/
DiffractiondiagnosisofproteinfoldingingapjunctionconnexonsThomasTTibb DiffractiondiagnosisofproteinfoldingingapjunctionconnexonsThomasTTibb

DiffractiondiagnosisofproteinfoldingingapjunctionconnexonsThomasTTibb - PDF document

deborah
deborah . @deborah
Follow
342 views
Uploaded On 2022-08-24

DiffractiondiagnosisofproteinfoldingingapjunctionconnexonsThomasTTibb - PPT Presentation

inless ofD III0010020AFIGUREIDiffractiondatafromorientedgapjunctionmembranesThepatternobtainedfrommouseliverspecimenL68isshownintheupperleftcornerafterquadrantaveragingsubtractionoffilmfogandc ID: 941263

barrel fig helices 09a fig barrel 09a helices aparallel 20a flavodoxin 1977 1986 ferricytochromec sheetstructuresurroundedbya ofthe 1979 banneretal 23a

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Diffractiondiagnosisofproteinfoldinginga..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

DiffractiondiagnosisofproteinfoldingingapjunctionconnexonsThomasT.Tibbitts,D.L.D.Caspar,W.C.Phillips,andD.A.Goodenough*RosenstielBasicMedicalSciencesResearchCenter,BrandeisUniversity,Waltham,Massachusetts02254-9110;and*DepartmentofAnatomyandCellularBiology,HarvardMedicalSchool,Boston,Massachusetts02115USAABSTRACTTodiagnosetheregularpolypeptideconformationingapjunc-tionmembranes,thex-rayintensitiesdiffractedfromorientedspecimenshavebeenseparatedintoamodulatedcomponentduetothecoherentlyorderedportionofthechannel-formingpairsofconnexon inless ofD. III00.100.20A-'FIGUREIDiffractiondatafromorientedgapjunctionmembranes.ThepatternobtainedfrommouseliverspecimenL68isshownintheupperleftcornerafterquadrantaveraging,subtractionoffilmfog,andconversiontocylindricalpolarcoordinates(R,Z)inreciprocalspace.Intensitynearthemeridianismissingduetothecurvatureofthesphereofreflection.Thesedatawereresolvedintotwocomponents:mo

dulatedintensityarisingfromcoherentlyorderedproteinwithintheconnexon(lowerright)anddiffusescatterfromdisorderedprotein,lipid,andwater(lowerleft).ThemodulatedcomponentwasangularlysmoothedbyconvolutionwithaGaussianof50standarddeviationtofurtherreducenoise(upperright).dlestructureshavediffractionprofileswhichcorrespondmostcloselywiththegapjunctiondata(Fig.2a).CylindricallyaveragedpatternsCylindricallyaverageddiffractionpatternsofimperfectlyaligneda-andfl-proteinswerecalculatedfromtheirFouriertransformstoassesshowtheorientationofstruc-turaldomainscouldbeinferredfromthegapjunctiondiffractiondata.Thebackbonesoftwo,B-andtwoa-proteinsareshownattheleftofFig.4,orientedtogiveamerid,ionaldiffractionmaximaat-4.8-4.9Aspacing;andtheircalculateddiffractionpatternsareshownattherightinFig.4,afterconvolutionwitha±150disorienta-tiondistributionandcylindricalaveraging.Thesharpnessofthemeridionalmaximaisrelatedtotheaxialex

tentoftheperiodicsecondarystructure.Toproduceamaximumonthemeridianbeyond0.2A'forferricytochromec'andTMVproteins,theorientationanglesofsomeofthea-helicesineachmoleculeweresetatangles�200tothereferencez-axis,withastandarddeviationof-+130fortherangeoftiltsoftheindividualsegments.Ifallfoura-heliceswerealignednearlyparalleltotheaxis,thenthemaximumofthe-5.4Apitchspacinglayerlinewouldhaveoccurredoffthemeridian.Thedistinguishingfeatureofthecylindricallyaver-ageda-helicaldiffraction,incontrasttothefl-sheetpatterns,isthedominantequatorialmaximumat11-12Aspacing.Theangularwidthofthismaximumisdeter-minedbytheorientationsofthea-helicalsegmentsrelativetothereferenceaxis,theorientationdistribution,andtheintrinsicoff-equatorialwidthofthediffraction(whichisrelatedtotheaxiallengthofthesegments).The-250angularhalf-widthofthe11-12Aspacingarcinthecomputeddisorientedpatternsiscomparablewiththatmeasuredinthegapjunction

patterns.Thus,abundleof1028BiophysicalJournalVolume57iin1028BiophysicalJournalVolume57May1990 SphericallyAveragedDiffractioncoc4._4-e)FIGURE2SphericallyaveragedintensitydistributionscalculatedfromFouriertransformsofproteinsrepresentingdifferentstructuralclasses.Gapjunctionsphericallyaverageddiffraction,shownineachframe,wasgeneratedfromthecylindricallysymmetricmodulatedintensity(Fig.I)byweightingeachgridpointbyitsdistanceRfromthemeridian,thenintegratingoverallanglestothemeridian.Theresultingcurvewaslow-passFourierfiltered(witha17-Aresolutioncutoff)andscaledwiththecalculatedcurvestohavethesameintegratedintensityinthe4-5Aspacingpeak.Thegapjunctionmaximanear10Afallsclosetocurvescalculatedfortwofour-helixbundleproteins,Rhodospirilliumferri-cytochromec'andtobaccomosaicvirus(TMV)coatprotein(A).Flavodoxin,aparallel,3-sheetstructuresurroundedbya-helices,andcarboxypeptidase,amixed-sheetstructuresurroundedbya-hel

ices,givemaximanear10Asmallerthanthatinthegapjunctiondata(B).Antiparallel,-sheetstructureshaveevensmallermaximanear10A,asshownbycurvescalculatedfortomatobushystuntvirus(TBSV)domain3,aneight-stranded13-barrel,andtheBenceJonesprotein,animmunoglobinconstantdomain13-barrel(C).a-helicessetatameanorientationangleA1of.200tothemembranenormal,withavariationof1O-150inthetiltanglesandadisorientationdistributionof±150,isconsis-tentwiththeangularwidthoftheequatorialarcsinthediffractionpatternrecordedfromthecoherentlyorderedproteininthegapjunctionconnexons.2.0-.9.coc1.0-Ca-hecalcontent(%)100FIGURE3Relationofthepeakintensityratioinsphericallyaverageddiffractionpatternstothea-helicalcontentoftheprotein.Theratioofaverageintensityintheinterval0.07-0.11A-'tothatintheinterval0.18-0.23A-iscorrelatedwithhelixcontentoftheorderedportionofthestructure(thoseresidueshavinganaverageDebyefactorofA2).(a)Immunoglobinlightchainconst

antdomain,asimpleantiparal-lel13-barrel(XuandSchiffer,1988)(b).Plastocyanin,alsoasimpleantiparallel,B-barrel(Gussetal.,1986).(c)Domain3ofTBSVcoatprotein,anantiparalleljellyroll13-barrel(Hopperetal.,1984).(d)Subtilisininhibitor,anantiparallel13-sheetwithtransversea-helix(Mitsuietal.,1979).(e)Carboxypeptidase,ana#mixed-sheetstruc-ture(Reesetal.,1983).(f)Flavodoxin,aparallel,8-sheetsurroundedbya-helices(Smithetal.,1977).(g)Lactatedehydrogenase,structur-allysimilartoflavodoxin(MusickandRossman,1979).(h)Insulinsubunit,asmalla13proteininthecubiccrystalform(Badgeretal.,manuscriptinpreparation).(i)Triosephosphateisomerase,aparallel,8-barrelsurroundedbya-helices(Banneretal.,1976).(j)TMVcoatprotein,anantiparallelup-downhelixbundle(NambaandStubbs,1986).(k)Ferricytochromec',anup-downdivergentbundleoffourantiparallela-helices(Finzeletal.,1985).(1)Hemoglobin,8-subunit,anantiparallelhelixbundle(BoltonandPerutz,1970).

(m)E.colirepressorofprimer(ROP),anantiparallelup-downfour-helixbundlewithtwofoldsymmetry(Banneretal.,1987).(n)Threestrandsofresidues96-115frominfluenzavirushemagglutinin,relatedbyathreefoldaxisinaparallel-strandedcoiledcoil(Wilsonetal.,1981).DiffractionfromtheconnexonpairanddodecamermodelsTosimulatethehighspatialfrequencymodulationofthegapjunctiondata,wehavecalculatedcylindricallyaver-aged,disorienteddiffractionpatternsofdodecamerswith622pointgroupsymmetry,builtfromthree-andfour-strandeda-helixproteinsarrangedtogivedimensionssimilartothechannel-formingpairofconnexonhexamers(Fig.5).Themodelswerebuiltwiththecentersofthea-helicaldomains42-44Aabovethemidplane,corre-spondingtothe42Adistanceofthegapjunctionbilayercenterfromthemiddleofthegap(Makowskietal.,1977,1984b);andthemeanradiiofthea-helixbundlesweresetTibbittsetal.DiffractionDiagnosisofProteinFolding1029GapJunctions.0DITibbittsetal.DiffractionDiagnosiso

fProteinFolding1029 area ofthe AA5.3423.05.8025.9havebeen EquatorialdataTheequatorialintensitydistributionisrelatedbythecylindricalBessellfunctionterms[J,(2irRri)ofordern=0,6,12...]totheradialcoordinatesr,,measuredfromthehexameraxis,ofthehelixsegments.Becausetheside-to-sidespacingofthea-helixsegmentsis-10-13A,themaximumintensitywilloccurnearR-0.09A-',withaspatialfrequencymodulationcharacteristicoftheradialcoordinates.Thewidthsofequatorialmaximainthediffractionpatternsoftheferricytochromec'andhemagglutinincoiled-coilmodels(Fig.5)aresimilarbecausethemeanradiiofthea-helicalsegmentsarer,24Ainbothmodels,eventhoughonemodelhasfoursegmentsandtheotherthree.Thesetwopatternsdifferinthepositionofthemaximumbecausethedistancebetweena-helixsegmentsislargerintheinfluenzacoiled-coilthaninferricytochromec'.ThepositionofthemaximumintheTMV-basedmodelisnear0.09A`andthearcwidthissimilartothatoftheothertwomodelpatterns(Fig.5

),althoughtherearedifferencesinthedetailsoftheintensitymodulationduetodetaileddiffer-encesinthestructures.ThegapjunctionpatternwasFourierfilteredtoremovethesharplatticesamplingfromthedataforcomparisonwiththemodeldiffractionpatterns(Fig.5).Thecorrespondenceintheoverallwidthofthe0.09A-'maximuminthegapjunctionpatternwiththatofthemodelequatorialdiffractionmaximaindicatesthattherearethreeorfournearaxiala-helixsegmentsintheconnexonsubunitwhicharelocatedatameanradius-r24Ainthehexamer.Tocomparetheprofileofthe0.09A'maximumfromthegapjunctionsandtheferricy-tochromec'-basedmodel,thepatternsweresmoothedwiththesamelow-passFourierfilter,sphericallyaver-agedandscaledintheinterval0.18-0.23A'(Fig.6a).Thesimilarityinwidthofthemaximumcharacteristicofthe24Ameanradiusisevidentfromthiscomparison.However,theslightlylowerintegratedintensityofthe0.09A'peakforthegapjunctionpatterncomparedtothatforthemodelferricytochromec'pattern

indicatesthatthea-helixcontentsareinproportiontothisintensityratio(cf.Fig.3).Theequatorialarcsinthemodeldisorientedpatterns(Fig.5)haveangularhalf-widthsofabout(&2+p2)1/2,where_isthehalf-widthofthedisorientationdistributionand41isthemeanorientationangleofthea-helicesrelativetothehexameraxis(Table1).Inthethree-strandedcoil-coilmodelpattern(Fig.5a),theangularhalf-widthoftheequatorialarcis,190correspondingtothe100averagehelixtiltconvolutedwiththe±150disorientationdistribution.Similarly,thearcwidthsfortheTMVproteinandferricytochromec'patternsare230.(1ca:SphericalyAveragedDifraction11REquatorialArcsGapJunctionsICD\Ferricytochromec'.IDodecamerd:coOrientX=nX=ODegrees90FIGURE6Sphericallyaverageddiffraction(A)andtheangulardistri-butionofequatorialintensity(B)inthecylindricallyaveragedpatternfromapairofferricytochromec'hexamerscomparedtocurvesfromthegapjunctiondata.AlOOAresolutionlow-passFourierfilterwasappliedt

othesphericallyaveragedferricytochromec'dodecamerintensitydistributionandtothesphericallyaverageddiffractiondata;thisremovedtheeffectsofhexagonallatticesamplinginthedata.Theangularspreadofthegapjunctiondisorientationdistribution(showninBasmeasuredfromthesmall-anglemeridionalfringes)dependsonlyupontheorientationofthemembranes,andisnotasbroadasIIAspacingequatorialarcsinthedata.Theangularspreadoftheequatorialarcsinthemodel,whichissimilartothatofthegapjunctiondata,isduetothe230meantiltofthea-helicescombinedwiththe150standarddeviationoftheorientationdistribution.and270correspondingrespectivelytomeana-helixtiltsof18°and230.Theangulardistributionoftheequatorialmaximuminthegapjunctionpatterniscomparedwiththatoftheferricytochromec'modelinFig.6b.Becausethehalf-widthsofthesetwopatternsaresimilar,itappearsthatthea-helicesintheconnexon,likethoseinthemodel,areorientedatameanangleof=200tothehexameraxis.Thespreadofor

ientationsintheconnexonappearstobenarrowerthanintheferricytochromec'model,sincethemeasuredintensitydistributionfortheequatorialarcfromthegapjunctionsliesabovethatforthesimulatedpatternsatanglessmallerthanthehalf-widthandbelowatlargerangles;fromthiscomparisonoftheshapesofthecurves,thestandarddeviationforthetiltanglesintheconnexonisestimatedtobe-10°.Summaryofa-helicalparametersAbout60%oftheorderedportionoftheconnexonisa-helical,asindicatedbytheratioofintensityinthe0.09and0.20A-'spacingpeaksinthesphericallyaverageddiffractiondata.Inthecylindricallyaveragedpattern,theoverallspreadofthemeridionalfringesintheaxialdirectionbetweenZ=0.18and0.24A'indicatesthatthemeanlengthofLofthehelixsegmentsis-35Aandthemaximumhelixsegmentlengthis=40A.Fromtheaveragewidthofthemeridionalfringes,themeandis-Tibbittsetal.DiffractionDiagnosisofProteinFolding1033Tibbittsetal.DiffractionDiagnosisofProteinFolding1033 ofthe channelbe D

Related Contents


Next Show more