP,wecannowexplainhowitrelatestosomeofourpreviousquestions,andtootherproblemsindiscretegeometryandtopologicalcombinatorics.Connectivityquestions.Questions1.2,1.3,and1.4areclearlyrelatedtotheGBP,andappearat rstglancetobeweaker,inthattheyonlyaskforconnectivityofacertaingraphratherthanhomotopysphericityofacomplex.However,apositiveanswertothestrongGBPdoesnotquiteimplyapositiveanswertoeitherofthesequestions.Thereareatleasttwosubtletiesassociatedwiththisconclusion,whichwewillnowattempttomakeprecise.Foranelementofa niteposet,letitsrankbethelengthoftheshortestsaturatedchainbelowitintheposet,sothatminimalelementshaverank0.Letdenotetheelementsatrank0andrank1respectivelyintheBauesposet),andletbethegraphontheunionnBobtainedbyrestrictingtheHassediagramfor)tothisunionofitsbottomtworanks.Givenapointset,letdenoteitsgraphoftriangulationsandbistellaroperations.Similarly,forazonotope,letbeitsgraphofcubicaltilingsandcube ips,andforapolytopewithalinearfunctional,letP;fbethegraphofmonotonepathsandpolygonmoves.The rstsubtletyweencounteristherelationbetweenthegraphsP;fandthegraph.Itistemptingtosaythatthebarycentricsubdivisionof,orP;fisthesameasfortheappropriatemap,sincethevertexsetsofeachofthesebarycentricsubdivisionsformsasubsetoftheverticesoftheappropriate.However,ittakessomeworktoshowthatthesegraphscoincide.Inthecaseofpointsets,aslightgeneralizationofthepullingconstructiondescribedbyLee[1991,2]canbeusedtoshowthateverysubdivisioncanbere nedtoatriangulation,soelementsofrank0intheBauesposetcoincidewiththetriangulations.Furthermore,theresultsandideasof[Santos1999]canbeusedtoshowthattheelementsofrank1coincidewiththebistellaroperations.Bothoftheseassertionsareeasywhenisingeneralposition,butotherwisebecomesubtle. THEGENERALIZEDBAUESPROBLEM313Lemma3.1.Letbea niteposetwithatopelementandassumethathasthepropertythateverystrictprincipalorderidealeitherisconnectedemptyorconsistsoftwoincomparableposetelementsThenthegraphobtainedbyrestrictingtoitselementsatrankconnectedOfcoursetheGBPonlyimpliesthehypothesesofthislemmaaresatis edwith)forthestrictprincipalorderideal.ButthereissomehopethatifonecouldprovetheweakGBPinsomecase,thenonecanalsoprovehomotopysphericityfortherestoftheorderideals,andhencecanusethelemma.Underthegenericityassumptionswhichwerementionedabovefortriangulationsandmonotonepaths,onecancheckthattheseprincipalorderidealsareCartesianproductsofBauesposetsforsmallerpolytopes,andhencetheirconnectivityfollowsfrompositiveanswerstotheGBPforthesesmallerpolytopes.Inparticular,thepositiveanswerforthestrongGBPformonotonepaths[Billeraetal.1994](tobediscussedinthenextsection)impliesapositiveanswertoallofQuestion1.4undertheassumptionthatthefunctionalgeneric.Withoutsuchgenericityassumptions,thestructureoftheseprincipalorderidealsmaybemorecomplicated.Aspeci cstudyoftheseprincipalorderidealsinthecaseoftriangulationsofapointsetwasinitiatedbySantos[1999].Flipde ciency.WhilewearediscussingQuestions1.2,1.3,and1.4,itisap-propriatetomentionquestionsaboutthenumberofbistellarneighborsofatriangulation,thenumberofcube ipneighborsofatiling,andthenumberofpolygon-moveneighborsofamonotonepath.Inthegeneralsettingofeverytight-coherentsubdivisionofrepresentsavertexofthe()-polytope),andthereforewillhaveatleastneighboringtight-coherentsubdivisionslyingalongtheedgesofthepolytope.Ontheotherhand,-inducedsubdivisionswhicharenot-coherentmayhavefewerneighbors,inwhichcasewewillsaythatthesubdivisioninquestionhas ipde ciency.Ifthesubdivi-sionhasnoneighborswesaythatitisisolated,whichofcoursegivesanegativeanswertotheGBPif1inthatcase.NotethattheexamplewithallcoherentcellularstringsinFigure16showsthatformonotonepaths,wemusteitherbecarefultorestrictourselvestothecaseofagenericfunctional,orelserede newhatismeantbya\polygon-move"intalkingabout ip-de ciency.Flipde ciencyhasbeenverywell-exploredforcubicaltilingsofzonotopesintheguiseofcountingsimplicialregionsofhyperplanearrangementsormutationsinorientedmatroids;see[Richter-Gebert1992,Introduction3]foranicesum-mary.Fortriangulations, ip-de ciencyhasbeenexploredonlymorerecently;see[deLoeraetal.1999;Santos1997b].Formonotonepaths,thequestionof ipde ciencyappearsnottohavebeenconsideredmuchatall.ArelatedquestionconcernsthelevelofconnectivityofthegraphsP;foftriangulationsandbistellarmoves,tilingsandcube ips,monotonepathsandpolygonmovesrespectively.Foreachofthesegraphs,theinducedsubgraph THEGENERALIZEDBAUESPROBLEM315Conjecture3.3.isarealizableorientedmatroidofrankthenishomotopyequivalenttotheGrassmannianof-planesinBabson[1993]showedthatConjecture3.3istruefor2,andintheBooleancase,thatMacP(3)ishomotopyequivalenttotheappropriateGrasmmannian.See[MnevandZiegler1993].TherelationtoextensionspacesandtheBauesproblemisthattheextensionposet)isadoublecoverof)inthesensethatthereisatwo-to-oneorder-preservingmap).Asaconsequence,onecanviewtheconjecturethat)ishomotopyequivalenttotheGrassmannianof(1)-planesin(or(1)-dimensionalrealprojectivespace)asaprojectivizedversionoftheExtensionSpaceConjecture.ThisalsoimpliesthatthepositiveresultsofSturmfelsandZiegler[1993]ontheExtensionSpaceConjecture3.2givesomespecialcasesofConjecture3.3.4.PositiveResultsInthissectionwereviewresultswhichgiveapositiveanswertotheweakorstrongGBP.Themethodsusedtendtosegregateintothethreeparadigmsdescribedbelow,wherewehaveindicatedthereferenceswhoseproofsexemplifytheseparadigms:Retraction:AproofofthestrongGBP,byexhibitinganexplicithomotopyretracting)ontocoh).See[Billeraetal.1994,Theorem2.3;RambauandZiegler1996,Theorem1.4;Athanasiadisetal.1997,Theorem1.2].Homotopies:AproofoftheweakGBPbyashortchainofhomotopyequiva-lencesfrom)tosomeposetknowntohavesphericalhomotopytype.See[Bjorner1992,Theorem2;Edelmanetal.1997,Theorem1.2].Deletion-Contraction:AninductiveproofoftheweakGBPusing(sometimesimplicitly)thenotionofdeletion-contractionfrommatroidtheory.See[Billeraetal.1994,Theorem1.2;SturmfelsandZiegler1993,Theorem1.2;EdelmanandReiner1998,Theorem3;RambauandSantos1997,Theorem1.1].Recallthegeneralset-up:weconsideralinearsurjectionofpolytopeswithP;Qbeing-dimensional,respectively,andwithhavingvertices.Wedivideourdiscussionofpositiveresultsintothefollowingcategories:=1(monotonepaths),=2(lowcodimension),=cube(zonotopaltilings),=1or=simplex(triangulations),cyclicpolytopes.Thecase:Monotonepaths.TheoriginalpaperofBillera,KapranovandSturmfelsthatposedtheGBP[Billeraetal.1994]provesboththeweakand THEGENERALIZEDBAUESPROBLEM317TheextensionspaceconjecturewasinvestigatedbySturmfelsandZiegler[1993],whoprovedmostofthestrongestpositiveresultsatpresent.Theyshowedthataninductivelyde nedtechnicalhypothesiscalledstrongEuclideannesstheorientedmatroidimpliesthattheextensionspaceconjectureholds,usingtheDeletion-Contractionparadigm.TheythenshowedthatanorientedmatroidelementswithrankisstronglyEuclideanundervarioushypotheses:if3,or2,orwhenisthealternatingorientedmatroidn;rthatcomesfromacyclicarrangementofvectors[Bjorneretal.1993,9.4].Sinceorientedmatroiddualityexchangesandkeeps xed,andsincethealternatingorientedmatroidssatisfy(n;rn;n,theirresultsimplytheweakGBPwhenisa-cubeandisa-dimensionalzonotopeunderthefollowingconditions:3,or2,orisacycliczonotope.ItwasalsoshownbyBailey[1997]thatthehypothesisofstrongEuclideannessholdsforwhenistheorientedmatroidassociatedtoa-dimensionalzonotopehaving+1genericgeneratingsegments,butwitharbitrarymultiplecopiesofeachsegment.HencetheweakGBPalsoholdsfortilingsofsuchzonotopes.Weremarkthatfor=2,thecubicaltilingsofthesezonotopes(hexagons)wereenumeratedbyMacMahon[1915{16,vol.2,X]in1899.BeforeclosingourdiscussionoftheBauesproblemfortilings,wewouldliketomentionanimportantresultofSantoswhichshowsthattheGBPforzonotopaltilingsisaspecialcaseoftheGBPfortriangulations.Toanyrealizedorientedmatroidonecanassociateapolytope()knownasitsLawrencepolytope[BayerandSturmfels1990;BilleraandMunson1984;Santos1997a,Chapter4;Bjorneretal.1993,9.3],usingthetechniqueofGaletransforms.Thisconstruction,duetoJimLawrence(unpublished;see[Ziegler1995,p.183])givesanencodingofalltheinformationoftheorientedmatroidintothefacelatticeofthepolytope(),andisusefulfortransferringmatroidconstructionsandexamplesintotheworldofpolytopes.Theorem4.1[Santos1997a,Theorem4.14;Huberetal.1998].LetbeazonotopewithassociatedorientedmatroidThereisanaturalbijectionbetweenthesubdivisionsofandthezonotopalsubdivisionsof=single-elementliftingsofwhichinducesanisomorphismbetweentheassociatedBauesposetsConsequently,anegativeanswertotheGBPforzonotopaltilingsproducesanegativeanswerfortriangulations.WeremarkthattheLawrenceconstructionappliesmoregenerallytoorientedmatroidswhicharenotnecessarilyrealiz-able,yieldingamatroidpolytope)[Bjorneretal.1993,9.1]ratherthanapolytope.Santos'resultalsoappliesinthissituation,whereonede nesthetriangulationofamatroidpolytopeviahisde nitionofatriangulationofan THEGENERALIZEDBAUESPROBLEM319resultsaretight,inasense,sinceanunpublishedexampleofdeLoera,SantosandUrrutiagivesatriangulationofacon gurationof8pointsinwithonepointinterior,havingonly3bistellarneighbors.Theyalsoexhibitin[deLoeraetal.1999],atriangulationof9pointsiningeneralpositionwithonpointinterior,havingonly4bistellarneighbors,andatriangulationof10pointsinconvexgeneralpositioninhavingonly4bistellarneighbors.Therearerelativelyfewfamiliesofpolytopesinhigherdimensionswhosetriangulationshavebeenwell-studied,otherthanthecyclicpolytopeswhichwillbediscussedinthenextheading.Wementionafewoftheseotherfamilieshere.Triangulationsofthe-cubewhichusefewmaximalsimplicesaredesirableforthepurposesof xedpointalgorithms[Todd1976;Ziegler1995,Problem5.10].Thereforeonewouldbeinterestedinalgorithmswhichenumeratethetriangula-tions,suchastheprogramPUNTOS[deLoera1995a],whichenumeratesallthetriangulationslyinginthesameconnectedcomponentofthegraphofbistellaroperationsasthecoherenttriangulations.Unfortunately,deLoera[deLoera1995b,Theorem2.3.20;1996]hasshownthatincoherenttriangulationsofthe-cubeexistfor4(includingsomewith ipde ciency)soitisnotknownwhetheronecanproducealltriangulationsofthecubebythismethod.Wemomentarilydigresstopointouta(perhaps)surprisingfactaboutthetriangulationsofapointsetwhichareextremalwithrespecttothenumberofmaximalsimplices|theyneednotbecoherent!SuchanexamplecomesfromworkofOhsugiandHibi[1997],andwasfurtheranalyzedbydeLoera,FirlaandZiegler;see[FirlaandZiegler1997].Thisexampleisapointcon gurationhaving15pointsinlyinginconvexposition(infact,havingallcoordinates0or1),forwhichthethemaximalnumberofmaximalsimplicesinaregulartriangulationissmallerthanforanarbitrarytriangulation.Thisexamplealsohasthesamepropertyfortriangulationswiththeminimalnumberofmaximalsimplices.Cartesianproductsofsimpliceswereconjecturedtohaveonlyco-herenttriangulations(see[Ziegler1995,Problem5.3]).Thisistruewhenisequalto1,asthesecondarypolytopeinthiscaseisknowntobetheper-mutohedron[Gel'fandetal.1994,p.243].However,deLoera[1995b,Theorem2.2.17;1996]showedthatthereareincoherenttriangulationswheneverm;nandSturmfels[1996,Theorem10.15]showedthattheyexistwhen=2and5.Aclosestudyofthesecondarypolytope()anditsfacetswasinitiatedbyBilleraandBabson[1998],whosepointofdeparturewasthefactthatatypical berofthemap+1)(+1)isatransportationpolytope,i.e.,thepolytopeofnonnegative(+1)+1)matriceswithsomeprescribedrowandcolumnsums.ThePh.D.thesisofR.Hastings[1998]con-tainssomeinterestingwaystoviewarbitrarytriangulationsof,andafewdi erentwaystoviewincoherencefortriangulationsofpointsetsingeneral.Anotherinterestingfamilyofpolytopesarethe(k;nhypersimplicesk;nde nedin[GelfandandMacPherson1992]astheconvexhullofallsumsofdis- THEGENERALIZEDBAUESPROBLEM321In[Athanasiadisetal.1997],theauthorsdeterminewhenthe berpolytopen;dn;d))iscanonicalineitherofthefollowingtwoways:all-inducedsubdivisionsofn;d)are-coherent(thishappensonlywhen2,or=1and=2,exceptingafewsporadiccases),ornotall-inducedsubdivisionsare-coherent,butthesubsetof-coherentsubdivisionsdoesnotdependuponthechoiceofparameters(thishappensexactlyif=1,2,and2).Theremainingresultsaboutcyclicpolytopesdealexclusivelywiththecaseoftriangulationsofn;d)andtheircombinatorics,thatis,=1.Thephilosophyherehasbeentotryandgeneralizeasmanythingsaspossiblefromthecase=2,wherethecyclicpolytope2)isaconvexpolygonasinFigure3.For=2weknowalmosteverythingaboutthetriangulationsandsubdivisions,aswasdescribedinSection1.Allthesesubdivisionsofarecoherent,sotheposetofsubdivisionsisthefaceposetofthesecondarypolytope(),the(3)-dimensionalassociahedron.The1-skeletonoftheassociahedronistheHassediagramfortheTamariposet(seeFigure3),andthisposetturnsouttobealattice(orientedsidewaysinthat gure).Incontrasttothe=2case,noteverytriangulationofn;d)iscoherentingeneral,startingwith3),4),5);see[Athanasiadisetal.1997].Itisalsoperhapsdisappointingthattriangulationsofn;d)canhave ip-de ciency[RambauandSantos1997],andthehigherStashe {Tamariposetsarenotlat-ticesfor4[Edelmanetal.1997].Onthebrightside,RambauandSantos[1997]provethateventhoughtriangulationsofn;d)arenotalwayscoherent,theydoenjoythesomewhatweakerpropertyofbeingliftingtriangulations;see[Santos1997a,De nition3.4;Bjorneretal.1993,p.410].Rambau[1997b]alsoprovestheinterestingfactthattriangulationsofn;d)arealwaysshellablesimplicialcomplexes(see[Bjorner1995,11.1]forthede nitionandsigni canceofshellability).KapranovandVoevodsky[1991]suggestedageneralizationoftheTamariposetontriangulationsof2)toapartialorderontriangulationsofn;dwhichtheycalledthehigherStashe orders,andwhichwerestudiedbyEdelmanandReiner[1996]underthenameofhigherStashe -Tamariorders.Actually,thislatterpaperde nestwopossiblesuchorderswhicharerelatedtoeachother,anditisnotquiteclear(thoughpresumablytrue)thatoneoftheseordersisthesameasthatconsideredbyKapranovandVoevodsky.In[EdelmanandReiner1996]itwasprovedfor3thatthesetwopartialorderscoincideandbotharelattices,andalsothatfor5thegraphofbistellaroperationsontriangulationsofn;d)isconnected.ThislastresultwasgreatlyimprovedbyRambau[1997b],whoshowedthatthegraphisconnectedforall.Inthispaper,Rambauintroducestheimportant\sliding"ideamentionedearlier:whenoneslidesthe-thvertexonthemomentcurvedowntowardthe(1)-stver-tex,asubdivisionofn;d)inducesasubdivisionof).Thismapon THEGENERALIZEDBAUESPROBLEM323farfromsettlingtheGBP.Inparticular,Santos'constructions[Santos1997b]showthattheratioofthenumberofbistellar ipsofatriangulationoftothe\expectedlowerbound"1canapproachzero.Wesummarizethemainopencasesofthe(weak)GBPhere:Question5.1.(i)Istheposetofzonotopalsubdivisionsofa-dimensionalzonotopewithgeneratorshomotopyequivalenttoa-dimensionalsphere(ii)Istheposetofsubdivisionsofapointsethomotopyequivalenttoa-dimensionalsphereAswasmentionedearlier,theworkofSantos[1997a]showsthatthe rstquestionisaspecialcaseofthesecond,andthereforeacounterexampleforthe rstwouldalsosettlethesecond,aswellastheExtensionSpaceConjecture3.2andConjecture3.3.6.OpenQuestions,Problems,ConjecturesThemainopenproblemsrelatedtotheGBPareQuestions1.2,1.3,5.1.Inthissection,wecollectotherproblemsandquestions,someofwhichaddressmorespeci callytheexpectedfrontierbetweenthecasesofforwhichtheGBPhaspositiveandnegativeanswer.Insomecases,wegooutonalimbbyo eringourpredictions,butwewarnthereaderthatmanyoftheseopinionsarenotbasedonverymuchdata,andareonlytheopinionofthisauthor.Webeginbyconjecturingthefrontierbetweengoodandbadbehaviorfortriangulations,inspiredbythepositiveandnegativeresultscontainedin[AzaolaandSantos1999;deLoeraetal.1999].Conjecture6.1.Letbeapointcon gurationinandinconvexpositionThen(a)ThestrongGBPhaspositiveanswerforsubdivisionsofwithoutthegen-eralpositionassumptionneededin[EdelmanandReiner1998]).(b)Furthermore,thegraphoftriangulationsandbistellaroperationsis(1)-vertex-connected,soinparticulareverytriangulationofhasatleast1bistellarneighbors.(c)Ontheotherhand,thereexistsapointcon gurationinconvexpositioninandalsooneinconvexpositionin,eachofwhichhasanisolatedtriangulationwhichre nesnoothersubdivision.Infact,itwouldbenicetohaveasimplerproofoftheweakGBPforevenassuminggeneralposition,orperhapsaproofofthestrongGBPviatheRetractionparadigm.Forzonotopaltilings,onewonderswhethertherearerealizableorientedma-troidsexhibitingthebehaviorofthecounterexamplesofMnevandRichter-Gebert[1993]. THEGENERALIZEDBAUESPROBLEM325knownformulacountingtriangulationsistheCatalannumber enumeratingtriangulationsofthe2).Wealsohavethefollowingmostlytrivialresults:1)has2triangulations,)has1triangulation,)has2triangulations,and)has+3triangulationsbytheresultsof[Lee1991].Santos[1998]recentlymadethefollowingconjecturefor),basedontheknowndata:Conjecture6.5.LetbethenumberoftriangulationsofThentheseconddi erencehasthefollowingform(provedbySantos),HepointsoutthatthisconjectureeasilyleadstosimpleclosedformforSpeci cally,onewouldhave+4)where+8ifiseven,+23)13ifisodd.Aswasmentionedearlier,in[Athanasiadisetal.1998]theauthorsgiveapositiveanswertotheGBPforalloftheprojectionsbetweencyclicpolytopes.Thespecialcaseoftheprojectionn;d2),alongwiththemethodsusedin[Athanasiadisetal.1997,Theorem1.2;Reiner1998]inspirethefollowingconjecture,whichwouldalsopartlyexplaintheimportanceoftheinteriorpointpresentintheRambau{Zieglercounterexample[RambauandZiegler1996].Conjecture6.6.ThestrongGBPhaspositiveanswerforliesandallverticesofprojectundertotheboundaryofTheproofoftheweakGBPfortriangulationsofcyclicpolytopesgivenbyRam-bauandSantos[1997]usestheDeletion-Contractionparadigm.Wenextdiscusssomeotherconjecturalapproachestothisresult,involvingtherelationofcyclicpolytopestocycliczonotopesandalternatingmatroids[Bjorneretal.1993,9.4].Foranypointcon guration,thedualpointcon gurationGaletransformlivesin[Ziegler1995,Lecture6].Asingleelementex-tensionoftheorientedmatroidcorrespondingtogivesrisetoasubdivisioncalledaliftingsubdivision[Bjorneretal.1993,p.410],andhencegivesamapfromtheextensionposet)totheposetofsubdivisionsof.Inthe THEGENERALIZEDBAUESPROBLEM327Thefactthattheseposetshavehomotopyequivalentproperpartsalreadyfollowsfromthesphericityresultspreviouslymentioned.WhatdoesthishavetodowiththeGBP?Itiseasytoseethatforanyzonotopalsubdivisionofn;d),thesetofallcubicaltilingswhichre neitformsanintervalbothinn;d)andinn;d).Thisgivesaverynaturalorder-preservingmapfromtheBauesposetn;dtotheposetofproperintervalsn;d)orn;d).Similarly,foranysubdi-visionofn;d),thesetoftriangulationswhichre neitformsanintervalbothn;d)andinn;d),givinganorder-preservingmapfromtheBauesposetn;d))totheposetofproperintervalsinn;d)orn;dConjecture6.9.(a)Theimageofthemapfromn;dtotheposetofproperintervalsineithern;dn;disexactlythesetofnoncontractibleopenintervals.(Truefor=1,by[BjornerandWachs9].)Theimageofthemapfromn;dtotheposetofproperinter-valsineithern;dn;disexactlythesetofnoncontractibleintervals(Truefor3,by[Edelmanetal.1997,Lemma6.3].)Thepreviousconjecturewouldhavetwoniceconsequences:(i)Itwouldcompletelydescribethehomotopytypeofallintervals(andhencecomputetheobiusfunction)inbothhigherBruhatordersn;dn;dandinbothhigherStashe {Tamariordersn;dn;d).TheintervalswhicharetheimagesoftheabovemapsarealwaysisomorphictoCartesianproductsofposets)or)forsmallerval-ues,andhencebytheknownsphericityresults,arealsohomotopyspherical.(ii)Itwouldimplythatn;d))ishomotopyequivalenttothesus-pensionoftheproperpartofn;d)orn;d),andsimilarlyn;d))ishomotopyequivalenttothesuspensionoftheproperpartofn;dn;d).ThisfollowsfromthefactobservedbyWalker[Walker1988]thattheposetofproperintervalsinaboundedposetishomeomorphictothesuspensionoftheproperpartof,andthefactthattheposetofpropernon-contractibleintervalsinisadeformationretractoftheposetofallproperintervalsin[Edelmanetal.1997,Lemma6.5].Conjectures6.8and6.9 tintoadiagramofconjecturalhomotopyequivalences(amongspaceswhichareallknowntobehomotopyequivalenttoan(1)-sphere)connectingtheBauesposetsfortriangulationsofn;d)andzonotopaltilingsofn;d)toeachotherandtothehigherBruhatandhigherStashe {Tamariorders: THEGENERALIZEDBAUESPROBLEM329AswasthecaseinConjecture6.9,whenevertheabovequestionhasapositiveanswer,themapinquestioninducesahomotopyequivalencebetweenandthesuspensionoftheproperpartof).TheexamplesofMnevandRichter-Gebert[1993]showthat)doesnotalwayshavesphericalhomotopytype,butitisstillpossiblethatsuchahomotopyequivalencemayexistevenincaseswheresphericityfails.OurlastquestionrelatestoStembridge'sphenomenonoccurringinthecontextofcubicaltilingsofzonotopes;see[Stembridge1994].Azonotopeacentrally-symmetricpolytope,andhencetheantipodalmapinducesanaturalinvolutiononitssetofcubicaltilings.Saythatatilingofcentrallysymmetricifitis xedbythisinvolution.Consideralsothegraphcubicaltilingsandcube ipson.Itcanbeshownthatthisgraphwillalwaysbebipartite.Wesaythatthephenomenonholdsforifthenumberofcentrallysymmetrictilingsofisthesameasthedi erenceincardinalityofthetwosidesofthebipartitionofStembridge[1994]observedthatknownformulascountingsymmetryclassesofplanepartitionsimpliedthe1phenomenonforzonotopalhexagonsintheplane(withmultiplecopiesofthethreelinesegmentswhichgeneratethehexagonasazonotope).FurtherexamplesinvolvingcertainzonotopaloctagonswerefoundbyElnitsky[1997]andBailey[1997].However,onecancheckthatthephenomenondoesnotholdforallzonotopes,astherearealreadyexamplesofzonotopaloctagonsforwhichitfails.Question6.12.ForwhichzonotopesdoesthephenomenonholdAcknowledgmentsTheauthorthanksLauraAnderson,ChristosAthanasiadis,LouBillera,PaulEdelman,SilvioLevy,JesusdeLoera,JorgRambau,JurgenRichter-Gebert,PacoSantos,ColinSpringer,JimStashe ,GunterZiegler,andananonymousreferee.Theyprovidedmanyhelpfulconversations,insights,edits,andinsomecasesgavepermissiontousetheir guresorincludetheirconjecturesinthispaper.NoteAddedinProofTherecentpaper[Athanasiadisetal.1999]resolvesConjecture6.3arma-tivelyforsimplepolytopesandfor3-dimensionalpolytopes,butnegativelyingeneral.Speci cally,itisshownthatfor3,thegraphof-monotonepathsina-polytopewithrespecttoagenericfunctionalisatleast2-connected,butthereexistexamplesforeach3inwhichthegraphcontainsavertexofdegree2. THEGENERALIZEDBAUESPROBLEM331[Billeraetal.1993]L.J.Billera,I.M.Gel'fand,andB.Sturmfels,\Dualityandminorsofsecondarypolyhedra",J.Combin.TheorySer.B:2(1993),258{268.[Billeraetal.1994]L.J.Billera,M.M.Kapranov,andB.Sturmfels,\Cellularstringsonpolytopes",Proc.Amer.Math.Soc.:2(1994),549{555.[Bjorner1992]A.Bjorner,\Essentialchainsandhomotopytypeofposets",Proc.Amer.Math.Soc.:4(1992),1179{1181.[Bjorner1995]A.Bjorner,\Topologicalmethods",pp.1819{1872inHandbookofcombinatorics,v.2,editedbyR.Grahametal.,North-Holland,Amsterdam,1995.[BjornerandWachs1997]A.BjornerandM.L.Wachs,\Shellablenonpurecomplexesandposets,II",Trans.Amer.Math.Soc.:10(1997),3945{3975.[Bjorneretal.1993]A.Bjorner,M.LasVergnas,B.Sturmfels,N.White,andG.M.Ziegler,Orientedmatroids,EncyclopediaofMathematicsanditsApplicationsCambridgeUniversityPress,NewYork,1993.[Bohne1992]J.Bohne,EinekombinatorischeAnalysezonotopalerRaumaufteilungenDissertation,UniversitatBielefeld,1992.AlsoavailableasPreprint92{041,Sonder-forschungsbereich343\DiskreteStruktureninderMathematik",1992.[ConnellyandHenderson1980]R.ConnellyandD.W.Henderson,\Aconvex3-complexnotsimpliciallyisomorphictoastrictlyconvexcomplex",Math.Proc.CambridgePhilos.Soc.:2(1980),299{306.[Destainvilleetal.1997]N.Destainville,R.Mosseri,andF.Bailly,\Con gurationalentropyofcodimension-onetilingsanddirectedmembranes",J.Statist.Phys.:3-4(1997),697{754.[Edelman1984]P.H.Edelman,\Apartialorderontheregionsofdissectedbyhyperplanes",Trans.Amer.Math.Soc.:2(1984),617{631.[Edelman1998]P.H.Edelman,\Orderingpointsbylinearfunctionals",preprint,1998.[EdelmanandReiner1996]P.H.EdelmanandV.Reiner,\ThehigherStashe {Tamariposets",Mathematika:1(1996),127{154.[EdelmanandReiner1998]P.H.EdelmanandV.Reiner,\VisibilitycomplexesandtheBauesproblemfortriangulationsintheplane",DiscreteComput.Geom.(1998),35{59.[EdelmanandWalker1985]P.H.EdelmanandJ.W.Walker,\Thehomotopytypeofhyperplaneposets",Proc.Amer.Math.Soc.:2(1985),221{225.[Edelmanetal.1997]P.H.Edelman,J.Rambau,andV.Reiner,\Onsubdivisionposetsofcyclicpolytopes",preprint1997-030,MSRI,1997.Seehttp://www.msri.org/publications/preprints/online/1997-030.html.[EdelsbrunnerandShah1992]H.EdelsbrunnerandN.Shah,\Incremental ippingworksforregulartriangulations",pp.43{52inProceedingsoftheEighthAACMSymposiumonComputationalGeometry(Berlin,1992),ACMPress,NewYork,1992.[Elnitsky1997]S.Elnitsky,\RhombictilingsofpolygonsandclassesofreducedwordsinCoxetergroups",J.Combin.TheorySer.A:2(1997),193{221.[FirlaandZiegler1997]R.T.FirlaandG.M.Ziegler,\Hilbertbases,unimodulartriangulations,andbinarycoversofrationalpolyhedralcones",preprint,1997.ToappearinDiscreteComput.Geom. THEGENERALIZEDBAUESPROBLEM333byP.GritzmannandB.Sturmfels,DIMACSSeriesinDiscreteMathematicsandTheoreticalComputerScience,Amer.Math.Soc.,Providence,RI,1991.[deLoera1995a]J.A.deLoera,\PUNTOS",1995.Seeftp://geom.umn.edu/priv/deloera/PUNTOS.tar.AMapleprogramforcomputingtriangulationsofpointcon gurations.[deLoera1995b]J.A.deLoera,TriangulationsofpolytopesandcomputationalalgebraPh.D.thesis,CornellUniversity,Ithaca,NY,1995.[deLoera1996]J.A.deLoera,\Nonregulartriangulationsofproductsofsimplices",DiscreteComput.Geom.:3(1996),253{264.[deLoeraetal.1995]J.A.deLoera,B.Sturmfels,andR.R.Thomas,\Grobnerbasesandtriangulationsofthesecondhypersimplex",Combinatorica:3(1995),[deLoeraetal.1996]J.A.deLoera,S.Hosten,F.Santos,andB.Sturmfels,\Thepolytopeofalltriangulationsofapointcon guration",Doc.Math.(1996),103{[deLoeraetal.1999]J.A.deLoera,F.Santos,andJ.Urrutia,\Thenumberofgeometricbistellarneighborsofatriangulation",DiscreteComput.Geom.(1999),131{142.[MacMahon1915{16]P.A.MacMahon,Combinatoryanalysis(2v.),CambridgeUniversityPress,1915{16.ReprintedbyChelsea,NewYork,1960.[MacPherson1993]R.D.MacPherson,\Combinatorialdi erentialmanifolds:asymposiuminhonorofJohnMilnor'ssixtiethbirthday",pp.203{221inTopologicalmethodsinmodernmathematics(StonyBrook,NY,1991),editedbyL.R.GoldbergandA.Phillips,PublishorPerish,Houston,[ManinandSchechtman1989]Y.I.ManinandV.V.Schechtman,\Arrangementsofhyperplanes,higherbraidgroupsandhigherBruhatorders",pp.289{308inAlge-braicnumbertheory:inhonorofK.Iwasawa,Advancedstudiesinpuremathematics,AcademicPress,andTokyo,Kinokuniya,Boston,1989.[Milgram1966]R.J.Milgram,\Iteratedloopspaces",Ann.ofMath.(2)(1966),[MnevandRichter-Gebert1993]N.E.MnevandJ.Richter-Gebert,\Twoconstruc-tionsoforientedmatroidswithdisconnectedextensionspace",DiscreteComput.Geom.:3(1993),271{285.[MnevandZiegler1993]N.E.MnevandG.M.Ziegler,\Combinatorialmodelsforthe nite-dimensionalGrassmannians",DiscreteComput.Geom.:3(1993),241{250.[MosseriandBailly1993]R.MosseriandF.Bailly,\Con gurationalentropyinoctagonaltilingmodels",Internat.J.ModernPhys.B:6-7(1993),1427{1436.[MRIn.d.]Hexa-grid,atoypuzzleproducedbytheMathematicalResearchInstituteinTheNetherlands(MRI).Information:Prof.D.Siersma,Budapestlaan6,3584CDUtrecht,TheNetherlands,mri@math.ruu.nl.[Nabutovsky1996]A.Nabutovsky,\Geometryofthespaceoftriangulationsofacompactmanifold",Comm.Math.Phys.:2(1996),303{330. THEGENERALIZEDBAUESPROBLEM335[Schonhardt1928]E.Schonhardt,\UberdieZeulegungvonDreieckspolyederninTetraeder",Math.Annalen(1928),309{312.[Sleatoretal.1988]D.D.Sleator,R.E.Tarjan,andW.P.Thurston,\Rotationdistance,triangulations,andhyperbolicgeometry",J.Amer.Math.Soc.:3(1988),[Stanley1977]R.P.Stanley,\Eulerianpartitionsofaunithypercube",pp.49inHigherCombinatorics,editedbyM.Aigner,NATOAdvancedStudyInstituteSeries.Ser.C,D.Reidel,Dordrecht,Holland,1977.AppendixtoarticlebyD.Foata,\Distributionseuleriennes".[Stanley1997]R.P.Stanley,Enumerativecombinatorics,vol.1,CambridgeStudiesinAdvancedMathematics,CambridgeUniversityPress,Cambridge,1997.Cor-rectedreprintofthe1986original.[Stanley1999]R.P.Stanley,Enumerativecombinatorics,vol.2,CambridgeStudiesinAdvancedMathematics,CambridgeUniversityPress,Cambridge,1999.[StantonandWhite1986]D.StantonandD.White,ConstructivecombinatoricsUndergraduateTextsinMathematics,Springer,NewYork,1986.[Stashe 1963]J.D.Stashe ,\Homotopyassociativityof-spaces,I",Trans.Amer.Math.Soc.(1963),275{292.[Stembridge1994]J.R.Stembridge,\Somehiddenrelationsinvolvingthetensymme-tryclassesofplanepartitions",J.Combin.TheorySer.A:2(1994),372{409.[Sturmfels1991]B.Sturmfels,\Fiberpolytopes:abriefoverview",pp.117{124inSpecialdi erentialequations,editedbyM.Yoshida,KyushuUniversity,Fukuoka,[Sturmfels1996]B.Sturmfels,Grobnerbasesandconvexpolytopes,UniversityLectureSeries,Amer.Math.Soc.,Providence,RI,1996.[SturmfelsandZiegler1993]B.SturmfelsandG.Ziegler,\Extensionspacesoforientedmatroids",DiscreteComput.Geometry(1993),23{45.[Tamari1951]D.Tamari,Monodespreordonnesetcha^nesdeMal`cev,Ph.D.thesis,Paris,1951.[Tamari1962]D.Tamari,\Thealgebraofbracketingsandtheirenumeration",Arch.Wisk.(3)(1962),131{146.[Todd1976]M.J.Todd,Thecomputationof xedpointsandapplications,LectureNotesinEconomicsandMathematicalSystems,Springer,Berlin,1976.[Tonks1997]A.Tonks,\Relatingtheassociahedronandthepermutohedron",pp.33{36inOperads:ProceedingsofRenaissanceConferences(Hartford,CTandLuminy,France,1995)),editedbyJ.-L.Lodayetal.,Contemporarymathematics,Amer.Math.Soc.,Providence,RI,1997.[Walker1988]J.W.Walker,\Canonicalhomeomorphismsofposets",EuropeanJ.Combin.:2(1988),97{107.[Ziegler1993]G.M.Ziegler,\HigherBruhatordersandcyclichyperplanearrange-ments",Topology:2(1993),259{279.[Ziegler1995]G.M.Ziegler,Lecturesonpolytopes,GraduateTextsinMathematics,Springer,NewYork,1995. NewPerspectivesinGeometricCombinatoricsMSRIPublicationsVolume,1999Littlewood{RichardsonSemigroupsANDREIZELEVINSKYAbstract.Wediscusstheproblemof ndinganexplicitdescriptionofthesemigroupLRoftriplesofpartitionsoflengthatmostsuchthatthecor-respondingLittlewood{Richardsoncoecientisnon-zero.Afterdiscussingthehistoryoftheproblemandpreviouslyknownresults,wesuggestanewapproachbasedonthe\polyhedral"combinatorialexpressionsfortheLittlewood{Richardsoncoecients.ThisarticleisbasedonmytalkattheworkshoponRepresentationTheoryandSymmetricFunctions,MSRI,April14,1997.Ithanktheorganizers(SergeyFomin,CurtisGreene,PhilHanlonandSheilaSundaram)forbringingtogetheragroupofoutstandingcombinatorialistsandforgivingmeachancetobringtotheirattentionsomeoftheproblemsthatI ndveryexcitingandbeautiful.Inpreparingthenoteforthisvolume(October1998),Imadeafewsmallchangesintheoriginalversion[Zelevinsky1997],andaddedintheendabrief(andundoubtedlyincomplete)accountofsomeexcitingprogressachievedsinceApril1997.Iamgratefultotherefereeforhelpfulsuggestions.For1,let;:::;bethesemigroupofpartitionsoflengthatmost.Ourmainobjectofstudywillbetheset;;;;whereistheLittlewood{Richardsoncoecient.RecallthatisthesetofhighestweightsofpolynomialirreduciblerepresentationsofGL);iftheirreduciblerepresentationofGL)withhighestweightthenisthemultiplicityof.Equivalently,thearethestructureconstantsofthealgebraofsymmetricpolynomialsinvariableswithrespecttothebasisofSchurpolynomials.WecallLRLittlewood{Richardsonsemigroupoforderthisnameisjusti edbythefollowingresult: ThisworkissupportedinpartbyNSFgrantDMS-9625511;researchatMSRIissupportedinpartbyNSFgrantDMS-9022140. LITTLEWOOD{RICHARDSONSEMIGROUPS339Theorem2.isapolyhedralconvexconeinThistheoremwasannouncedbyseveralauthors(seebelow)butapparentlythe rstcompleteproofwasgivenbyA.Klyachko[1996].ProblemB.DescribeHEexplicitly.ProblemsAandBarecloselyrelatedtoeachother.Theyhavealonghistory.ProblemBwasprobably rstposedbyI.M.Gelfandinthelate40's(eigenvaluesofthesumoftwoHermitianmatriceswerestudiedalreadybyH.Weylin1912,butIbelievethatI.M.Gelfandwasthe rstwhosuggestedstudyingtheconeasawholeratherthanconcentrateonindividualeigenvalues).AsolutionwasannouncedbyV.B.Lidskii[1950],butthedetailsoftheproofwereneverpublished.F.A.BerezinandI.M.Gelfand[1956]discussedtherelationshipsbetweenProblemsAandB;inparticular,theysuggestedtheremarkableequality=LR(1)wherestandsforthesetofnonnegativeintegers.A.Horn[1962]solvedProblemBfor4andconjecturedageneralanswer.Toformulatehiscon-jectureweneedsometerminology.Let[1]denotetheset;:::;r.Forasubsett;r],wedenotebythepartition)=(s;:::;iAtriple(I;J;K)ofsubsetsof[1]willbecalledHE-consistentI;J;Khavethesamecardinalityand(.Forandd;r],wewillwrite;inparticular,,;r]=jj=1++r.Horn'sConjecture.Let;,andbevectorsinwithweaklydecreasingcomponents.Then(;;ifandonlyifandforallHE-consistenttriples(I;J;K)ofsubsetsof[1TheproofsofHorn'sConjectureandequality(1)wereannouncedbyB.V.Lid-skii[1982];unfortunately,asinthecaseofthepaperbyV.B.Lidskii[1950]mentionedearlier,thedetailedproofsneverappeared.Wenowdiscusstheresultsin[Klyachko1996].FirsttheauthorprovesThe-orem2;moreover,hegivesthefollowingdescriptionofasetofde ninglinearinequalitiesforHE,whichisveryclose(butnottotallyequivalent)toHorn'sConjecture.Modifyingthede nitionofHE-consistenttriples,wewillcallatripleI;J;K)ofsubsetsof[1LR-consistentI;J;Khavethesamecardinalityand(Theorem3[Klyachko1996]Horn'sconjecturebecomestrueifHE-consistencyintheformulationisreplacedbyLR-consistency.Thefactthatany(;;satis estheinequalitiesforallLR-consistenttriples(I;J;K)wasprovedindependendlyin[Helmkeand LITTLEWOOD{RICHARDSONSEMIGROUPS341elegant,thisprocedureisnotveryexplicitfromcombinatorialpointofview.Thus,wewouldliketoformulatethefollowingproblem:ProblemC.Findanon-recursivedescriptionofLREquivalently,ProblemCasksforanon-recursivedescriptionofLR-consistenttriples.Wewouldliketosuggestanelementarycombinatorialapproachtothisproblembasedonthe\polyhedral"expressionsforthecoecientsgivenin[BerensteinandZelevinsky1992].Topresentsuchanexpression,itwillbeconvenienttomodifyLittlewood{Richardsoncoecientsasfollows.Wewillconsidertriples()ofdominantintegralweightsforthegroup.Letbetheirreducible-modulewithhighestweight,andletdenotethedimensionofthespaceof-invariantsinthetripletensorproduct.TherelationshipbetweentheandtheLittlewood{Richardsoncoecientsisasfollows.Wewillwriteeachoftheweightsandasanonnegativeintegerlinearcombinationoffundamentalweights;:::;!(inthestandardnumeration):(2)Thede nitionsreadilyimplythatif;;aresuchthatthen,wherethecoordinatesandin(2)aregivenby(3)Thus,theknowledgeofLRisequivalenttotheknowledgeofthesemigroup PassingfromLR hastwoimportantadvantages.First,thecoecientsaremoresymmetricthantheoriginalLittlewood{Richardsoncoecients:theyareinvariantunderthe12-elementgroupgeneratedbyallpermutationsofthreeweightsand,togetherwiththetransformationreplacingeachoftheseweightswithitsdual(i.e.,sending()to()).Second,thedimensionoftheambientspacereducesby2,from31to3(1).Ontheotherhand, hasatleastonepotentialdisadvantage:theconditionisreplacedbyamorecomplicatedconditionthat)isdivisible(inmoreinvariantterms,thismeansthatmustbearadicalweight,i.e.,belongstotherootlattice).Toillustratebothphenomena,onecancomparethedescriptionofLRgivenabovewiththefollowingdescriptionof whichisequivalenttotheclassicalClebsch{Gordanrule: consistsoftriplesofnonnegativeintegers()satisfyingthetriangleinequalityandsuchthatiseven. LITTLEWOOD{RICHARDSONSEMIGROUPS343thelinearinequalities0foralllinearformsasinCorollary6.ThissuggeststhefollowingstrategyfordeterminingthesetofLR-consistenttriples.Takeatripleofsubsets(I;J;K)in[1]ofthesamecardinality,considerthecorrespondinglinearform,writethisformasandcomputetheform.Astraightforwardcalculationgivesijk(7)where#()standsforthenumberofelementsofwhichare.TakingintoaccountTheorem3,weobtainthefollowingnewcriterionforLR-consistency.Theorem7.AtripleofsubsetsI;J;Kofthesamecardinalityy;r]isLR-consistentifandonlyifandtheformin(7)istail-positive.Inparticular,sinceeverytail-positivelinearformisobviouslyanonnegativelinearcombinationoftheijk,weobtainthefollowingnecessaryconditionforLR-consistency.Corollary8.IfatripleofsubsetsI;J;KK;r]isLR-consistentthen)+#()(8)foralli;j;kItwouldbeinterestingtodeducethiscorollarydirectlyfromtheLittlewood{Richardsonrule.Onecanshowthat(8)isnotsucientforLR-consistency.Infact,Theorem7canbeusedtoproduceothernecessaryconditionsforLR-consistency.OnecanhopetosolveProblemCbygeneratingasystemofneces-saryandsucientconditionsforLR-consistencyusingthismethod.AddedinOctober1998:SinceApril1997,importantprogresshasbeenachievedintheproblemsdiscussedabove.Hereisaverybriefandincompletediscussionofsomeofthesedevelopments.First,aniceself-containedexpositionofKlyachko'sresultswasgivenintheseminartalk[Fulton1999].Onecanalso ndthereanaccountofsomenewdevelopmentsinrelatedareas,andanexpandedlistofreferences.AbeautifularmativesolutiontotheSaturationProblemhasbeenan-nouncedin[KnutsonandTao1998].Theproofisentirelycombinatorial,anditbasicallyfollowsthe\polyhedral"approachdiscussedabove.Themainnewin-gredientisageometricreformulationoftheLittlewood{Richardsonruleintermsofcertainplanarcon gurationsoflinesegments(thehoneycombmodel).SeveralinterestinganaloguesandgeneralizationsofthepolyhedralconesHEandLRwereintroducedandstudiedin[Brion1998;BerensteinandSjamaar1998;AgnihotriandWoodward1997].Itwouldbeinterestingtouseageometricapproachdevelopedin[Brion1998]forasolutionofProblemCabove. LITTLEWOOD{RICHARDSONSEMIGROUPS3455Elashvili1992]A.G.Elashvili,\Invariantalgebras",pp.57{64inLiegroups,theirdiscretesubgroups,andinvarianttheory,editedbyE.B.Vinberg,AdvancesinSovietMath.,Amer.Math.Soc.,Providence,RI,1992.[Fulton1997]W.Fulton,Youngtableaux,LondonMath.Soc.StudentTextsCambridgeUniversityPress,Cambridge,1997.[Fulton1999]W.Fulton,\EigenvaluesofsumsofHermitianmatrices(afterA.Klyachko)",pp.255{269ineminaireBourbaki1997/98(exposes835{849),Astrisque,Soc.math.France,Paris,1999.[HelmkeandRosenthal1995]U.HelmkeandJ.Rosenthal,\EigenvalueinequalitiesandSchubertcalculus",Math.Nachr.(1995),207{225.[Horn1962]A.Horn,\EigenvaluesofsumsofHermitianmatrices",Paci cJ.Math.(1962),225{241.[Klyachko1996]A.A.Klyachko,\Stablebundles,representationtheoryandHermitianoperators",Reportno.1,1996/97,InstitutMittag-Leer,1996.Earlierversion,UniversityofMarne-La-Vallee,1994.[KnutsonandTao1998]A.KnutsonandT.Tao,\ThehoneycombmodeloftheBerenstein-ZelevinskypolytopeI.Klyachko'ssaturationconjecture",preprint,1998.Availableathttp://xxx.lanl.gov/abs/math.RT/9807160.[Lidskii1950]V.B.Lidskii,\Onthecharacteristicnumbersofthesumandproductofsymmetricmatrices",DokladyAkad.NaukSSSR(1950),769{772.InRussian.[Lidskii1982]B.V.Lidskii,\SpectralpolyhedronofasumoftwoHermitianmatrices",Funktsional.Anal.iPrilozhen.:2(1982),76{77.InRussian;translationinFunct.Anal.Appl.(1982),139{140.[Macdonald1995]I.G.Macdonald,SymmetricfunctionsandHallpolynomials,2nded.,OxfordUniv.Press,1995.[Thompson1989]R.C.Thompson,\Divisibilityrelationssatis edbytheinvariantfactorsofamatrixproduct",pp.471{491inTheGohberganniversarycollection(Calgary,1988),vol.1,editedbyH.Dymetal.,OperatorTheory,AdvancesandApplications,Birkhauser,Basel,1989.[Zelevinsky1997]A.Zelevinsky,\Littlewood{Richardsonsemigroups",preprint1997-044,MathematicalSciencesResearchInstitute,Berkeley,1997.Availableathttp://www.msri.org/publications/preprints/online/1997-044.html.AndreiZelevinskyDepartmentofMathematicsNortheasternUniversityBoston,MA02115UnitedStatesandrei@neu.edu