/
INTRODUCTIONTOSLEEPRBENBADISUniversityofSouthFloridaCollegeofMedicineT INTRODUCTIONTOSLEEPRBENBADISUniversityofSouthFloridaCollegeofMedicineT

INTRODUCTIONTOSLEEPRBENBADISUniversityofSouthFloridaCollegeofMedicineT - PDF document

christina
christina . @christina
Follow
342 views
Uploaded On 2021-10-01

INTRODUCTIONTOSLEEPRBENBADISUniversityofSouthFloridaCollegeofMedicineT - PPT Presentation

SleepAComprehensiveHandbookEditedbyTLeeChiong2006JohnWileySonsInclimitedtospecializedsurgicalepilepsycentersandisbeyondthescopeofthischapterforreviewsee67TechnicalAspectsInhumanclinicalEEGelectrodesa ID: 891892

introductiontosleepelectroencephalography figure130 morphology amplitude figure130 introductiontosleepelectroencephalography amplitude morphology voltage thenormaleeg 5hz location stage1 ofthetime artifact lockedwith lah samefrequencyas thestrobelight

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "INTRODUCTIONTOSLEEPRBENBADISUniversityof..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 INTRODUCTIONTOSLEEPR.BENBADISUniversityo
INTRODUCTIONTOSLEEPR.BENBADISUniversityofSouthFloridaCollegeofMedicine,Tampa,FloridaINTRODUCTIONBasicPrinciplesEEGrecordssynapticpotentialsfrompyramidalcells.Itis Sleep:AComprehensiveHandbook,EditedbyT.Lee-Chiong.2006JohnWiley&Sons,Inc. limitedtospecializedsurgicalepilepsycentersandisbeyondthescopeofthischapter(forreview,see[6,7]).TechnicalAspectsInhumanclinicalEEG,electrodesareplacedaccordingtoastandardsystemknownasthe10-20system(Figure130.2).Itusesfouranatomicallandmarks(nasion,inion,andthetwopreauricularpoints)fromwhichmeasurementsaremadeandelectrodesareplacedat10%or20%ofthedistances.Therearetwotypesofmontages:bipolarandreferential.Inamontage,eachelectrodeislinkedtothenextalongachain(i.e.,AB,BC,CD,DE).Thetypicallongitudinaloranteroposteriorbipolarmontageisoftenreferredtoasadoublebanana.Anothercommonbipolarmontageisthetransverse(fromlefttorightacrossthehead).Inareferential(ormonopolar)montage,eachelec-trodeislinked(compared)toacommonreference.Ahelp-fulanalogyisthatmeasuringvoltageeldswithelectrodesisakintomeasuringmountainpeaks/altitudeswithsur-veyors[8](Figure130.3).Intermsoflocalization,maxi-mumvoltage(altitude)isindicatedbyaphasereversalonbipolarmontages,orbymaximumamplitudeonreferentialmontages(Figure130.3).Contrarytoacommonmiscon-ception,phasereversalsarenotatallindicativeofanabnormality,andinfacthavenothingtodowiththenatureofavoltageeld(i

2 .e.,thedischargeis).Instead,phasereversa
.e.,thedischargeis).Instead,phasereversalsindicatethemaximum(negativityorpositivity) Figure130.1Polarityconvention.Thisisanarbitrarybutcriticalrule.ByconventionoftheampliersusedinclinicalEEG,anupgoingdeectionindicatesthatinput1(grid1orG1)ismorenegative(orlesspositive)thaninput2(grid2orG2).Thusstate-mentslikepositivityisupnegativityisupmakenosenseunlessitisstatedwhetherthepositivityisatgrid1orgrid2. C3CzFigure130.2The1020systemofelectrodeplacement.Thisusesfouranatomicallandmarks(nasion,inion,andthetwopreauri-cularpoints)fromwhichmeasurementsaremadeandelectrodesareplacedat10%or20%ofthedistances.Lettersrefer(grossly)tothelobe(i.e.,Fp,frontopolar;F,frontal;T,temporal;P,parietal;O,occipital).Odd-numberedelectrodesareontheleft,even-num-beredelectrodesontheright,andmidlineelectrodesaredesignated A-BB-CC-DD-E CDBEACBAED Referential A-REFB-REFD-REFE-REF CDBEACBAED Figure130.3Measuringavoltageeldisanalogoustomeasur-ingthealtitudeofamountain.(a)Onabipolarmontage,amaxi-mumpeak(voltage)isindicatedbyaphasereversal.(b)Onareferentialmontage,amaximumpeak(voltage)isindicatedbythehighestamplitude.INTRODUCTIONTOSLEEPELECTROENCEPHALOGRAPHY andhaveeverythingtodowiththelocationofthedischargewherethedischargeis).ThedisplayonEEGtypicallyusesapaperspeed(obsoleteconceptwithdigitalrecordings)of3cm/s(intheUnitedStates),thatis,3timesfasterthanthePSGpaperspeedof1cm/s.Byconvent

3 ion,intheUnitedStates,montagesareusually
ion,intheUnitedStates,montagesareusuallydisplayedleftoverright.Filtersandtheirprinciplesaresimilartothoseusedinpolysomnography.Inclinicalneurophysiologey(e.g.,EEG,PSG),wave-formsanddischargesaredescribedandcharacterizedbythefollowingparameters:Amplitude:howhighthevoltageis(inV).Duration:howlongthedischargeis(inmsorseconds).Frequency:howfrequentlyawaveformrepeatsitself(incyclespersecondsorhertz).Thefrequencyisthereciprocaloftheduration(e.g.,adurationon200msisthesameasafrequency5Hz.)Morphology:theshapeandcongurationofthedis-charge(thisisqualitative).Latency:thedelaybetweenanarbitraryevent(e.g.,stimulus)andanotherevent(inms).Location:wherethedischargeis.Reactivity:whataffectsthedischarge.ARTIFACTSAlthoughEEGisdesignedtorecordcerebralactivity,italsorecordselectricalactivitiesarisingfromsitesotherthanthebrain.Therecordedactivitythatisnotofcerebraloriginistermedartifactandcanbeconvenientlydividedintophysiologicandextraphysiologicartifacts.Physiologicartifactsaregeneratedbythebodybutarisefromsourcesotherthanthebrain.artifactsarisefromoutsidethebody(i.e.,equipment,environment).PhysiologicArtifactsMuscle(Electromyogram)ActivityMyogenicpotentialsareprobablythemostcommonartifactsandareseenonvirtuallyallEEGperformedinclinicalpractice.Frontalisandtemporalismuscles(e.g.,clenchingofjawmuscles)areparticularlycommon.Asageneralrule,thepotentialsgeneratedinthemuscl

4 esareofshorterdurationthanthosegenerated
esareofshorterdurationthanthosegeneratedinthebrainandareidentiedeasilyonthebasisofduration,morphology,andhighfrequencyof100Hz(Figures130.4and130.10].Aparticulartypeofmuscleartifactischewing,characterizedbyrhyth-micburstsofmusclemaximuminthetemporalchains(Figure130.5). Figure130.4Muscle(EMG)andEKGartifact.Muscleartifactisseenashigh-amplitude,veryfast(50Hz),andvariablefrequencydis-charges,whicharemoreprominentontheleftinthissample.EKGiseasilyidentiedinseveralchannelsasclearlysimultaneoustotheEKGARTIFACTS GlossokineticArtifactInadditiontomuscleactivity,thetongue(liketheeyeball)functionsasadipole,withthetipnegativewithrespecttothebase.Inthiscasethetipofthetongueisthemostimportantpartbecauseitismoremobile.Theartifactproducedbythetonguehasabroadpotentialeldthatdropsfromfrontaltooccipitalareas,althoughitislesssteepthanthatproducedbyeyemovementartifacts.Theamplitudeofthepotentialsisgreaterinferiorlythaninparasagittalregions;thefrequencyisvariablebutusuallyinthedeltarangeandoccurssynchronouslywhenthepatientLah-lah-lah-lah,whichcanbeveriedbythetech-nologist.Chewingandsucking(pacier)canproducesimi-larartifacts.EKGArtifactSomeindividualvariationsintheamountandpersistenceofEKGartifactarerelatedtotheeldoftheheartpotentialsoverthesurfaceofthescalp.Generally,subjectswithshortandwideneckshavethelargestEKGartifactsontheirEEGrecordings.Thevoltageandapparentsurfaceo

5 ftheartifactvaryfromderivationtoderivati
ftheartifactvaryfromderivationtoderivationand,consequently,frommontagetomontage.Theartifactisobservedbestinreferentialmontagesusingearelectrodes(A1andA2).EKGartifactisrecognizedeasilybyitsrhythmicityandcoincidencewiththeEKGtracing(Figure130.4).Thesituationbecomesdifcultwhenabnor-malcerebralactivity(e.g.,sharporslowwaves)appearsintermixedwithEEGartifact.PulseartifactoccurswhenanEEGelectrodeisplacedoverapulsatingvessel.ThepulsationcancauseslowwavesthatmaysimulateEEGactivity.Adirectrela-tionshipexistsbetweenEKGandthepulsewaves.TheQRS Figure130.5Chewingartifact.ThisEMGartifactoccursinrhythmicburstsofmusclemaximuminthetemporalchains.INTRODUCTIONTOSLEEPELECTROENCEPHALOGRAPHY complex(i.e.,electricalcomponentoftheheartcontraction)happensslightlyaheadofthepulsewaves200300msecdelayafterEKG.EyeMovementsEyemovementsareobservedonallEEGrecordingsandareusefulinidentifyingsleepstages.Theeyeballactsasadipolewithapositivepoleanteriorly(cor-nea)andanegativepoleposteriorly(retina).Whenthegloberotatesaboutitsaxis,itgeneratesalarge-amplitudealternatecurrenteld,whichisdetectablebyanyelectrodesneartheeye.TheothersourceofartifactscomesfromEMGpotentialsfrommusclesinandaroundtheorbit.Verticaleyemovementstypicallyareobservedwithblinks(i.e.,sphenomenon).Ablinkcausesthepositivepole(i.e.,cornea)tomoveclosertofrontopolar(Fp1Fp2)electrodes,producingsymmetricdownwarddeections.Dur

6 ingdownwardeyemovementthepositivepole(i.
ingdownwardeyemovementthepositivepole(i.e.,cornea)oftheglobemovesawayfromfrontopolarelectro-des,producinganupwarddeectionbestrecordedinchan-nels1and5inthebipolarlongitudinalmontage.LateraleyemovementsaffectlateralfrontalelectrodesF7andF8(whicharejustaboutwhereeyeelectrodesofthePSGwouldbe).Duringaleftlateraleyemovement,thepositivepoleoftheglobemovestowardF7andawayfromF8.Usingabipolarlongitudinalmontage,thereisamaximumpositivityinelectrodeF7andmaximumnegativitysimultaneouslyinelectrodeF8(Figure130.6).Aso-calledlateralrectusspike(Figure130.7)maybepresentinelec-trodeF7.Withrightlateraleyemovement,theopposite Figure130.6EyemovementsandsawtoothwavesinREMsleep.Duringthisrapidlateraleyemovementtotheleft,thereisamaximumpositivityinelectrodeF7andmaximumnegativitysimultaneouslyinelectrodeF8.Inthevicinityoftherapideyemovement,therearetypicalsawtoothwavesinthecentralregion(C3andC4).ARTIFACTS RespirationArtifactsRespirationcanproducetwokindsofartifacts.Onetypeisintheformofslowandrhythmicactivity,synchronouswiththebodymovementsofrespira-tionandmechanicallyaffectingtheimpedanceof(usually)oneelectrode.Theothertypecanbesloworsharpwavesthatoccursynchronouslywithinhalationorexhalationandinvolvethoseelectrodesonwhichthepatientislying.SeveralcommerciallyavailabledevicestomonitorrespirationcanbecoupledtotheEEGmachine.AswiththeEKG,onechannelcanbededicatedtorespiratorymo

7 vements.SkinArtifactsBiologicalprocesses
vements.SkinArtifactsBiologicalprocessesmayalterimpedanceandcauseartifacts.Sweatisacommoncause(Fig-ure130.8).Sodiumchlorideandlacticacidfromsweatingreactwithmetalsoftheelectrodesandproducelargeandveryslow(usually0.5Hz)baselinesways.ExtraphysiologicArtifactsElectrodeArtifactsThemostcommonelectrodeartifactistheelectrodeMorphologicallythisappearsassin-gleormultiplesharpwaveformsduetoabruptimpedancechange.Itisidentiedeasilybyitscharacteristicappear-ance(i.e.,abruptverticaltransientthatdoesnotmodifythebackgroundactivity)anditsusualdistribution,whichislimitedtoasingleelectrode(Figure130.9).Ingeneral,sharptransientsthatoccuratasingleelectrode(i.e.,eld)shouldbeconsideredartifactsuntilprovedother-wise.Atothertimes,theimpedancechangeislessabrupt, Figure130.7Rapideyemovementsandlateralrectusspikes.Withtheeyemovementstotheleft,lateralrectusspikesareseeninelectrodeF7.INTRODUCTIONTOSLEEPELECTROENCEPHALOGRAPHY Figure130.8Sweatartifact.Notetheveryslow(0.5Hz)sways.Theslowfrequencyissimilartoslowrollingeyemovements,butthedistributionisnot(inthiscaseitaffectselectrodesontheleftsideofthehead). Figure130.9Electrodeartifact.ThistypicalelectrodeartifactistheelectrodeNotethesinglesharpwaveformwithabruptverticaltransientthatdoesnotmodifythebackgroundactivity,anditsdistribution,whichislimitedtoasingleelectrode(P4).ARTIFACTS andtheartifactmaymimicalow-voltagearrhythmicdelt

8 awave.AlternatingCurrent(60Hz)ArtifactAd
awave.AlternatingCurrent(60Hz)ArtifactAdequateground-ingonthepatienthasalmosteliminatedthistypeofartifactfrompowerlines.Theproblemariseswhentheimpedanceofoneoftheactiveelectrodesbecomessignicantlylargebetweentheelectrodesandthegroundoftheamplier.Inthissituation,thegroundbecomesanactiveelectrodethat,dependingonitslocation,producesthe60Hzartifact.Theartifacthastheexactfrequencyof60Hzandiseasilyidentiedbyincreasingthetimebase(Figure130.10).MovementsintheEnvironmentMovementofotherper-sonsaroundthepatientcangenerateartifacts,usuallyofcapacitiveorelectrostaticorigin.Theartifactproducedbyrespiratorsvarieswidelyinmorphologyandfrequency.Monitoringtheventilatorrateinaseparatechannelhelpstoidentifythistypeofartifact.Interferencefromhigh-frequencyradiationfromradio,TV,hospitalpagingsystems,andotherelectronicdevicescanoverloadEEGers.Thecuttingorcoagulatingelectrodeusedintheoperatingroomalsogenerateshigh-voltagehigh-fre-quencysignalsthatinterferewiththerecordingsystem.Touchingorhittingelectrodescanproduceoddwaveforms, Figure130.10The60Hzandmuscle(EMG)artifact.The60HzartifactisatelectrodeO2(thusseeninchannelsT6O2andP4O2).Notethatitsamplitudeisperfectlyregularandexactlyandsteadilyat60Hz.EMG(muscle)artifact,bycontrast,isofcomparablefrequencybutaffectsseveralelectrodes,isvariableinamplitude,andvariableinfrequency(notalwaysnorexactlyat60Hz).INTRODUCTIONTOSLEEPELECT

9 ROENCEPHALOGRAPHY and,forexample,repetit
ROENCEPHALOGRAPHY and,forexample,repetitiveheadmovementscanproducerhythmicartifacts(Figure130.11).PhoticStimulationPhoticstimulationisperformedduringroutineEEGrecord-ingsandcanproducesomephysiologicandsomeextraphy-siologicartifacts,soitisdescribedhereseparately.Photicdrivingisanormalphysiologicresponse,whichisactuallyavisualevokedpotential.Itistheoccipitalcor-texresponsetoashinglightsandisthusseenintheocci-pitalregion(electrodesO1andO2).Itiseasilyidentibecauseitistime-lockedwith(samefrequencyas)thestrobelight(Figure130.12).photomyoclonicresponseisaspecialtypeofEMGartifactthatoccursduringintermittentphoticstimulation.Somesubjectscontractthefrontalisandorbicularismuscles.Thissuperciallyresemblesnormalphoticdrivingbutisfrontal(Figure130.13),whereasnormalphoticdriv-ingisoccipital.Ascanbeshownbyspreadingthetimebase,thesecontractionsoccurapproximately5060maftereachphotocell(photoelectric)artifactcanalsobeseenwithphoticstimulation.Thisaffectsoneelectrode(Figure130.14)andiseasilyidentiedasitdisappearsifoneblocksthelightfromtheelectrodeinquestion.THENORMALEEGCommonPatternsofWakefulnessAlphaRhythmThealpharhythm(Figure130.15)istypicallywhatEEGreadersidentifyrst.Thenormalalpharhythmhasthefollowingcharacteristics:Frequencyof812Hz:Lowerlimitofnormalgener-allyacceptedinadultsandchildrenolderthan8yearsis8Hz.Location:Posteriordominant;occasionally,themaxi-mummayb

10 ealittlemoreanterior,anditmaybemorewides
ealittlemoreanterior,anditmaybemorewidespread.Morphology:Rhythmic,regular,andwaxingand Figure130.11Movementartifact.Thisisanexampleofrhythmicartifactgeneratedbyrepetitivemovements(shakingtheheadonthepillowhittingtherightposteriorelectrodesT6andO2).Thisshouldnotbemistakenforafocalseizure.NotethephasereversalT6,eventhoughthisisanartifact.THENORMALEEG Figure130.12Normalphoticdriving.Bioccipitalrhythmicactivitytime-lockedwith(samefrequencyas)thestrobelight(thefrequencyisshownaslinesatthebottom).Usually,photicdrivingisseenatseveralfrequencies,suchasshownhere.Notethatonlylocationdifferentiatesthisfrom(frontal)photomyoclonic(orphotomyogenic)response(Figure130.13). Figure130.13Photomyoclonic(orphotomyogenic)response.Bifrontalrhythmicactivitytime-lockedwith(samefrequencyas)thestrobelight(theashfrequencyisshownaslinesatthebottom).Notethatonlylocationdifferentiatesthisfrom(occipital)photicdriving(Figure130.12).INTRODUCTIONTOSLEEPELECTROENCEPHALOGRAPHY Amplitude:Generally20Reactivity:Bestseenwitheyesclosed;attenuateswitheyeopening.Occasionallythealpharhythmisofverylowamplitudeorevennotidentiable.Thisisnotinitselfabnormal.Inadditiontoamplitude,othercharacteristicscanvarysome-whatwithoutbeingabnormal,includingmorphology(e.g.,spiky),distribution(e.g.,widespread),andharmonicfrequency(e.g.,sloworfastalphavariant).BetaActivityNormalbetaactivity(Figure130.16)hasthe

11 followingcharacteristics:Frequency(byden
followingcharacteristics:Frequency(bydenition)greaterthan13Hz,typically25Hz.Location:Mostlyfrontocentralbutsomewhatvari-able;somedescribevarioustypesaccordingtolocationandreactivitygeneralized,precentral,andposterior.Morphology:Usuallyrhythmic,waxingandwaning,andsymmetric.Amplitude:Usuallyintherangeof5Reactivity:Mostcommon1825Hzbetaactivityenhancedduringstages1and2sleepandtendstodecreaseduringdeepersleepstages;centralbetaactiv-itymaybereactive(attenuates)tovoluntarymove-mentsandproprioceptivestimuli;ininfantsolderthan6months,onsetofsleepmarkedbyincreasedbetaactivityincentralandpostcentralregions.Inhealthyindividuals,betaactivitycommonlycanbemildlydifferent(35%)inamplitudebetweenthetwohemispheres,whichmaybecausedbydifferencesinskullthickness.Theamountandvoltageofbetaactivityisenhancedbycommonlyusedsedativemedications(benzo-diazepines,barbiturates). Figure130.14Photocell(photoelectric)artifact.Thisisproducedatonesingleelectrode(usuallyfrontalratherthanoccipital)andisedbybeingtime-lockedwiththestrobe.Itwouldalsodisappearifoneshieldedtheelectrodeinquestionfromthelight.THENORMALEEG MuRhythmCharacteristicsofthemurhythm(Fig-ure130.17)areasfollows:Frequencyof711Hz:Generallyinalphafrequencyband(812Hz).Location:Centroparietalarea.Morphology:Arch-likeshapeorlikean;mostoftenasymmetricandasynchronousbetweenthetwosidesandmaybeunilateral.Amplitude:Generallylowt

12 omediumandcomparabletothatofthealpharhyt
omediumandcomparabletothatofthealpharhythm.Reactivity:murhythmattenuateswithcontralateralextremitymovement,thethoughtofamovement,ortactilestimulation.Asymmetry,unilaterality,orasynchronyofthemurhythmisnotabnormalunlessassociatedwithotherabnormalities.Veryhighvoltagemuactivitymayberecordedinthecentralregionsoverskulldefectsandmaybecomesharpincongurationandthuscanbemistakenforepileptiformdischarges.WhenmurhythmisdetectedinanEEG,itshouldbeveriedbytestingitsreactivity.CommonPatternsofSleepSleepArchitectureSleepgenerallyisdividedintwobroadtypes:non-rapideyemovement(NREM)andrapideyemovement(REM)sleep.OnthebasisofEEGchanges,NREMsleepisdividedfurtherintofourstages(stage1,stage2,stage3,stage4).REMsleepisdenednotonly Figure130.15Normalalpharhythm.Thissampledepictsthetypicalwell-formedsinusoidalrhythmicactivityat9HzintheoccipitalINTRODUCTIONTOSLEEPELECTROENCEPHALOGRAPHY Figure130.16Normalbetaactivity.Thissampledepictsthetypicalfast(25Hz)low-amplitudeactivityinbothfrontalregions.Asshownhere,normalamountsofbetaactivityaremoderateandtendtowaxandwane. Figure130.17Murhythm.Thissampledepictsthetypicalm-shapedbicentralburstsatafrequencyof812Hz.Iftested,thiswouldreact(attenuate)tocontralateralmovement.THENORMALEEG byEEG,butalsobyEMGandeyemovements.NREMandREMsleepoccurinalternatingcycles,eachlastingapproximately90100minutes,withatotalof46cycles.Ingeneral,inthehealth

13 yyoungadultNREMsleepaccountsfor7590%ofsl
yyoungadultNREMsleepaccountsfor7590%ofsleeptime(35%stage1,60%stage2,and1020%stages3and4).REMsleepaccountsfor1025%ofsleeptime.Totalsleeptimeinthehealthyyoungadultapproximates10hours.Inthefull-termnewborn,sleepcycleslastapproximately60minutes.Thenewbornsleepsapproxi-mately1620hoursperday,withahigherproportion50%)ofREMsleep.Stage1(‘‘Drowsiness’’)Slowrollingeyemovements(SREMs)(Figure130.18)areusuallytherstevidenceofdrowsinessseenontheEEG.SREMsofdrowsinessmostoftenarehorizontalbutcanbeverticaloroblique,andtheirdistributionissimilartoeyemovementsingeneral.However,theyareslow(i.e.,typically0.250.5Hz).Becauseoftheirfrequency,SREMssuperciallyresemblesweatartifactsbutareeasilyidentiedbytheirnonrandomdistributiontypicalofeyemovements(e.g.,phasereversalsatF7andF8ifhorizontal).SREMsdisappearinstage2anddeepersleepstages.Alphaactivitydropout(Figure130.18)typicallyoccurstogetherwithornearbySREMs.Thealpharhythmgradu-allybecomesslower,lessprominent,fragmented,anddisappears.Vertexsharptransients(Figures130.19and130.20),alsocalledvertexwavesorVwaves,arealmostuniversal.AlthoughtheyoftenaregroupedtogetherwithK-com-plexes,strictlyspeaking,vertexsharptransientsaredistinctfromK-complexesbecausetheyarebrieferinduration,smallerinamplitude,andmorefocal(i.e.,lesswidespread).LikeK-complexes,vertexwavesaremaximumatthevertex(centralmidlineplacementofelectrodes(Cz)),sothat,depen

14 dingonthemontage,theymaybeseenonbothside
dingonthemontage,theymaybeseenonbothsides,usuallysymmetrically,atC3andC4.Theiramplitudeis50V.Theycanbecontouredsharplyandoccurinrepetitiveruns,especiallyinchildren.Theypersistinstage2sleepbutusuallydisappearinsubsequentstages.UnlikeK-complexes,vertexwavesdonotdenestage2. Figure130.18Drowsiness(stage1sleep):slowrollingeyemovements.Notetheveryslow(0.30.5Hz)oscillationsatF7andF8.Likerapideyemovements,anegativityatF7occursatthesametimeasapositivityatF8foraneyemovementtotheright,andviceversaforaneyemovementtotheleft.Alsonotetheattenuationandslowingofthealpharhythm(alphadropout)betweentherstandsecondhalfofthesample.Thisistheotherearlyndingofstage1sleep.INTRODUCTIONTOSLEEPELECTROENCEPHALOGRAPHY Positiveoccipitalsharptransientsofsleep(POSTS)(Figure130.19)areseenverycommonlyonEEGandhavebeensaidtobemorecommonduringdaytimenapsthanduringnocturnalsleep.MostcharacteristicsofPOSTSarecontainedintheirname.Theyhaveapositivemaximumattheocciput,arecontouredsharply,andoccurinearlysleep(stages1and2).Theirmorphologyisbestdescribedasreversedcheckmark,andtheiramplitudeis50V.Theytypicallyoccurinrunsof45Hzandarebisynchronous,althoughtheymaybeasymmetric.Theypersistinstage2sleepbutusuallydisappearinsub-sequentstages.Hypnagogichypersynchrony(Figure130.21)isalesscommonbutwellrecognizednormalvariantofdrowsinessinchildrenaged3monthsto13years.Thisisdescribedasparoxysmalbursts(35H

15 z)ofhigh-voltage(ashighasV)rhythmicwaves
z)ofhigh-voltage(ashighasV)rhythmicwaves,maximallyexpressedintheprefrontal-centralareas.Stage2Sleepspindles(Figure130.22)normallyappearininfantsaged68weeksandareinitiallyasynchro-nous,becomingsynchronousbytheageof2years.Sleepspindleshaveafrequencyof1216Hz(typically14Hz)andaremaximalinthecentralregion(vertex),althoughtheyoccasionallypredominateinthefrontalregions.Theyoccurinshortburstsofwaxingandwaningfusiformrhythmicactivity.Amplitudeisusually20V.Lesstypicalorextremespindles(describedbyGibbsandGibbs)areunusuallyhigh-voltage(100400V)andpro-longed(20s)spindleslocatedoverthefrontalregions.K-complexes(Figure130.23)arehighamplitude(V),broad(200ms),diphasic,transientsoftenassociated Figure130.19VertexsharptransientandPOSTS.Thevertexwavesshowthecharacteristicmaximum(phasereversal)atCz.Inthisexam-ple,theyarevery(restrictedtoCz)andarenotseenatC3orC4.POSTS(positivesharptransientsofsleep)areseenwiththeirtypicalbioccipitallocationandreversedcheckmarkmorphology.THENORMALEEG withsleepspindles.Locationisfrontocentral,withatypicalmaximumatthemidline(centralmidlineelectrodes(Cz)orfrontalmidlineelectrodes(Fz)).Theyoccurspontaneouslyorasanarousalresponse.Stage3/4Slow-wavesleep(SWS),ordeltasleep,ischaracterized,asthenameimplies,bydeltaactivity.Thistypicallyisgeneralizedandpolymorphicorsemirhythmic(Figure130.24).Bystrictsleepstagingcriteriaonpolysom-nography,SWSisden

16 edbythepresenceofsuchdeltaactivityformor
edbythepresenceofsuchdeltaactivityformorethan20%ofthetime,andanamplitudecriterionofatleast75Voftenisapplied.Thedistinctionbetweenstages3and4isonlyaquanti-tativeonethathastodowiththeamountofdeltaactivity.Stage3isdenedbydeltaactivitythatoccupies2050%ofthetime,whereasinstage4deltaactivityrepresentsgreaterthan50%ofthetime.SleepspindlesandK-complexesmaypersistinstage3andeventosomedegreeinstage4,buttheyarenotprominent.Asmentionedearlier,SWSusuallyisnotseenduringroutineEEG,whichistoobriefarecording.However,itisseenduringprolongedEEGmonitoring.OneimportantclinicalaspectofSWSisthatcertainparasomniasoccurspecicallyoutofthisstageandmustbedifferentiatedfromseizures.Theseslow-wavesleepparasomniasincludeconfusionalarousals,nightterrors(pavornocturnus),andsleepwalking(somnambulism).REMSleepREMsleepnormallyisnotseenonroutineEEGrecordings,becausethenormallatencytoREMsleep(100min)iswellbeyondthedurationofroutineEEGrecordings(approximately2030min).Theappear-anceofREMsleepduringaroutineEEGisreferredtoassleep-onsetREMperiod(SOREMP)andisabnormalandwarrantsanMSLT.WhilenotobservedonroutineEEG,REMsleepcommonlyisseenduringprolonged(24h)EEGmonitoring. Figure130.20Stage1sleep:vertexsharptransients.Onthistransversebipolarmontage,thevertexwavesshowthecharacteristicmax-imum(phasereversal)atCz.NotethattheyarealsoseenfrontallywithaphasereversalafFz.INTRODUCTIONTOSLEEPELECTROENCE

Related Contents


Next Show more