/
Scintillation Detectors Elton Smith Scintillation Detectors Elton Smith

Scintillation Detectors Elton Smith - PowerPoint Presentation

celsa-spraggs
celsa-spraggs . @celsa-spraggs
Follow
348 views
Uploaded On 2018-11-08

Scintillation Detectors Elton Smith - PPT Presentation

Jlab Summer Lecture Series Introduction Components Scintillator Light Guides Light Sensors Photomultiplier Tubes Silicon Photomultipliers Formalism Electronics Application to Particle Identification ID: 722917

scintillation detectors elton smith detectors scintillation smith elton scintillator pmt glass time reflective refractive boundaries light flight measure detector

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Scintillation Detectors Elton Smith" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Scintillation Detectors

Elton Smith -- Jlab Summer Lecture Series

Introduction

Components

Scintillator

Light Guides

Light Sensors

Photomultiplier Tubes

Silicon Photomultipliers

Formalism

/Electronics

Application to Particle IdentificationSlide2

Elton Smith / Scintillation Detectors

B field ~ 5/3 T

R = 3m

L =

½

p

R = 4.71 m

p = 0.3 B R = 1.5 GeV/c

t

p

= L/

b

p

c = 15.77 ns

t

K

= L/

b

K

c = 16.53 ns

D

tpK = 0.76 ns

Experiment basics

b

p = p/√p2+mp2 = 0.9957

bK = p/√p2+mK2 = 0.9496 Slide3

Elton Smith / Scintillation Detectors

B field ~ 5/3 T

R = 3m

L =

½

p

R = 4.71 m

p = 0.3 B R = 1.5 GeV/c

t

p

= L/

b

p

c = 15.77 ns

t

K

= L/

b

K

c = 16.53 ns

D

tpK = 0.76 ns

Experiment basics

b

p = p/√p2+mp2 = 0.9957

bK = p/√p2+mK2 = 0.9496

Particle Identification by time-of-flight (TOF) requires

Measurements with accuracies of ~ 0.1 nsSlide4

Elton Smith / Scintillation Detectors

Measure the Flight Time between two Scintillators

400 cm

100 cm

300 cm

20 cm

Disc

Disc

TDC

Start

Stop

450 nsSlide5

Elton Smith / Scintillation Detectors

Measure the Flight Time between two Scintillators

400 cm

100 cm

300 cm

20 cm

Disc

Disc

TDC

Start

Stop

Particle Trajectory

450 nsSlide6

Elton Smith / Scintillation Detectors

Propagation velocitiesc = 30 cm/nsvscint

= c/n = 20 cm/ns

v

eff

= 16 cm/ns

vpmt = 0.6 cm/nsvcable = 20 cm/nsDt ~ 0.1 nsDx ~ 3 cmSlide7

Elton Smith / Scintillation Detectors

CLAS detector with FC pulled apartSlide8

Elton Smith / Scintillation Detectors

Start counter assemblySlide9

Elton Smith / Scintillation Detectors

Scintillator typesOrganicLiquid

Economical

messy

Solid

Fast decay time

long attenuation lengthEmission spectraInorganic (crystals)AnthraceneUnused standardNaI, CsIExcellent g resolution

Slow decay timeLead Tungstate (PbWO4

)High density and resolutionSlide10

Elton Smith / Scintillation Detectors

Scintillator typesOrganicLiquid

Economical

messy

Solid

Fast decay time

long attenuation lengthEmission spectraInorganic (crystals)AnthraceneUnused standardNaI, CsIExcellent g resolution

Slow decay timeLead Tungstate (PbWO4

)High density and resolutionSlide11

Elton Smith / Scintillation Detectors

Light Spectrum

Photomultipliers and Accessories

Electron Tubes Ltd (1996) Slide12

Elton Smith / Scintillation Detectors

Light Collection: Light guidesGoalsMatch (rectangular) scintillator to (circular) pmt

Optimize light collection for applications

Types

Plastic

AirNone

“Winston” shapesSlide13

Elton Smith / Scintillation Detectors

acrylic

Reflective/Refractive boundaries

Scintillator

n = 1.58

PMT glass

n = 1.5Slide14

Elton Smith / Scintillation Detectors

acrylic

Reflective/Refractive boundaries

Scintillator

n = 1.58

PMT glass

n = 1.5Slide15

Elton Smith / Scintillation Detectors

mirror

Reflective/Refractive boundaries

Scintillator

n = 1.58

PMT glass

n = 1.5

AirSlide16

Elton Smith / Scintillation Detectors

mirror

Reflective/Refractive boundaries

Scintillator

n = 1.58

PMT glass

n = 1.5

(reflectance at normal incidence)

AirSlide17

Elton Smith / Scintillation Detectors

Reflective/Refractive boundaries

Scintillator

n = 1.58

PMT glass

n = 1.5

airSlide18

Elton Smith / Scintillation Detectors

Reflective/Refractive boundaries

Scintillator

n = 1.58

PMT glass

n = 1.5

airSlide19

Elton Smith / Scintillation Detectors

Reflective/Refractive boundaries

Scintillator

n = 1.58

PMT glass

n = 1.5

airSlide20

Elton Smith / Scintillation Detectors

acrylic

Reflective/Refractive boundaries

Scintillator

n = 1.58

PMT glass

n = 1.5

Acceptance of incident rays at fixed angle depends

on position at the exit face of the scintillatorSlide21

Elton Smith / Scintillation Detectors

acrylic

Reflective/Refractive boundaries

Scintillator

n = 1.58

PMT glass

n = 1.5

Acceptance of incident rays at fixed angle depends

on position at the exit face of the scintillatorSlide22

Elton Smith / Scintillation Detectors

acrylic

Reflective/Refractive boundaries

Scintillator

n = 1.58

PMT glass

n = 1.5

Large-angle

ray lost

Acceptance of incident rays at fixed angle depends

on position at the exit face of the scintillator

Rule of thumb:

Acceptance is given by the ratio of output/input areasSlide23

Elton Smith / Scintillation Detectors

Winston Cones - special geometry

Rev

. Sci.

Instrum

. 41 (1970) 413-418Slide24

Elton Smith / Scintillation Detectors

Photomultiplier tube, sensitive light meter

Photocathode

Electrodes

N Dynodes

Anode

56 AVP pmt

Gain ~ V

N

~ 10

6

- 10

7Slide25

Elton Smith / Scintillation Detectors

Photomultiplier tube, sensitive light meter

Photocathode

Electrodes

N Dynodes

Anode

56 AVP pmt

g

e

Gain ~ V

N

~ 10

6

- 10

7

Photomultiplier Tubes

Principles and Applications,

Photonis

(2002)Slide26

Elton Smith / Scintillation Detectors

High voltagePositive (cathode at ground)low noise, capacitative coupling

Negative

Anode at ground (no HV on signal)

No (high) voltage

Cockcroft-Walton basesSlide27

Elton Smith / Scintillation Detectors

Housing

NIM A432

(

1999) 265Slide28

Elton Smith / Scintillation Detectors

Compact divider designSlide29

Elton Smith / Scintillation Detectors

Single photoelectron signalSlide30

PMT single p.e

. spectra (noise)Elton Smith / Scintillation Detectors

ADC (counts)

ADC (counts)Slide31

Elton Smith / Scintillation Detectors

Signal for passing tracksSlide32

Elton Smith / Scintillation Detectors

Energy deposited in scintillatorSlide33

Elton Smith / Scintillation Detectors

Energy deposited in scintillator

Minimum-ionizing peak

pions

, electronsSlide34

Elton Smith / Scintillation Detectors

Energy deposited in scintillator

Minimum-ionizing peak

pions

, electrons

Photons and “corner clippers”Slide35

Elton Smith / Scintillation Detectors

Effect of magnetic field on pmt

Photomultipliers and Accessories

Electron Tubes Ltd (1996) Slide36

Tagger Spectrometer

(Upstream)

Hermetic detection

of charged and

neutral particles in

solenoid magnet

Hall D – GlueX detector

Time-

of-flight

(tof)

Pb-glass detector (Fcal)

Barrel

Calorimeter

(Bcal)

Target

(LH

2

)

Tracking

Cathode strips

Drift chambers

Straw tubesFuture PID detector

Superconducting 2 T solenoidInitial Peak Flux

107 g/s 18,000 FADCs4,000 pipeline TDCs

5

0

KHz L1 trigger600 MB/s to tapeSlide37

Tagger Spectrometer

(Upstream)

Hermetic detection

of charged and

neutral particles in

solenoid magnet

Hall D – GlueX detector

Time-

of-flight

(tof)

Pb-glass detector (Fcal)

Barrel

Calorimeter

(Bcal)

Target

(LH

2

)

Tracking

Cathode strips

Drift chambers

Straw tubesFuture PID detector

Superconducting 2 T solenoidInitial Peak Flux

107 g/s 18,000 FADCs4,000 pipeline TDCs

5

0

KHz L1 trigger600 MB/s to tapeWhat to do in a Magnetic Field?Slide38

Some history in photos

Elton Smith / Scintillation DetectorsSlide39

Multipixel

Limited Geiger mode APD

20

-100 µ

m

Geiger APD

pixel

Incident photon initiates avalanche

Quenched

by resister

device reset

Sum

the pixels –> photon counter

Quenching

Resister

Geiger-APD array

Photosensitive surface

R

QSlide40

Multipixel

Limited Geiger mode APD

20

-100 µ

m

Geiger APD

pixel

Incident photon initiates avalanche

Quenched

by resister

device reset

Sum

the pixels –> photon counter

Quenching

Resister

Geiger-APD array

Photosensitive surface

R

Q

Insensitive to Magnetic Fields!Slide41

Hamamatsu S12045 arrays

Elton Smith / Scintillation Detectors

4x4 array of 3x3 mm

2

sensor

Area = 12.7

x 12.7 mm257600 pixels

NIM A896 (2018) 24Slide42

SiPM (3x3 mm

2) single p.e. spectraElton Smith / Scintillation Detectors

Dark Counts

Filter=1%

Filter=2%

Filter=4%

Filter=6%

PedestalSlide43

Elton Smith / Scintillation Detectors

Measure the Flight Time between two Scintillators

400 cm

100 cm

300 cm

20 cm

Disc

Disc

TDC

Start

Stop

Particle Trajectory

450 nsSlide44

Elton Smith / Scintillation Detectors

Formalism: Measure time and position

Mean is independent of position!Slide45

Elton Smith / Scintillation Detectors

B field ~ 5/3 T

R = 3m

L =

½

p

R = 4.71 m

p = 0.3 B R = 1.5 GeV/c

t

p

= L/

b

p

c = 15.77 ns

t

K

= L/

b

K

c = 16.53 ns

D

tpK = 0.76 ns

Experiment basics

b

p = p/√p2+mp2 = 0.9957

bK = p/√p2+mK2 = 0.9496 Slide46

Elton Smith / Scintillation Detectors

Particle ID by “tof”: b vs

p

plot

p

+

K+

pSlide47

Elton Smith / Scintillation Detectors

SummaryScintillation counters

have a few simple components

Trigger and time-of-flight systems

are built out of these counters

Fast response allows for accurate

timingNew solid-state light sensors are now available, which allow use in high magnetic fieldsCombining the timing information from scintillator detectors with momentum measurements from tracking detectors, one can determine the mass of passing particles.Slide48

Backup slides

Elton Smith / Scintillation DetectorsSlide49

Elton Smith / Scintillation Detectors

Electronics

trigger

dynode

Measure time

Measure pulse height

anodeSlide50

Elton Smith / Scintillation Detectors

Formalism: Measure energy loss

Geometric mean is independent of position!Slide51

Elton Smith / Scintillation Detectors

Example: Kaon mass resolution by TOF

For a flight path of

d

= 500 cm

Assume experimental resolutions of