/
Rulebased Expert Systems Ajith Abraham Oklahoma State University Stillwater OK USA  Problem Rulebased Expert Systems Ajith Abraham Oklahoma State University Stillwater OK USA  Problem

Rulebased Expert Systems Ajith Abraham Oklahoma State University Stillwater OK USA Problem - PDF document

debby-jeon
debby-jeon . @debby-jeon
Follow
619 views
Uploaded On 2014-12-15

Rulebased Expert Systems Ajith Abraham Oklahoma State University Stillwater OK USA Problem - PPT Presentation

Even though we are familiar with several pr oblemsolving techniques in the real world sometimes many problems cannot be solved by a technique we are familiar with Surprisingly for some compli cated problems no straight forward solution technique is ID: 24205

Even though are

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Rulebased Expert Systems Ajith Abraham O..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Rule-basedExpertSystemsAjithAbrahamOklahomaStateUniversity,Stillwater,OK,USA 1ProblemSolvingUsingHeuristics9092WhatareRule-basedSystems?9103InferenceEngineinRule-basedSystems9114ExpertSystemDevelopment9115FuzzyExpertSystems9126ModelingFuzzyExpertSystems9147IllustrationofFuzzyExpertSystemDesign9148AdaptationofFuzzyInferenceSystems9189Summary918References919 HandbookofMeasuringSystemDesign,editedbyPeterH.SydenhamandRichardThorn.2005JohnWiley&Sons,Ltd.ISBN:0-470-02143-8. Elements:B–SignalConditioning schedulingtheLongestJobontheFastestResource(LJFR),whichwouldminimizeasksthattheaveragejobÞnishesquickly,attheexpenseofthelargestjobtakingalongtime,whereasminimizing,asksthatnojobtakestoolong,attheexpenseofmostjobstakingalongtime.Insummary,minimizationofwillresultinmaximizationof,whichmakestheproblemmoreBycontrast,algorithmsarestraightforwardproceduresthatareguaranteedtoworkeverytimefortheyarefullydeterminateandtimeinvariant.Forexample,certaindailyroutinetaskscouldbeformulatedinastrictalgorithmformat(example,startingupanautomobile).However,foraÔproblemsolverÕtobemoreadaptive,novelelementsornewcircumstancesmustbeintroduced.Manyreal-worldproblemscannotbereducedtoalgorithms,whichleadsustothequesttoÞndmorepowerfultechniques.2WHATARERULE-BASEDSYSTEMS?Conventionalproblem-solvingcomputerprogramsmakeuseofwell-structuredalgorithms,datastructures,andcrispreasoningstrategiestoÞndsolutions.ForthedifÞcultproblemswithwhichexpertsystemsareconcerned,itmaybemoreusefultoemployheuristics:strategiesthatoftenleadtothecorrectsolution,butthatalsosometimesfail.Conventionalrule-basedexpertsystems,usehumanexpertknowledgetosolvereal-worldproblemsthatnormallywouldrequirehumanintelligence.Expertknowledgeisoftenrepresentedintheformoforaswithinthecomputer.Dependingupontheproblemrequirement,theserulesanddatacanberecalledtosolveproblems.Rule-basedexpertsystemshaveplayedanimportantroleinmodernintelligentsystemsandtheirapplicationsinstrategicgoalsetting,planning,design,scheduling,faultmonitoring,diagnosisandsoon.Withthetechnologicaladvancesmadeinthelastdecade,todayÕsuserscanchoosefromdozensofcommercialsoftwarepackageshavingfriendlygraphicuserinterfaces(Ignizio,1991).Conventionalcomputerprogramsperformtasksusingadecision-makinglogiccontainingverylittleknowledgeotherthanthebasicalgorithmforsolvingthatspeciÞcproblem.Thebasicknowledgeisoftenembeddedaspartoftheprogrammingcode,sothatastheknowledgechanges,theprogramhastoberebuilt.Knowledge-basedexpertsystemscollectthesmallfragmentsofhumanknow-howintoaknowledgebase,whichisusedtoreasonthroughaproblem,usingtheknowledgethatisappropriate.Animportantadvantagehereisthatwithinthedomainoftheknowledgebase,adifferentproblemcanbesolvedusingthesameprogramwithoutreprogrammingefforts.Moreover,expertsystemscouldexplainthereasoningprocessandhandlelevelsofconÞdenceanduncertainty,whichconventionalalgorithmsdonothandle(GiarratanoandRiley,1989).Someoftheimportantadvantagesofexpertsystemsareasfollows:abilitytocaptureandpreserveirreplaceablehumanabilitytodevelopasystemmoreconsistentthanhumanminimizehumanexpertiseneededatanumberoflocationsatthesametime(especiallyinahostileenvironmentthatisdangeroustohumanhealth);solutionscanbedevelopedfasterthanhumanexperts.ThebasiccomponentsofanexpertsystemareillustratedinFigure1.Theknowledgebasestoresallrelevantinfor-mation,data,rules,cases,andrelationshipsusedbytheexpertsystem.Aknowledgebasecancombinetheknowl-edgeofmultiplehumanexperts.Aruleisaconditionalstatementthatlinksgivenconditionstoactionsorout-comes.Aframeisanotherapproachusedtocaptureandstoreknowledgeinaknowledgebase.Itrelatesanobjectoritemtovariousfactsorvalues.Aframe-basedrepre-sentationisideallysuitedforobject-orientedprogrammingtechniques.Expertsystemsmakinguseofframestostoreknowledgearealsocalledframe-basedexpertsystemsThepurposeoftheinferenceengineistoseekinfor-mationandrelationshipsfromtheknowledgebaseandtoprovideanswers,predictions,andsuggestionsinthewayahumanexpertwould.TheinferenceenginemustÞndtherightfacts,interpretations,andrulesandassemblethemcorrectly.TwotypesofinferencemethodsarecommonlyusedÐBackwardchainingistheprocessofstartingwithconclusionsandworkingbackwardtothesupportingfacts.Forwardchainingstartswiththefactsandworksforwardtotheconclusions. Knowledge baseUser interfaceFigure1.Architectureofasimpleexpertsystem. Rule-basedExpertSystems Theexplanationfacilityallowsausertounderstandhowtheexpertsystemarrivedatcertainresults.TheoverallpurposeoftheknowledgeacquisitionfacilityistoprovideaconvenientandefÞcientmeansforcapturingandstoringallcomponentsoftheknowledgebase.Veryoftenspecializeduserinterfacesoftwareisusedfordesigning,updating,andusingexpertsystems.Thepurposeoftheuserinterfaceistoeaseuseoftheexpertsystemfordevelopers,users,andadministrators.3INFERENCEENGINEINRULE-BASEDArule-basedsystemconsistsofif-thenrules,abunchof,andaninterpretercontrollingtheapplicationoftherules,giventhefacts.rulestatementsareusedtoformulatetheconditionalstatementsthatcomprisethecompleteknowledgebase.AsingleruleassumestheformÕandtheif-partoftheruleÔÕiscalledthepremise,whilethethen-partoftheruleÔÕiscalledthe.Therearetwobroadkindsofinferenceenginesusedinrule-basedforwardchainingbackwardchainingInaforwardchainingsystem,theinitialfactsarepro-cessedÞrst,andkeepusingtherulestodrawnewconclu-sionsgiventhosefacts.Inabackwardchainingsystem,thehypothesis(orsolution/goal)wearetryingtoreachispro-cessedÞrst,andkeeplookingforrulesthatwouldallowtoconcludethathypothesis.Astheprocessingprogresses,newsubgoalsarealsosetforvalidation.Forwardchainingsystemsareprimarilydata-driven,whilebackwardchain-ingsystemsaregoal-driven.ConsideranexamplewiththefollowingsetofRule1IfAandCthenYRule2IfAandXthenZRule3IfBthenXRule4IfZthenDIfthetaskistoprovethatistrue,givenaretrue.Accordingtoforwardchaining,startwithRule1andgoondownwardtillarulethatÞresisfound.Rule3istheonlyonethatÞresintheÞrstiteration.AftertheÞrstiteration,itcanbeconcludedthatA,B,andaretrue.Theseconditerationusesthisvaluableinformation.Aftertheseconditeration,Rule2Þresaddingistrue,whichinturnhelpsRule4toÞre,provingthatistrue.Forwardchainingstrategyisespeciallyappropriateinsituationswheredataareexpensivetocollect,butfewinquantity.However,specialcareistobetakenwhentheserulesareconstructed,withthepreconditionsspecifyingaspreciselyaspossiblewhendifferentrulesshouldÞre.Inthebackwardchainingmethod,processingstartswiththedesiredgoal,andthenattemptstoÞndevidenceforprovingthegoal.Returningtothesameexample,thetasktoprovethatistruewouldbeinitiatedbyÞrstÞndingarulethatproves.Rule4doesso,whichalsoprovidesasubgoaltoprovethatistrue.NowRule2comesintoplay,andasitisalreadyknownthatistrue,thenewsubgoalistoshowthatistrue.Rule3providesthenextsubgoalofprovingthatistrue.Butthattrueisoneofthegivenassertions.Therefore,itcouldbeconcludedthatistrue,whichimpliesthatistrue,whichinturnalsoimpliesthatistrue.BackwardchainingisusefulinsituationswherethequantityofdataispotentiallyverylargeandwheresomespeciÞccharacteristicofthesystemunderconsiderationisofinterest.Ifthereisnotmuchknowledgewhattheconclusionmightbe,orthereissomespeciÞchypothesistotest,forwardchainingsystemsmaybeinefÞcient.Inprinciple,wecanusethesamesetofrulesforbothforwardandbackwardchaining.Inthecaseofbackwardchaining,sincethemainconcerniswithmatchingtheconclusionofaruleagainstsomegoalthatistobeproved,theÔthenÕ(consequent)partoftheruleisusuallynotexpressedasanactiontotakebutmerelyasastate,whichwillbetrueiftheantecedentpart(s)aretrue(Donald,1986).4EXPERTSYSTEMDEVELOPMENTStepsintheexpertsystemsdevelopmentprocessincludedeterminingtheactualrequirements,knowledgeacquisi-tion,constructingexpertsystemcomponents,implement-ingresults,andformulatingaprocedureformaintenanceandreview.Knowledgeacquisitionisthemostimportantelementinthedevelopmentofexpertsystem(Niwa,SasakiandIhara,1988).Knowledgecouldbeobtainedbyinterviewingdomainexpertsand/orlearningbyexperience.Veryoftenpeopleexpressknowledgeasnaturallanguage(spokenlanguage),orusinglettersorsymbolicterms.Thereexistseveralmethodstoextracthumanknowledge.CognitiveWorkAnalysis(CWA)andtheCognitiveTaskAnalysis(CTA)provideframeworkstoextractknowledge.TheCWAisatechniquetoanalyze,design,andevaluatethehumancomputerinteractivesystems(Vicente,1999).TheCTAisamethodtoidentifycognitiveskill,mentaldemands,andneedstoperformtaskproÞciency(MilitalloandHutton,1998).Thisfocusesondescribingtherepresen-tationofthecognitiveelementsthatdeÞnesgoalgenerationanddecision-making.Itisareliablemethodforextracting Elements:B–SignalConditioning humanknowledgebecauseitisbasedontheobservationsoraninterview.Mostexpertsystemsaredevelopedusingspecializedsoftwaretoolscalled.Theseshellscomeequippedwithaninferencemechanism(backwardchaining,forwardchaining,orboth),andrequireknowledgetobeenteredaccordingtoaspeciÞedformat.Oneofthemostpopularshellswidelyusedthroughoutthegovernment,industry,andacademiaistheCLIPS(CLIPS,2004).CLIPSisanexpertsystemtoolthatprovidesacompleteenvironmentfortheconstructionofrule-and/orobject-basedexpertsystems.CLIPSprovidesacohesivetoolforhandlingawidevarietyofknowledgewithsupportforthreedifferentprogrammingparadigms:rule-based,object-oriented,andprocedural.CLIPSiswritteninCforportabilityandspeedandhasbeeninstalledonmanydifferentoperatingsystemswithoutcodechanges.5FUZZYEXPERTSYSTEMSTheworldofinformationissurroundedbyuncertaintyandimprecision.Thehumanreasoningprocesscanhandleinexact,uncertain,andvagueconceptsinanappropriatemanner.Usually,thehumanthinking,reasoning,andper-ceptionprocesscannotbeexpressedprecisely.Thesetypesofexperiencescanrarelybeexpressedormeasuredusingstatisticalorprobabilitytheory.Fuzzylogicprovidesaframeworktomodeluncertainty,thehumanwayofthink-ing,reasoning,andtheperceptionprocess.FuzzysystemswereÞrstintroducedbyZadeh(1965).Afuzzyexpertsystemissimplyanexpertsystemthatusesacollectionoffuzzymembershipfunctionsandrules,insteadofBooleanlogic,toreasonaboutdata(Schneideretal.,1996).Therulesinafuzzyexpertsystemareusuallyofaformsimilartothefollowing:mediumareinputvariables,isanoutputvariable.Herelow,high,andmediumarefuzzysetsdeÞnedonA,Brespectively.Theantecedent(theruleÕspremise)describestowhatdegreetheruleapplies,whiletheruleÕsconsequentassignsamembershipfunctiontoeachofoneormoreoutputvariables.beaspaceofobjectsandbeagenericelement.AclassicalsetA,A,isdeÞnedasacollectionofelementsorobjects,suchthatcaneitherbelongornotbelongtotheset.AfuzzysetisdeÞnedasasetoforderedpairs(x,µ(x))(x)iscalledthemembershipfunction(MF)forthefuzzyset.TheMFmapseachelementoftoamembershipgrade(ormembershipvalue)betweenzeroandone.Obviously(1)isasimpleextensionofthedeÞnitionofaclassicalsetinwhichthecharacteristicfunctionispermittedtohaveanyvaluesbetweenzeroandone.TheintersectionoftwofuzzysetsisspeciÞedingeneralbyafunction:[0,1]0,1][0,1],whichaggregatestwomembershipgradesasfollows:(x)T(µ(x),µ(x))(x)(x)(isabinaryoperatorforthefunction.ThisclassoffuzzyintersectionoperatorsareusuallyreferredtoasT-normoperators(Jang,SunandMizutani,1997).FourofthemostfrequentlyusedT-normoperatorsare(a,b)(a,b)Algebraicproduct:(a,b)ab(Boundedproduct:(a,b)Drasticproduct:(a,b)a,bLikeintersection,thefuzzyunionoperatorisspeciÞedingeneralbyafunction:[0,1]0,1][0,1],whichaggregatestwomembershipgradesasfollows:(x)S(µ(x),µ(x))(x)(x)(isthebinaryoperatorforthefunction.Thisclassoffuzzyunionoperatorsareoftenreferredtoas)operators(Jang,SunandMizutani,1997).FourofthemostfrequentlyusedT-conormoperatorsare(a,b)(a,b)Algebraicsum:(a,b)ab(Boundedsum:(a,b)b)(Drasticsum:(a,b),ifa,b�Boththeintersectionandunionoperatorsretainsomepropertiesoftheclassicalsetoperation.Inparticular,theyareassociativeandcommutative.Figure2illustratesthebasicarchitectureofafuzzyexpertsystem.ThemaincomponentsareafuzziÞcationinterface,afuzzyrulebase(knowledgebase),aninferenceengine(decision-makinglogic),andadefuzziÞcationinter-face.TheinputvariablesarefuzziÞedwherebythemember-shipfunctionsdeÞnedontheinputvariablesareappliedtotheiractualvalues,todeterminethedegreeoftruthforeachruleantecedent.Fuzzyrulesandfuzzyreasoningarethebackboneoffuzzyexpertsystems,whicharethemost Rule-basedExpertSystems Figure2.Basicarchitectureofafuzzyexpertsystem. (COA) Figure3.MamdanifuzzyinferencesystemusingminandmaxforT-normandT-conormoperators.importantmodelingtoolsbasedonfuzzysettheory.Thefuzzyrulebaseischaracterizedintheformofinwhichtheantecedentsandconsequentsinvolvelinguis-ticvariables.Thecollectionofthesefuzzyrulesformstherulebaseforthefuzzylogicsystem.Usingsuitableinfer-enceprocedure,thetruthvaluefortheantecedentofeachruleiscomputed,andappliedtotheconsequentpartofeachrule.Thisresultsinonefuzzysubsettobeassignedtoeachoutputvariableforeachrule.Again,byusingsuitablecom-positionprocedure,allthefuzzysubsetsassignedtoeachoutputvariablearecombinedtogethertoformasinglefuzzysubsetforeachoutputvariable.Finally,defuzziÞcationisappliedtoconvertthefuzzyoutputsettoacrispoutput.Thebasicfuzzyinferencesystemcantakeeitherfuzzyinputsorcrispinputs,buttheoutputsitproducesarealwaysfuzzysets.ThedefuzziÞcationtaskextractsthecrispoutputthatbestrepresentsthefuzzyset.Withcrispinputsandoutputs,afuzzyinferencesystemimplementsanonlinearmappingfromitsinputspacetooutputspacethroughanumberoffuzzyInwhatfollows,thetwomostpopularfuzzyinferencesystemsareintroducedthathavebeenwidelydeployedinvariousapplications.Thedifferencesbetweenthesetwofuzzyinferencesystemslieintheconsequentsoftheirfuzzyrules,andthustheiraggregationanddefuzziÞcationproceduresdifferaccordingly.AccordingtoMamdani,fuzzyinferencesystem(Mam-daniandAssilian,1975)ÐseeFigure3Ðtheruleante-cedentsandconsequentsaredeÞnedbyfuzzysetsandhasthefollowingstructure:ThereareseveraldefuzziÞcationtechniques.ThemostwidelyuseddefuzziÞcationtechniqueusesthecentroidofareamethodasfollowsCentroidofarea(z)z (z)(z)istheaggregatedoutputMF.TakagiandSugeno(1985)proposedaninferenceschemeinwhichtheconclusionofafuzzyruleisconstitutedbyaweightedlinearcombinationofthecrispinputsratherthanafuzzyset.AbasicTakagiÐSugenofuzzyinferencesystemisillustratedinFigure4andtherulehasthefollowing,andarelinearparameters.TSKTak-agiÐSugenoKangfuzzycontrollerusuallyneedsasmaller Elements:B–SignalConditioning Input (x,y)A1B1XYmA2XXmmB2YYmw1w2zp1*x + q1*y + r1zZ p2*x + q2*y + r2w1*z1 + w2*z2w w2= Figure4.TakagiÐSugenofuzzyinferencesystemusingaminorproductasT-normoperator.numberofrules,becausetheiroutputisalreadyalinearfunctionoftheinputsratherthanaconstantfuzzyset.6MODELINGFUZZYEXPERTSYSTEMSFuzzyexpertsystemmodelingcanbepursuedusingthefollowingsteps.Selectrelevantinputandoutputvariables.Determinethenumberoflinguistictermsassociatedwitheachinput/outputvariable.Also,choosetheappropriatefam-ilyofmembershipfunctions,fuzzyoperators,reasoningmechanism,andsoon.ChooseaspeciÞctypeoffuzzyinferencesystem(forexample,Mamdani,TakagiÐSugenoetc.).Inmostcases,theinferenceofthefuzzyrulesiscarriedoutusingtheÔminÕandÔmaxÕoperatorsforfuzzyintersectionandunion.Designacollectionoffuzzyrules(knowledgebase).Toformulatetheinitialrulebase,theinputspaceisdividedintomultidimensionalpartitionsandthenactionsareassignedtoeachofthepartitions.Inmostapplications,thepartitioningisachievedusingone-dimensionalmembershipfunctionsusingfuzzyasillustratedinFigure5.Theconsequentpartsoftherulerepresenttheactionsassociatedwitheachpartition.ItisevidentthattheMFsandthenumberofrulesaretightlyrelatedtothepartitioning.7ILLUSTRATIONOFFUZZYEXPERTSYSTEMDESIGNThissectionillustratesthedevelopmentofareactivepowerpredictionmodelusingMamdaniandTakagiÐSugenofuzzyinferenceexpertsystems.TheMatLabfuzzylogictool-boxwasusedtosimulatethevariousexperiments(FuzzyLogicToolBox,2004). 7R8R9R4R3R5R2R6R1LargeMediumInput-2Input-1SmallLargeMediumSmall Figure5.Exampleshowinghowthetwo-dimensionalspacesarepartitionedusingthreetrapezoidalmembershipfunctionsperinputdimension.Asimpleif-thenrulewillappearasIfinput-1ismediumandinput2islarge,thenruleisredThetaskistodevelopafuzzyexpertsystemtoforecastthereactivepower(attime1byknowingtheloadcurrent()andvoltage()attime.Theexperimentsystemconsistsoftwostages:developingthefuzzyexpertsystem,andperformanceevaluationusingthetestdata.ThemodelhastwoinÐoutvariables()andoneoutputvariable().Trainingandtestingdatasetswereextractedrandomlyfromthemasterdataset.Sixtypercentofdatawasusedfortrainingandtheremaining40%fortesting(AbrahamandKhan,2003).7.1Designandexperiments:fuzzyexpertsystemsFirst,theeffectsof(a)shapeandquantityofmem-bershipfunctions(b)T-normandT-conormoperators(c)defuzziÞcationmethodsand(d)inferencemethodfor Rule-basedExpertSystems designingthefuzzyexpertsystemisanalyzed.Experimentswerecarriedoutusingfourdifferentsettingsusingthesamerulebase.Experiment1(Toevaluatetheeffectonthenumberofmembershipfunctions)Thefollowingsettingswereusedfordesigningtheexpertsystem1.Twotriangularmembershipfunctions(MFs)foreachinputvariableandfourtriangularMFsfortheoutputvariable(power).Usingthegridpartitioningmethod(Figure5),fourrulesweredeveloped.2.ThreetriangularMFsforeachinputvariableandninetriangularMFsfortheoutputvariable(power).TherulebaseconsistedofnineÔminÕandÔmaxÕwereusedasT-normandT-conormoper-atorsandthecentroidmethodofdefuzziÞcationforMam-daniinferencemethodandweightedaveragedefuzziÞcationmethodforTakagiÐSugenoFuzzyInferenceSystem(FIS).ThedevelopedfuzzyinferencesystemsusingMamdaniandTakagiÐSugenomodelsaredepictedinFigures6to9.Table1summarizesthetrainingandtestingRootMeanSquaredError(RMSE)values.Experiment2(ToevaluatetheeffectofshapeofmembershipFortheMamdaniFIS,threeGaussianMFsforTable1.EmpiricalcomparisonoffuzzyinferencesystemsandquantityofMembershipFunctions(MFs). No.ofMamdaniFISTakagiÐSugenoFIS MFsRootmeansquarederror TrainingTestTrainingTest 20.4010.3970.0240.02330.3480.3340.0170.016 eachinputvariableandnineGaussianMFsfortheoutputvariablewereused.Therulebaseconsistedofninerules.ÔminÕandÔmaxÕasT-normandT-conormoperators,andthecentroidmethodofdefuzziÞcationforMamdaniFISandtheweightedaveragedefuzziÞcationmethodforTakagiÐSugenoFISwerealsoused.ThedevelopedfuzzyinferencesystemsusingMamdaniandTakagiÐSugenomodelsaredepictedinFigures10and11.Table2summarizesthetrainingandtestingRMSEvalues.Experiment3(Toevaluatetheeffectoffuzzyoperators)MamdaniFIS,threeGaussianMFsforeachinputvariableandnineGaussianMFsfortheoutputvariablewereused.Therulebaseconsistedofninerules.T-normandT-conormoperatorswereÔproductÕandÔsumÕandthecentroidmethodofdefuzziÞcationforMamdaniFIS,andweightedaveragedefuzziÞcationmethodforTakagiÐSugenoFISwereused.Table3summarizesthetrainingandtestingRMSEvalues.Experiment4(ToevaluatetheeffectofdefuzzicationFortheMamdaniFIS,threeGaussianMFsforeachinputvariableandnineGaussianMFsfortheoutputvariablewereused.Therulebaseconsistedofninerules.T-normandT-conormoperatorswereÔproductÕandÔsumÕandthefollowingdefuzziÞcationoperatorsweretestedforMamdaniFIS.Table2.EmpiricalcomparisonoffuzzyinferencesystemsusingGaussianMFs. MamdaniFISTakagiÐSugenoFIS Rootmeansquarederror TrainingTestTrainingTest 0.2430.2400.0210.019 Voltage = 0.5Current = 0.5Power = 0.51123401010 Figure6.MamdanifuzzyinferencesystemusingtwotriangularMFsforinputvariables. Elements:B–SignalConditioning 0.5Current Figure7.TakagiÐSugenofuzzyinferencesystemusingtwotriangularMFsforinputvariables. Current = 0.5Power = 0.625112301010 Figure8.MamdanifuzzyinferencesystemusingthreetriangularMFsforinputvariables. = 0.5 0.527Power = 0.4291123010Š Figure9.TakagiÐSugenofuzzyinferencesystemusingthreetriangularMFsforinputvariables. Rule-basedExpertSystems = 0.5Current = 0.5Power = 0.58411236710 Figure10.MamdanifuzzyinferencesystemusingthreeGaussianMFsforinputvariables. 1123890 Current = 0.510 Š Š Figure11.TakagiÐSugenofuzzyinferencesystemusingthreeGaussianMFsforinputvariables.Table3.Empiricalcomparisonoffuzzyinferencesystemsfordifferentfuzzyoperators. MamdaniFISTakagiÐSugenoFIS Rootmeansquarederror TrainingTestTrainingTest 0.2210.2190.0190.018 BisectorofArea(BOA)MeanofMaximum(MOM)SmallestofMaximum(SOM).FortheTakagiÐSugenoFIS,theweightedsumandweightedaveragedefuzziÞcationmethodswereused.Table4summarizesthetrainingandtestingofRMSEDiscussionsofResultsandProblemSolutionAsdepictedinTable1,whenthenumberofinputMFswereincreasedfromtwotothree,theRMSEvaluesreducedregardlessoftheinferencesystemused.However,whentheshapeoftheMFwaschangedtoGaussian,RMSEvaluesforMamdaniFISdecreasedbuttheRMSEvaluesforTak-agiÐSugenoFISincreased(Table2).UsingGaussianMFs,whentheT-normandT-conormoperatorswerechangedtoÔproductÕandÔsumÕ(insteadofÔminÕandÔmaxÕ)boththeinferencemethodsperformedbetter(Table3).Finally,theselectionofanidealdefuzziÞcationoperatoralsohasadirectinßuenceintheperformanceofFISasshowninTable4. Elements:B–SignalConditioning Table4.EmpiricalcomparisonoffuzzyinferencesystemsfordifferentdefuzziÞcationoperators. MamdaniFISTakagiÐSugenoFIS DefuzziÞcationRMSEDefuzziÞcationRMSE TrainingTestTrainingTest Centroid0.2210.0219Weightedsum0.0190.018MOM0.2300.232Weightedaverage0.0850.084BOA0.2180.216SOM0.2290.232 Thedesignoftherulebase(numberofrulesandhowtheinputsandoutputsarerelated)isalsoveryimportantforthegoodperformanceofFIS.Theroleofweightingfactorsemphasizingtheimportanceofcertainrulesalsobearsaprominentrolefortheoverallperformance.Whentheinput/outputdimensionsbecomelarger,manualdesignbecomestediousandsometimescouldevenleadtopoordesignandimplementation.8ADAPTATIONOFFUZZYINFERENCEExpertknowledgeisoftenthemainsourcetodesignthefuzzyexpertsystems.Figure12illustratesthevariousparametersandcomponentsthatneedtobeadaptedforcon-trollingaprocess.Accordingtotheperformancemeasureoftheproblemenvironment,themembershipfunctions,rulebases,andtheinferencemechanismaretobeadapted(Abraham,2002).Neuralnetworklearning,self-organizingmapsandclus-teringmethodscouldbeusedtogeneraterules.Gradi-entdescentanditsvariantscouldbeappliedtoÞne-tunetheparametersofparameterizedinput/outputmem-bershipfunctionsandfuzzyoperators(Abraham,2001).Adaptationoffuzzyinferencesystemsusingevolutionary inference system if-then rulesFuzzy operatorsKnowledge base Fuzzy inference system measure Process +Š Figure12.Adaptationoffuzzyinferencesystems.computationtechniqueshasbeenwidelyexplored.Evolu-tionaryComputation(EC)isapopulationbasedadaptivemethod,whichmaybeusedtosolveoptimizationproblems,basedonthegeneticprocessesofbiologicalorganisms(MichalewiczandFogel,1999).Overmanygenerations,naturalpopulationsevolveaccordingtotheprinciplesofnaturalselectionandÔsur-vivaloftheÞttestÕ,ÞrstclearlystatedbyCharlesDarwininÔOntheOriginofSpeciesÕ.Bymimickingthispro-cess,ECcouldÔevolveÕsolutionstoreal-worldproblems,iftheyhavebeensuitablyencoded(problemrepresentationischromosome).Automaticadaptationofmembershipfunctionsispopularlyknownasselftuningandthechromo-someencodesparametersoftrapezoidal,triangle,logistic,hyperbolic-tangent,Gaussianmembershipfunctions,andsoon.Evolutionarysearchoffuzzyrulescanbecarriedoutusingthreeapproaches.IntheÞrstmethod(Michi-ganapproach),thefuzzyknowledgebaseisadaptedasaresultofantagonisticrolesofcompetitionandcooperationoffuzzyrules.Thesecondmethod(Pittsburghapproach),evolvesapopulationofknowledgebasesratherthanindividualfuzzyrules.Reproductionoperatorsservetoprovideanewcombinationofrulesandnewrules.Thethirdmethod(iterativerulelearningapproach),isverymuchsimilartotheÞrstmethodwitheachchromosomerepresentingasinglerule,butcontrarytotheMichiganapproach,onlythebestindividualisconsideredtoformpartofthesolution,discardingtheremainingchromo-somesofthepopulation.Theevolutionarylearningprocessbuildsupthecompleterulebasethroughaniterativelearn-ingprocess(Cordetal.,2001).9SUMMARYRule-basedexpertsystemshavebeenappliedinavastnumberofapplicationareas.Animportantadvantageofthefuzzyexpertsystemisthattheknowledgeisexpressedaseasy-to-understandlinguisticrules.Ifwehavedata,thefuzzyexpertsystemcanbetaughtusingneuralnetwork Rule-basedExpertSystems learning,EC,orotheradaptationtechniques.Itistobeexpectedthatthenumberofapplicationswillgrowconsiderablyinthefuturenowthatsuccessisclearlyprovenforthesemethods.Abraham,A.(2001)Neuro-FuzzySystems:State-of-the-ArtMod-elingTechniques,ConnectionistModelsofNeurons,LearningProcesses,andArticialIntelligence,inLectureNotesinCom-puterScience,Vol.2084,(eds.Mira.,JoseandPrieto.,Alberto)SpringerVerlag,Germany(pp.269Ð276).Abraham,A.(2002)IntelligentSystems:ArchitecturesandPer-spectives,RecentAdvancesinIntelligentParadigmsandAppli-cations,inStudiesinFuzzinessandSoftComputing,Chapter1,(edsA.,Abraham,L.,JainandJ.,Kacprzyk),SpringerVerlag,Germany(pp.1Ð35).Abraham,A.andKhan,M.R.(2003)Neuro-FuzzyParadigmsforIntelligentEnergyManagement,InnovationsinIntelligentSystems:Design,ManagementandApplications,inStudiesinFuzzinessandSoftComputing,Chapter12,(edsA.,Abraham,L.,JainandB.,JanvanderZwaag),SpringerVerlag,Germany(pp.285Ð314).CLIPS(2004)ExpertSystemShellon,O.,Herrera,F.,Hoffmann,F.andMagdalena,L.(2001)GeneticFuzzySystems:EvolutionaryTuningandLearningofFuzzyKnowledgeBases,WorldScientiÞcPublishingCompany,Donald,W.A.(1986)AGuidetoExpertSystems,Addison-Wesley,Boston,MA.FuzzyLogicToolbox,TheMathWorks(2004)http://www.Giarratano,J.andRiley,G.(1989)ExpertSystems:PrinciplesandProgramming,PWS-KentPublishingCo,Boston,MA.Ignizio,J.P.(1991)IntroductiontoExpertSystems:TheDevel-opmentandImplementationofRule-BasedExpertSystemsMcGraw-Hill,Inc,USA.Jang,J.S.R.,Sun,C.T.andMizutani,E.(1997)Neuro-FuzzyandSoftComputing:AComputationalApproachtoLearningandMachineIntelligence,PrenticeHallInc,USA.Mamdani,E.H.andAssilian,S.(1975)AnExperimentinLin-guisticSynthesiswithaFuzzyLogicController.JournalofMan-MachineStudies(1),1Ð13.Michalewicz,Z.andFogel,D.B.(1999)HowtoSolveIt:Modern,SpringerVerlag,Germany.Militallo,L.G.,Hutton,R.J.B.(1998)AppliedCognitiveTaskAnalysis(ACTA):APractitionerÕsToolkitforUnderstandingErgonomics(11),1618Ð1642.Niwa,K.,Sasaki,K.andIhara,H.(1988)AnExperimentalCom-parisonofKnowledgeRepresentationSchemes,inPrinciplesofExpertSystems,(EdsA.,GuptaandE.B.,Prasad),IEEEPress,NewYork(pp.133Ð140).Schneider,M.,Langholz,G.,Kandel,A.andChew,G.(1996)FuzzyExpertSystemTools,JohnWiley&Sons,USA.Takagi,T.andSugeno,M.(1985)FuzzyidentiÞcationofsystemsanditsapplicationsofmodelingandcontrol,IEEETransactionsofSystems.ManandCybernetics,USA(pp.116Ð132).Vicente,K.J.(1999)CognitiveWorkAnalysis:TowardsSafe,Productive,andHealthyComputer-BasedWork,LawrenceErl-baumAssociates,Inc.Press,USA.Zadeh,L.A.(1965)FuzzySets.InformationandControl338Ð353.