/
When you think of evolution, what comes to mind? When you think of evolution, what comes to mind?

When you think of evolution, what comes to mind? - PowerPoint Presentation

catherine
catherine . @catherine
Follow
64 views
Uploaded On 2024-01-13

When you think of evolution, what comes to mind? - PPT Presentation

Draw a circle on your paper like the one below Write down words thoughts or what you know or think you know about evolution At the top write information related to geological evolution At the bottom write down information about biological evolution ID: 1040446

radioactive ice evolution rock ice radioactive rock evolution time fossil years layer element evidence age remains layers fossils change

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "When you think of evolution, what comes ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1. When you think of evolution, what comes to mind?Draw a circle on your paper like the one below. Write down words, thoughts, or what you know (or think you know) about evolution. At the top write information related to geological evolution. At the bottom, write down information about biological evolution.EvolutionGeologicalBiological

2. What is evolution?What are examples of evolution related to:TechnologyEarth’s GeologyLiving ThingsEnvironmentMethodologyOthers ……..Activity: “The Evolution of Technology”

3. Gradual change over time: Biological evolution: - Charles Darwin’s “Theory of Evolution” - natural selection; survival of the fittest; species/genetic variation - adaptations (adaptations box activity, Gizmo: Natural Selection, newspaper) Geological evolution: - Uniformitarianism - theory of plate tectonics, continental drift - Law of Superposition Environmental evolution: - ice cores (dissolved gasses), rock layersEvolution: Theories & EvidenceLife on Earth, as well as, the shape of Earth’s surface, has a history of change that is called evolution.

4. Theories of EvolutionUniformitarianism (Geological Evolution)The theory that the gradual natural forces now changing the shape of the earth's surface have been operating in the past much the same way.  In other words, the present is the key to understanding the past. From this view, the earth must be very old. What are some examples of “natural forces” that change earth’s surface?Charles Darwin (Biological Evolution)The 19th century English scientist who carried out the necessary research to conclusively document that evolution has occurred and then made the idea acceptable for scientists and the general public. This man did not invent the idea of evolution. His work led to the theory of natural selection and survival of the fittest.Lamarck (Chevalier de Lamarck) (Biological Evolution)Lamarck's explanation for evolution summarizes the idea that evolution occurs as a result of an organism acquiring a change in body shape due to using or not using particular body parts during its lifetime and then passing the new trait on to its offspring.

5. Compare & ContrastDarwin’s Theory of EvolutionLamarck’s Theory of EvolutionTheory of UniformitarianismDarwin’s Theory of EvolutionLamarck’s Theory of EvolutionTheory of Uniformitarianism

6. Compare & Contrast Theories of:Charles Darwin’s Theory of EvolutionLamarck’s Theory of EvolutionTheory of UniformitarianismCharles Darwin’s Theory of EvolutionLamarck's Theory of EvolutionTheory of UniformitarianismResearch included investigations conducted of the Galapagos IslandsConcluded that natural selection occurred by survival of the fittestTraits passed genetically from parent to offspringBy either using or not using body parts in a certain way, new traits could be acquiredTraits acquired after birth could be passed to offspringDarwin & Lamarck- Related to theories of biological evolutionTheory of Uniformitarianism (TOU)- Related to only geological evolution- States that forces of nature (erosion, earthquakes, volcanoes, water, wind, etc.) that changed the shape of earth in the past are continuing to do so- All of these are “theories”- All involve the concept of “change over time”- Both Darwin’s theory and TOU are directly or indirectly related to environmental change- Both have evidence based on researchStudent Feedback: This is the data put together by students in classes 3– 6.

7. Evidence of Evolution of Organisms and Landforms* Comparative Anatomy*Species/Genetic Variations*Fossils* The Fossil Record*Geologic Time Scale* Plate Tectonics* Continental Drift *Law of Superposition

8. Fossils as EvidenceFossils are the preserved remains or traces of once living things. Fossils can be compared to one another and to living organisms according to their similarities and differences.Mineral replacement/petrification: Minerals in water and soil replace the living material. (mold, cast)Trace/Imprints: Imprints, footprints are left by the once living organism.Carbonization: A thin layer of carbon is left by the once living organism.Preservation of Actual Remains: (skin, bones, teeth, hair, etc.) - amber - ice - tar (LeBrea Tar Pits) - peat preservationMethods of Fossilization: Lab: “Fossil Identification”What can scientists learn by studying fossils?“Analyzing Trace Fossils” activity

9. The Relationship Between Sedimentation and FossilizationSediments, sand and smaller particles are gradually buried and cemented together to form solid rock. More recently deposited rock layers are more likely to contain fossils resembling existing species. Thousands of layers of sedimentary rock not only provide evidence of the history of Earth itself, but also of changes in organisms.Rock Cycle1. Why are fossils more likely to be found in sedimentary rock?2. Why are fossils never found in igneous rock? 3. How can studying fossils in rock layers provide evidence of biological evolution?“Fossil Fun” http://www.abc.net.au/beasts/fossilfun/makingfossils/default.htm “Fossil Fun” online activity What process may lead to the discovery of fossils?

10. 123Which rock layer do you think is the oldest, 1, 2 or 3?

11. The Rock CycleIgneous Intrusions cool inside Earth’s surface.Igneous Extrusions cool outside Earth’s surface.Why are fossils more likely to be found in sedimentary rock?

12. Mineralization/Petrification: Minerals in water and soil replace the living material.trilobiteammonitePetrified woodDinosaur skullTrilobites and ammonites are used as “index fossils”.Index fossils

13. Trace or Imprint Fossils: Imprints, footprints are left by the once living organism4312What can be inferred by studying each of these fossils?

14. “Traces of Tracks” ActivityWhat can you infer about picture #1?What can you infer about picture #2?1.2.

15. Carbonization: A thin layer of carbon is left by the once living organism. Use the concept of “comparative anatomy” to infer what each organism is.3412What can be inferred by studying each of these fossils? How did you use the concept of “comparative anatomy” to reach your conclusions?

16. Actual Remains of OrganismsFossils Preserved in Ice3214How does ice allow for the preservation of actual remains?

17. Actual Remains of OrganismsFossils Preserved in Amber43213b3aHow does this method of preservation allow actual remains to be present?Based on “comparative anatomy” , what living organisms of today may they be descendants of?

18. Actual Remains of Organisms: Preserved in Tar The La Brea Tar Pits are a group of tar pits around which Hancock Park was formed, in urban Los Angeles. Asphaltum or tar (brea in Spanish) has seeped up from the ground in this area for tens of thousands of years. The tar is often covered with dust, leaves, or water. Over many centuries, the bones of animals that were trapped in the tar were preserved.321How did this method of preservation preserve the actual remains?http://www.youtube.com/watch?v=G7FK59waeo0“La Brea Tar Pits: An Urban Mystery” 6:08 min.

19. The Bog Bodies of Iron Age Europehttp://topractice.wikispaces.com/1+-+Arch.+of+Complex+Societies+Bog+bodies+term+paper (3:51 min.)Bog bodies have been found in many locations in northwestern Europe: mostly in Ireland, England, Germany, and Denmark. Generally, these countries have poor preservation conditions, but the bogs are an exception to the rule.How did this method of preservation allow for the preservation of the actual remains?

20. http://www.abc.net.au/beasts/fossilfun/On-line Activity : “Fossil Fun”Burying BodiesSkeleton JigsawsColor and CamouflagePitfall  Making Fossils  Footprints Game

21. Carbon-14 dating is a way of determining the absolute age of certain objects of a biological origin(actual remains) up to about 50,000 years old. It is used in dating things such as bone, cloth, wood, skin and plant fibers. This will be discussed when we discuss radiometric dating.

22. Based on what scientists have learned from the fossil record, they have developed theLargest…….……………. To………….………. SmallestEons Eras Periods Epochs

23. Geologic Time Scale http://www.youtube.com/watch?v=7PQURsc2SYs “Geologic Timeline Music Video” 4:23Which time periods are the longest? 2. Which time periods are the shortestCoach Lesson 29Precambrian Eon bacteria: single-celled organisms Mass Extinction: Meteor hits Earth leads to environmental changeMass Extinction: Continental drift leads to environmental change

24. Cont. Geologic Time ScaleEons are not shown.Compare to an annual calendar.http://www.esse.ou.edu/fund_concepts/Fundamental_Concepts4/Geologic_Time_Scale.html

25. Using the Geologic Time Scale, answer the questions.Which included the longest amount of time: eons, eras, periods, epochs?In which era are we living?In which period are we living?Which organism evolved first, the first land plants or the first reptiles?Put the following organisms in order from oldest to youngest. first amphibians, first birds, first flowering plants, first mammals6. Scientists believe that Earth is approximately how old?You may use the Geologic Time Scale at your table to answer the questions.*Anatomical similarities and differences between organisms living today and between them and organisms in the fossil record enable the reconstruction of evolutionary history and inference of lines of evolutionary descent.Distribute student copies.

26. Eon

27. Extinction of SpeciesMost species that have lived on the earth are now extinct (99%).Extinction occurs when the environment changes and organisms do not have traits necessary to survive and reproduce.3. Some organisms that lived long ago are similar to existing organisms, but some are quite different.4. Extinction of species is apparent in the fossil record.5. Mass extinctions occurred at the end of each era.Scientists believe that 99% of all organisms that ever lived on Earth have become extinct.

28. Environmental Changes: Natural process and human activities result in environmental changes.Natural Processes: - earthquakes - movement of ice sheets - volcanoes - plate tectonics/ continental drift = change in sea levels, changes of height of land, changes in climate, Human Factors: - pollution = less air and water quality - deforestation = increased erosion, - global warming = increased temp. = melting of ice caps = change in sea levels,

29. The Fossil RecordThe collection of fossils and their placement in chronological order (through location of sedimentary layers in which they are found or through radioactive dating) is known as the “fossil record”.What have scientists learned by studying the fossil record?- Existence of organismsDiversity of organismsRelationship between organismsTime of mass extinctionsEvolution of organismsAdaptions of organismsClimate changesLinks to geological evolutionStudent Geologic Timeline Project

30. Geological Evolution: Find the link. http://www.youtube.com/watch?v=YgE-dSx-fPc “Grand Canyon Superposition” 5:51 min

31. Law of Superposition In undisturbed rock layers, the oldest rock layers are on the bottom and the youngest layers are on the top.An “unconformity” is a disruption in a rock layer. This may be caused by geologic forces or erosion from wind, water, etc..

32. The Law of Superposition“Who Dun it?” Activityhttp://www.jbole.com/worksheets/WhoDunit.pdfSomeone took the last cookie in the cookies jar last night. The last person to leave the scene is the culprit. Who was it?Use the clues to solve the mystery.  Good luck.Who took the last cookie?Explain your reasoning using the concept of the Law of Superposition.Put the people in order from 1 to 5 with 1 being who arrived at the scene first and 5 as who arrived last. Someone took the last cookie in the cookie jar last night.The last person to leave the scene is the culprit. Who was it?Clues:The Butler walks to work.The Handyman rides a bike.The Cook rides a motorcycle.The Maid drives a car.The Nephew has a seeing-eye dog.

33. UnconformitiesWhat is evidence of an unconformity?What may have caused the unconformity?What is evidence of sedimentation?In “Time 2” what is the oldest layer?In “Time 3” what is the oldest layer?In “Time 4” what is the oldest layer?The red layer is an example of a ______.

34. 1. Which rock layer is the oldest? Explain.2. Which rock layer is the youngest? Explain.3. Does this tell the absolute or relative age? Explain.4. In which type of rock can absolute age be determined?SG: “The Relative Age of Rocks”Even through “folding” has occurred, the layers are in their original order.

35. Intrusions - areas in Earth’s crust where magma has cooled before it reached the surface forming an igneous intrusion- Intrusions are always younger than the rock layers they go through. (put on study guide)Igneous intrusion“Finding Clues to Rock Layers”23451Put the layers in order from oldest to youngest.

36. Which layer is the igneous intrusion? Explain.Put layers 1 – 6 in order from oldest to youngest.654321

37. How old are layers 3 and 4? (Provide quantitative data.)Layer 2 is __________________ than layer 1.Layer 3 is __________________ than layer 4.4. Layer 1 is __________________ than layer 2.Does this provide “absolute” or “relative” age? Explain.

38. Fault lines are the breaks in Earth’s crust where tectonic plate boundaries exist.http://www.youtube.com/watch?v=Xs4yNL1M8Gg “How The Earth Was Made: Ring of Fire” 43:37 min.

39. Plate TectonicsThe movement of Earth’s continental (land) and oceanic (ocean) plates has caused mountains and deep ocean trenches to form and continually change the shape of Earth’s crust.These movements have caused plates to pass through different climatic zones. This movement of the continents is called “continental drift”.http://www.pbslearningmedia.org/resource/ess05.sci.ess.earthsys.plateintro/plate-tectonics-an-introduction/ plate tectonics 2:22 min.Activity: “Modeling Seafloor Spreading”

40. Evidence of Continental Drift/Seafloor SpreadingCoastline similarities2. Fossil similaritiesGlaciers (movement, concentration of dissolved gasses and other substances)4. Age and types of rocksRock magnetism

41.

42. Hotter magma is less dense so it rises. Magma cools as it rises making it more dense. As the density increases, the magma begins to sink. As the magma moves, so does the plate that is above it.http://www.youtube.com/watch?v=Kpoko_l34ZE Convection Currents 1:06Convection CurrentsActivity: “Convection Currents”Convection CurrentsConverging PlatesDiverging PlatesMagma near the core is hotter and less dense; therefore, it will rise.Magma cools as it rises to the surface. It becomes more dense and will sink.Green represents continental plates.

43. Mid Ocean Ridgeshttp://www.youtube.com/watch?v=bGye6vlOpbY “The Mid-Atlantic Ridge” 2:53Activity: “Modeling Seafloor Spreading”AABBCCAt which location are the rock layers older, A, B or C? Explain.rift valley

44. Why does this diagram show a convergent plate boundary and not a divergent plate boundary?“Modeling Convergent Plate Movement” activitySubduction zone

45. Where is a divergent plate boundary shown?Where is a convergent plate boundary shown?

46. Ice Cores: Evidence of Environmental Evolutionhttp://www.pbs.org/wgbh/nova/warnings/stories/Scientists collect ice cores by driving a hollow tube deep into the miles-thick ice sheets of Antarctica and Greenland (and in glaciers elsewhere). The long cylinders of ancient ice that they retrieve provide a detailed record of what was happening in the world over the past several ice ages. That's because each layer of ice in a core corresponds to a single year—or sometimes even a single season—and most everything that fell in the snow that year remains behind, including wind-blown dust, ash, atmospheric gases, even radioactivity.Record these 8 examples in your notebook.(Dissolved gasses)

47. What is the relationship between CO2 and temperature?

48. Ice Cores Provide Evidence of Radioactivity1986 - Radioactivity In April 1986, Russia's nuclear power station at Chernobyl exploded, killing 250 people and sending radioactive fallout around the world. Less than two years later, as the graph indicates, scientists detected Chernobyl radioactivity in snow at the South Pole.In cores from Antarctica and Greenland, researchers have pinpointed the beginning of atomic-bomb testing in the mid-1950s. They have also identified a spike representing fallout from stepped-up atmospheric testing that took place just prior to the 1963 Test Ban Treaty, which allowed for underground tests only. In the years following 1965, by which time some 90 countries had signed the treaty, Antarctic snow revealed a sharp drop in radioactive fallout.

49. Ice Cores Provide Evidence of Air Pollution 1900 - Air PollutionGases trapped in ice cores show the dramatic impact that human activities have had on the planet since the Industrial Revolution. The first graph reveals how atmospheric carbon dioxide, methane, and nitrous oxides from coal and oil burning power plants, cars, and other fossil-fuels (coal, oil, natural gas)The burning of fossil fuels has climbed along with the world population, with as yet unknown effects on the climate system.

50. Ice Cores Provide Evidence of Sea Storminess 1400 AD - Sea StorminessViking colonies in Greenland abruptly vanished toward the end of the 14th century. This graph, which combines results from cores taken in both Antarctica and Greenland, tracks sodium levels over the past 1,200 years. In colder periods, seas become stormier because of the greater contrast in temperatures between the tropics and the poles, and so more sodium—an indicator of sea salt—winds up on the ice caps. About 1400 AD, the cores at both poles clearly show a sharp rise in sodium, which some scientists say marks the onset of the Little Ice Age, a period of much cooler temperatures that lasted into the 19th century. For the Vikings, a series of abnormally cold winters in the late 1300s spelled doom.

51. Ice Core Evidence of Pollution1167 AD – DatingAnnual layers of snowfall in ice cores can be counted as easily as tree rings, allowing precise dating of events such as volcanic eruptions. Distinct annual layers stand out because, in snow that falls in summer, crystals are larger and acidity higher than in winter snow. In some cases, scientists can even tell seasons apart, by using a laser to measure the concentration of dust particles. (Winds are generally stronger in springtime, meaning more dust gets blown into the atmosphere.) In this photograph of an ice core drilled in the Kunlun Mountains of western China, the thick, lighter bands indicate heavy snowfall during the monsoon season in the year 1167 AD, while the thinner, darker strips show layers of dust blown into the snowfield during the dry season.

52. Ice Core Evidence of Climate Change12,000 BP (before present) - Rapid Climate ChangeAs this graph shows, a jump occurred about 12,000 years ago, as the last glacial period (the Pleistocene) was giving way to our current warm "interglacial" period (the Holocene). Suddenly, possibly in less than five years, average temperatures, which were slightly cooler than today's, plunged by about 27°F, returning the world to near-glacial conditions. As the graph indicates, calcium levels tend to go up and snow accumulation down with temperature. The Younger Dryas, as this freak period is known, lasted about 1,300 years before it returned—just as abruptly—to the temperatures typical of the period immediately preceding it.Ice cores have revealed that global climate—long thought to change only very gradually—can shift with frightening speed, in some cases in a matter of years.

53. Ice Core Evidence of Temperature ChangeBackground information on isotopes not necessary to learn as part of the standards. (Optional)Temperature has yo-yoed over the ages as wildly as it does through any single year. Like natural thermometers, ice cores have recorded these fluctuations, which scientists can "read" by examining *isotopes of oxygen and hydrogen in water trapped in the ice. Isotope: each of two or more forms of the same element that contain equal numbers of protons but different numbers of neutrons in their nuclei, and hence differ in relative atomic mass but not in chemical properties; in particular, a radioactive form of an element.The data in this graph, gleaned from a core drilled in central Greenland, shows how temperatures have risen by more than 20°C (36°F) since the height of the Ice Age 25,000 years ago.

54. Ice Core Evidence of Volcanic Activity73,000 BP - Volcanic EruptionsApproximately 73,000 years ago, an Indonesian volcano known as Toba erupted with enough force to send more than 600 cubic miles of volcanic material into the atmosphere.Such violent, so-called caldera eruptions can drastically alter global climate, by spewing so much ash and sulfur compounds into the atmosphere as to block sunlight and lower temperatures worldwide. Ice cores offer scientists the best means available to learn how past eruptions have affected climate—and thus to predict the impact that future ones might have. If an eruption on the order of Toba, which climatologists believe may have led to as much as several centuries of cold climatic conditions, were to occur today, it could seriously disrupt life on Earth. (Yellowstone Nat. Park caldera)Detected on this graph, which displays volcanic sulfate levels between 20,000 and 110,000 years ago, Toba was the largest eruption of the past 500,000 years. (The seemingly larger spike at about 53,000 years ago involved a series of smaller eruptions on Iceland, which is far closer than Toba is to Greenland, where this core was taken.)

55. Ice Core Evidence of Global Warming160,000 BP - Global WarmingMany scientists fear that rising levels of so-called "greenhouse gases" from the burning of fossil fuels (coal, oil and natural gas) and other human activities will cause global warming, with potentially grave consequences for human agriculture and society. One of the clearest signs that elevated levels of greenhouse gases can result in warming comes from an ice core taken near the Russian Vostok station in Antarctica. At about 360 parts per million, the amount of CO2 in the atmosphere today far exceeds levels at any time in the past 160,000 years—indeed, in the past few million years. For those worried about global warming, this is a sobering statistic.What are possible consequences of global warming?This graph tracks temperature and atmospheric levels of carbon dioxide (CO2) and methane (CH4) from the present back to about 160,000 years ago. (This represents about 11,350 feet of ice accumulation.) The graph clearly shows how a rise in gases will mean a rise in global temperature (though whether rising gases trigger rising temperatures, or vice versa, remains unknown). Also note that (though the graph, which has data up to two decades old, does not show this),http://video.nationalgeographic.com/video/101-videos/global-warming-101 “Global Warming : 101“ 3:04

56. Determining Relative and Absolute AgeRelative Age: the age of a rock or fossil described in comparison to that of another rock or fossil. Methods - Law of Superposition - use of index fossils Absolute Age: the actual age of a rock or fossil (actual remains), or how long age it formed Methods – radiometric/radioactive dating with igneous rock or radiometric/radiocarbon dating (with actual remains)

57. Radioactive DecayMost elements are stable: If they are not part of a chemical reaction, they do not change. Chemical elements are made of atoms. In stable elements, the atom stays the same. In the 19th century, Henri Becquerel discovered that some chemical elements have atoms that change. During their change they send out a particle. In 1898, Marie and Pierre Curie called this phenomenon radioactive decay.The time it takes, on average for half the atoms of a substance to change/decay is called half-life.Henri BecquerelMarie and Pierre Curie

58. Radioactive/Radiometric Dating: a means of measuring the absolute age of a material by comparing the amount of a radioactive (unstable) form of an element with the amount of its decay (stable) elementRadioactive Decay: the spontaneous break down of a radioactive substance along with the emission of radiation

59. Radioactive Elements Listhttp://periodictable.com/Elements/Radioactive/Radioactive Elements and Half-liveshttp://www.buzzle.com/articles/list-of-radioactive-elements.html

60. Radioactive (unstable) Elements & Decay (stable) Elements1st Half life2nd Half life3rd Half life4th Half lifeBy what percent does the radioactive element decrease after each half life?What is the relationship between the radioactive (unstable) element and the decay (stable) element?Radioactive Element (g)

61.  Half-lifeMass ofOriginal Carbon-14Remaining (g)MassOf Decay Element Nitrogen-14 Number ofYears0100%00150%50%5,730225%75%11,460312.5%87.5%17,1904   What is the “stable” element in the above data table? Explain.What is the “unstable” element in the above data table? Explain.What is the half-life of carbon-14? Explain.By what percent does carbon-14 decrease after each half-life?By what percent does nitrogen-14 increase after each half-life?How many half-lives must pass before 25% of the carbon-14 is remaining?Complete the data for the 4th half-life.Carbon 14 is used to determine absolute age of actual remains.

62. Radiocarbon DatingCharcoal, wood, twigs and seedsbone Marine, estuarine and riverine shell. Leather Peat Coprolites (samples of preserved feces). Lake muds and sediments. Soil Ice coresPollenHair PotteryMetal casting ores Wall paintings and rock art works Iron and meteorites Bird eggshell Corals and foraminifera Blood residues Textiles and fabrics Paper and parchment Fish remains Insect remainsResins and gluesAntler and horn WaterCarbon 14 = radioactive (unstable) elementNitrogen 14 = decay (stable) elementHalf-life: the time it takes for half of a radioactive element to decayWhat is the “half-life” of carbon 14?As the radioactive element _____, the decay element will ______.

63. Half-Life: the amount of time it takes for a radioactive element to decay into its “decay element”Radioactive ElementDecay ElementHalf-Life ofRadioactive ElementEffective Dating Range(Years)Minerals and OtherMaterials that canBe DatedMajor Radioactive Elements Used in Radiometric Dating“Absolute age” can only be determined with materials that have the radioactive element in them.

64. How can you tell that the “stable decay element” and the “radioactive material X“ are correctly labeled? What is the “half-life” of the radioactive (stable) element?How many half-lives will occur before half of the decay element is present?Time ( X 10,000 years)Practice: “Decay of Radioactive Material”SG: “Radioactive Dating of Rocks”Twizzler Activity: “Modeling Radioactive Decay”

65.