/
ApplicationofWeightedEarly-ArrivalWaveformInversiontoShallowLandDataHa ApplicationofWeightedEarly-ArrivalWaveformInversiontoShallowLandDataHa

ApplicationofWeightedEarly-ArrivalWaveformInversiontoShallowLandDataHa - PDF document

eliza
eliza . @eliza
Follow
342 views
Uploaded On 2021-01-11

ApplicationofWeightedEarly-ArrivalWaveformInversiontoShallowLandDataHa - PPT Presentation

ABSTRACTRecentstudieshaveshownthatinvertingtracesweightedbytheenergyoftheearlyarrivalscanimprovetheaccuracyofestimatingshallowvelocitiesThisisexplainedbyshowingthattheassociatedmistgradientfunctio ID: 829073

distance 180 720 depth 180 distance depth 720 csg tomogram geophysics indextime 360 540 100 wewi ewi tjxs conventional

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "ApplicationofWeightedEarly-ArrivalWavefo..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 ApplicationofWeightedEarly-ArrivalWavefo
ApplicationofWeightedEarly-ArrivalWaveformInversiontoShallowLandDataHanYu1,DongliangZhang1andXinWang11KingAbdullahUniversityofScienceandTechnology,DivisionofPhysicalScienceandEngineering,Thuwal23955-6900.SaudiArabia ABSTRACTRecentstudieshaveshownthatinvertingtracesweightedbytheenergyoftheearly-arrivalscanimprovetheaccu-racyofestimatingshallowvelocities.Thisisexplainedbyshowingthattheassociatedmistgradientfunctiontendstobesensitivetothekinematicsofwavepropagationandinsensitivetothedynamics.Asyntheticexampleveriesthetheoreticalpredictionsandshowthatthee ectsofnoiseandunpredictedamplitudevariationsintheinversionarere-ducedusingthisweightedearlyarrivalwaveforminversion(WEWI).Wealsoapplythismethodtoa2Dlanddatasetforestimatingthenear-surfacevelocitydistribution.Thereversetimemigrationimagessuggestthat,comparedtothetomograminverteddirectlyfromtheearlyarrivalwave-forms,theWEWItomogramprovidesamoreconvincingvelocitymodelandmorefocusedreectionsinthedeeperpartoftheimage. 1.INTRODUCTIONThenear-surfacevelocitydistributioniscrucialforimagingthedeeperpartsoftheEarth.Complexvelocityvariationsatthenearsurfaceareoftenassociatedwithundulatingtopographyorirregulargeologyinthenear-surfaceweatheredlayers(Amor-iumetal.,1987;Taneretal.,1998).Ifthenear-surfacevelocitydistributionisnotaccuratelyestimated,thecoherencyofthedeepermigratedreectionscanbestronglydegraded(White,1989;Marsden,1993).Topartlyremedythisproblem,thenear-surfacevelocitymodelwithsmoothvariationscanbees-timatedbytraveltimetomography(ZhuandMcMechan,1989;PrattandGoulty,1991;AkiandRichards,2002)thatinvertstherst-arrivaltraveltimes.However,ingeologicallycomplexareas,amorehighlyresolvedvelocitymodelisneededforimagingdeeperreectors.Inthisregard,waveforminversion(Tarantola,1984;Mora,1987;Zhouetal.,1995)wasdevel-opedtoinvertformoreaccuratetomogramsbynite-frequencyseismicwavepropagation.Toreducethecomputationaltimeandlocalminimaprob-lems(SirgueandPratt,2004),early-arrivalwaveforminversion(EWI)wasproposedbyShengetal.(2006)inthespace-timedomainandlaterappliedtomarinedata(Boonyasiriwatetal.,2010).Inthiswork,wecarryouttheinversiononlanddatabyfollowingtheconventionalEWImethodbutusingarecentlydevelopedobjectivemistfunction(Shen,2010),whosegra-dientismorerobustandfocusesmoreonmatchingthephaseratherthantheamplitudeinthedata.However,theassociatedgradientdoesnothaveanimportantenergynormalizationtermwhichisimportantforoptimalimaging.Inthiswork,thegradi-entassociatedwiththisweightedearlyarrivalwaveforminver-sion(WEWI)isproperlynormalizedandshowntosignicantlyimprovetheaccuracyofthenaltomogram.Insteadofreplac-ingtheamplitudespectrumofacalculatedtracewiththatofthecorrespondingobservedtrace(SunandSchuster,1993),weimplementWEWIinthetimedomainbynormalizingboththeobservedandcalculatedearlyarrivalsusingtheL2normofthetrace,wherethisapproachavoidsthephasewrappingprobleminthefrequencydomain(ShinandMin,2006).OursyntheticresultsdemonstratethatcomparedtoEWI,WEWIcanmi

2 ti-gatethee ectsofnoiseandunpredictedamp
ti-gatethee ectsofnoiseandunpredictedamplitudevariationsinthedataandrobustlyinvertforhighlyresolvednear-surfacetomogram.Moreover,alanddatatestillustratesthatWEWIproducesamoreaccurateshallowsubsurfacetomogramwheretheenergyisfocusedinthedeeperpart.Thispaperisorganizedintofoursections.Therstpartistheintroduction,andthesecondpartanalyzesthemistfunc-tionassociatedwithitsgradientinourapproach.Insection3,numericalresultsareshownforinvertingdataassociatedwiththeMarmousimodelandaeldexperimentinSaudiArabia.Thelastsectionpresentstheconclusions.2.THEORYInmanyeld,particularlylanddatasets,therearestrongelas-ticarrivalssuchassurfacewavesthatcannotbemodeledbythe61 62Yuetal.acousticwaveequation.Inaddition,theamplitudesofsometracesaredistortedduetounexplainedenvironmentalsourcesandnotexplainedbygeometricspreading.Someelastice ectsinthedatacanbereducedbyapplyinganearlyarrivalwindowtomutethelaterarrivals.Therefore,theconventionalwave-forminversionmistfunctionismodiedbyShen(2010)andexpressedinthetimedomainasE=1 2Xs;rjjp(xr;tjxs)jj22;=1 2Xs;rjjpcalc(xr;tjxs) jjpcalc(xr;tjxs)jj2pobs(xr;tjxs) jjpobs(xr;tjxs)jj2jj22;(1)wherep(xr;tjxs)denotesthepressureeldtracerecordedatthereceiverpositionxr,withlisteningtimetandasourceatxs;jjpjjdenotestheL2normoftheN1vectorp,namelyp pTp,whereNisthenumberoftimesamplesinthetrace.Here,pobsrepresentstherecordedtracewithwindowedearlyarrivalsandpcalcrepresentsthesyntheticearlyarrivals.Thesyntheticdataarecalculatedbysolvingtheconstant-densityacousticwaveequation,1 c2(x)@2p(x;tjxs) @t2r2p(x;tjxs)=s(x;tjxs);(2)wherec(x)representsthevelocitymodelatpositionx.Theso-lutiontoequation2iscalculatedbyasecondorderintimeandeighthorderinspacestaggered-gridmethod(Levander,1988).Equation1normalizestheobservedandthesyntheticearlyarrivalssothattheirenergycanbecomparedatthesamescale,andthewaveforminversioninthiscaseismoresensitivetophasedi erencesinthemistfunction.Tounveilthisfact,theFr´echetderivative[grad(x)=@E @c(x)]ofthefunctionalEwithrespecttoc(x)iscalculatedbygrad(x)=pT@(pcalc=jjpcalcjj2) @c=1 jjpcalcjj2(ppTpcalc jjpcalcjj22pcalc)T@pcalc @c:(3)Here,ifthescalar1=jjpcalcjj2isignored,therstterminequa-tion3exactlycorrespondstothegradientofconventionalwave-formmistfunction.Inthispaper,weinverttheelddatausingthisgradientbutignore1=jjpcalcjj2becauseitisincludedincal-culatingthesteplengthwhenupdatingthevelocitymodel.Pre-vioussynthetictests(Shen,2010)missedthesuperscriptterm”2”inthedenominatorjjpcalcjj22ofequation3,thusmakingthephasematchlessaccurate.ThismistfunctionbecomesmoresignicantifthetermpTpcalc jjpcalcjj22isnotsmall,whichcanbecausedbycomplicatedgeologicalconditions,becauseitattachesmoreimportancetoaccuratelypredictingthephasesratherthantheamplitudes.Note,thatthegradienttermppTpcalc jjpcalcjj22pcalcisorthogonaltopcalcsince(p(p)Tpcalc jjpcalcjj22pcalc)Tpcalc=pTpcalcpTpcalc=0;(4)whichindicatesthatppTpcalc jjpcalcjj22pcalceliminatesthephasein-formationofpcalcinpobs

3 .Thereforethecommonphasesinpcalcandpobsw
.Thereforethecommonphasesinpcalcandpobswillnotbeselectedtomatchagaininthenextiteration.Figure1showsfactthefactthisnewvirtualsourceisperpendiculartotherecordeddata.Itthusweakenstheef-fectsofpcalcandstrengthensthephasedi erencebetweenpobsandpcalcinthebackpropagatedwaveelds,thereforemakingWEWIrobustandsignicant. Figure1:ConstructionofdataresidualsasbackpropagatingsourcesforEWIandWEWI.Thevelocitymodelisestimatedbyaniterativeconjugategradientmethodwhereck+1(x)=ck(x)+kdk(x);(5)andtheconjugatedirectionsaredenedbydk=Pkgk+ kdk1;(6)foriterationsk=1;2;:::;kmax,g=[grad(x)],andPisthecon-ventionalgeometrical-spreadingpreconditioner(Causseetal.,1999).Thescalarkisthesteplengthwhichcanbedeter-minedbyaquadraticline-searchmethod(NocedalandWright,1999),anddk(x)isthecomponentofthedirectionvectordk(x)indexedbyx.Fortherstiteration,wesetd0=g0.Thepa-rameter kiscalculatedbythePolak-Ribi´ereformula(NocedalandWright,1999) k=gTk(PkgkPk1gk1) gTk1Pk1gk1:(7)Tocomputethegradientdirectionateachiterationreducestocomputingthereversetimemigrationoperation.Additionalforwardmodelingsarerequiredforthelinesearch.Theinitialvelocitymodelc0(x)isthetraveltimetomograminvertedbypickedrstarrivals(Nemethetal.,1997),andequation5isiterativelyapplieduntiltheobjectivefunctionalEsatisesastoppingcriterion. WeightedEWItoShallowLandData633.NUMERICALTESTSOFWEWI3.1SyntheticDataExampleTheMarmousimodelisusedtotesttherobustnessandqual-ityofWEWIbeforeitisappliedtoalanddatasetinthenextsection.First,asyntheticdatasetisgeneratedbasedontheMarmousimodel(Figure2(a))witha576(horizontal)by184(vertical)griddedmeshwitha6.0mgridinterval.Thereare60shotswitha54mshotspacing,andforeachshot,thenumberofreceiversis190witha6mreceiverspacing.Therecord-inglengthis1.5swithasamplingrate0.5ms.Whitenoiseisaddedtoeachtraceofeveryshotgather.Thenonzeromean-valuednoiseconsistsoftwoparts:randomreceivernoiseisaddedtoeveryCSGandarandomstaticamplitudeshiftisalsoappliedtoeachtrace.Figures3(a)and3(b)showonecommonshotgatherbeforeandafteraddingthenoise,andtheyaredis-playedwiththesameamplitudescale.Figure3(c)showsthenoisemaskaddedtoFigure3(a)thatsimulatesdeadtraces.Fi-nally,WEWIandconventionalEWIareusedtoinvertthenoisydataupto0.5saftertherstarrivalusingthesameinitialve-locitymodel(seeFigure2(b)).Theresultingtomogramsafterthe30thiterationarepresentedinFigures4(a)and4(b),whichprovesthatWEWIislesssensitivetothenoise;thematchedphaseinformationinthepredicteddataisexcludedincalcu-latingthegradientusingreversetimemigration(RTM).TheirmistgradientFigures5(a)and5(b)fortherstiterationfur-thervalidatetheadvantageoftheWEWImethod,followedbytwoobviouslydi erentconvergenceratesofthedataresidualshowninFigure5(c).ThecomparisonofthetwotomogramsapparentlyindicatesWEWIcaninvertforamoreaccurateve-locitymodelwithunpredictednoiseinthedata,andimplytherobustnessoftheWEWIcomparedtoEWI. Distance X (m)Depth Z (m)(a) Marmousi Velocity Model 600 1800 3000 240 480 720 960 2.5 3.5 4.5 km/s

4 Distance X (m)Depth Z (m)(b) Initial Vel
Distance X (m)Depth Z (m)(b) Initial Velocity Model 600 1800 3000 240 480 720 960 Figure2:TheMarmousimodelswith(a)thetruevelocitydis-tributionand(b)theitssmoothedversionastheinitialvelocitymodelforwaveforminversion. (a) CSG #10 before Adding the NoiseReceiver IndexTime (s) 20 60 100 140 180 0.5 1.0 1.5 (b) CSG #10 after Adding the NoiseReceiver IndexTime (s) 20 60 100 140 180 0.5 1.0 1.5 (c) The Noise Mask for CSG #10Receiver IndexTime (s) 20 60 100 140 180 0.5 1.0 1.5 Figure3:TheCSG#10generatedbytheMarmousimodel(a)before,(b)afteraddingthenoise,and(c)itsnoisemask.3.2LandDataExample3.2.1AcquisitionandProcessingA2DseismicsurveyiswascarriedoutnearKAUSTwiththeacquisitiongeometryillustratedinFigure6.The2Dacqui-sitionlineconsistsof1279shotsand240verticalcomponentgeophonespershot,withauniformspacingof30mforbothshotsandreceivers.Foreachchannel,therecordlengthis2switha4mssamplingrate.Foracommonshotgather(CSG),theshotpositionisinthemiddleofthe240receivers,sothelargesto setis3600m.WEWIisappliedtotherst180CSGs,andthehorizontaldistanceforourinversionisrestrictedbetweenshot#1and#180(redcrossesinFigure6).Thetopog-raphyofthese180shotsisshowninFigure7,whichisalmostatifthehorizontaldistanceXandthedepthZareofthesamescale.Inthiscase,wechooseZ=25masthesurfacefortheinversionandignoretheelevationvariationsofthegeophonesandshotpoints.Priortodataprocessing,itisusefultoestimatethenear-surfacevelocitydistributionfromthepickedrstarrivals.Fig-ure8showsCSG#17withpickedrstarrivalsmarkedbyredcrosses,andthedirectwaveandtherefractionsarerespectivelymarkedbythewhiteandgreendashedlines.Theslopesofthe 64Yuetal. Distance X (m)Depth Z (m)(a) WEWI Tomogram 600 1800 3000 240 480 720 960 2.5 3.5 4.5 km/s Distance X (m)Depth Z (m)(b) Conventional EWI Tomogram 600 1800 3000 240 480 720 960 Figure4:Theinvertedtomogramsusing(a)WEWIand(b)conventionalEWI.twolinessuggestthatthevelocitycorrespondingtotherstlayerisapproximatelyv1=750m=0:2s=3750m=s,whereasthevelocityforthesecondlayerisaboutv2=2800m=0:5s=5600m=s.WerstapplytheF-KltertoremoveapparentsurfacewavesinalltheCSGs.Asanexample,therawCSG#11isshowninFigure9(a),withmostofthesurfacewaveseliminatedinFig-ure9(b)byF-Kltering.Theelddataarethentransformedfrom3Dto2Dformatbyapplyingthelterp i=!toallthetracesinthefrequencydomainandscaledbyp tfor3Dgeo-metricalspreadinginthetimedomain.Inthemeantime,thedataarealsolteredwithapassbandfrom10to20Hz.TheresultsafterlteringofCSG#11areshowninFigure9(c).ThespectraofatraceinCSG#11beforeandaftertheprocessingstepsarepresentedinFigure10.3.2.2ApplyingWEWItoTheLandDataSetWEWIisimplementedusingastartingmodelcalculatedbyrst-arrivaltraveltimetomgoraphywitha757(horizontal)by97(vertical)griddedmeshanda7.5mgridinterval.First,aray-basedtraveltimetomographymethodisusedtoinverttherstarrivaltraveltimesforasmoothvelocitymodel.Thetravel-timetomogramisshowninFigure11,wherethehigh-velocitylayerisabout80mdeep,asillustratedbytherefractiondata

5 inFigure8.Second,WEWIisusedtoinverttheda
inFigure8.Second,WEWIisusedtoinvertthedatarestrictedbydynamicallyincreasingtimewindows.Thetimewindowstretchesfromthebeginningoftherecordto0.24saftertherstarrivalsfortherst20iterationsanditssizequadraticallyincreasesupto0.5sinthenext10iterations.Allthetracesboundedbytheirtimewindowsintheobservedandcalculateddataarenormalizedaccordingtoequation1duringeachitera-tion.The1=jjpcalcjj2terminequation3isdroppedandtherestofthetermsareexactlyfollowedwhencalculatingthegradient. Distance X (m)Depth Z (m)(a) WEWI Gradient for the First Iteration 600 1800 3000 240 480 720 960 Distance X (m)Depth Z (m)(b) EWI Gradient for the First Iteration 600 1800 3000 240 480 720 960 1 10 20 30 0.2 0.4 0.6 0.8 1 1.1 Iteration NumberNormalized L2 Data Residual(c) Data Residual Convergence Rate Comparison for Synthetic Data WEWI Convetional EWI Figure5:(a)WEWIand(b)conventionalEWIgradientsfortherstinteration,and(c)thecomparisonoftheirconvergencerate. 5 10 15 20 25 30 35 40 45 0 1.6 X [km]Y [km]Acquisition Geometry with Equal Scales in Distance Red Crosses: the first 180 CSGs for inversion Figure6:Theacquisitiongeometrywithequalscalesinthehorizontalandtheverticaldirections.TheinvertedWEWItomogramatthe30thiterationisshowninFigure12(a).Atthe20thiteration,theobserveddataandcal- WeightedEWItoShallowLandData65 0 750 1500 2250 3000 3750 4500 5250 0 500 Distance X (m) Depth Z (m)The Topography of Shot 1 to 180 Figure7:Topographyoftherst180shots. Receiver IndexTime (s)CSG # 17 with Picked First Arrivals 40 80 120 160 200 240 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Figure8:Acommonshotgatherwithitspickedrstarrivals.Redcrosses:pickedrstarrivals;greendashedline:theesti-mateddirectwave;whitedashline:theestimatedrefraction.culateddatarecorded0.24saftertherstarrivalsmostlyagreewithoneanotherinFigures13(a)and13(b).Notethatnear-o settraceswithin150mfromthesourceandfar-o settracesmorethan3300mfromthesourcesarenotinvertedduetothepoorqualityoftherecordeddata.Afterthedynamicwindowsareapplied,manylaterarrivaleventsalsomatchaccordingtoFigures14(a)and14(b)atthe30thiterationwithoutharmingthematchedpreviousarrivals.Figure15depictstheresidualvs.iterationnumberplotwhenapplyingWEWIfor30itera-tions.Notethattheresidualgraduallyincludesmoredataforcomparisonwhilethewindowsizegrowsveryslowly.Toverifytheinvertedvelocitymodel,wemigratethehighfrequencyportion(45Hz)oftheobserveddatausingthetraveltimeandtheWEWItomogramsasmigrationvelocitymodels.Thereversetimemigration(RTM)imagesabove720mindepthareexhibitedinFigures16(a)and16(b)andtheirassociatedcommonimagegathersarealsoshowninFigures17(a)and17(b).TheRTMimagebasedontheWEWItomo-gramshowsamorecontinuousstructureintheshallowpartandmorefocusedenergyinthedeeppartcomparedtotheRTMim-agecomputedwiththetraveltimetomogram.TheCIGsbasedontheWEWItomogramalsoareatterforboththenear-surfaceandthedeeperreectors.TheEWIistomogramshowninFigure12(b).Someshallowreectorscanstillbe

6 detectedaccordingtothistomogrambuttheyar
detectedaccordingtothistomogrambuttheyaremuchstrongercomparedtothetomograminFigure12(a).Figure12(b)couldbelessrealisticbecausetheesti-matednear-surfacevelocityatZ=80misaround5600m=sandnothigherthan6000m=saccordingtothepickedrstar-rivalsinFigure8.ThecalculatedCSG#11forthedegradedtomogrampresentedinFigure13(c)doesnotmatchwellwith Receiver IndexTime (s)(a) Raw CSG #11 50 100 150 200 0.4 0.8 1.2 1.6 2 Receiver IndexTime (s)(b) F-K Filtered CSG #11 50 100 150 200 0.4 0.8 1.2 1.6 2 Receiver IndexTime (s)(c) CSG #11 after Bandpass Filtering and 3D to 2D Transformation 50 100 150 200 0.4 0.8 1.2 1.6 2 Figure9:Araw(a)CSG#11,(b)withitssurfacewavesre-movedbythediplter,and(c)theCSG#11afterbandpasslteringand3Dto2Dtransformation.Figure13(a)evenfortheearlyarrivalsattheintermediate20thiteration.Whenthetimewindowincreasesto0.5sinthe30thiteration,thecalculatedCSG#11withconventionalEWI(14(c))showsgreaterdi erencefromtheobservedCSG#11thanitscounterpartwithWEWI(Figure14(b)).TheRTMim-age(Figure16(c))usingthistomogramisalsoinferiorcom-paredtoFigure16(b),andsoaretheCIGs(Figures17(c)and18(c))associatedwithit.Moreover,thenormalizedEWIdataresidualonlydecreasesto0.85after30iterationsasshowninFigure15.4.CONCLUSIONSAmodiedmistfunctionisappliedanditsassociatedFr´echetderivativeisexactlyfollowedtocalculatethegradientforup-datingthevelocitymodel.Thismodiedfunctionusingtrace-by-tracenormalizationattachesmoreimportancetoaccurately 66Yuetal. 10 20 30 40 50 60 70 0.2 0.4 0.6 0.8 1 Frequency (Hz)Normalized Amplitude(a) Spectrum of a Trace of Raw CSG #11 10 20 30 40 50 60 70 0.2 0.4 0.6 0.8 1 Frequency (Hz)Normalized Amplitude(b) Spectrum of the Trace in (a) after Filtering Figure10:ThespectrumofatraceinCSG#11(a)beforeand(b)afterprocessing. Distance X (m)Depth Z (m)Traveltime Tomogram 750 2250 3750 5250 180 360 540 720 2.5 3.5 4.5 5.5 km/s Figure11:ThetraveltimetomogramforthepickedrstarrivalsfromCSGs#1#180. Distance X (m)Depth Z (m)(a) WEWI Tomogram 750 2250 3750 5250 180 360 540 720 2.5 3.5 4.5 5.5 km/s Distance X (m)Depth Z (m)(b) Conventional EWI Tomogram 750 2250 3750 5250 180 360 540 720 Figure12:(a)TheWEWI,and(b)theconventionalEWIto-mogramsinvertedfromtheearlyarrivalsofCSGs#1#180.predictingthephasethantheamplitudeoftherecordeddata.Thegradientassociatedwiththisobjectivefunctionmitigates Receiver IndexTime (s)(a) Observed CSG #11 20 40 60 80 100 120 0.2 0.4 0.6 0.8 1.0 1.2 Receiver IndexTime (s)(b) Calculated CSG #11 with WEWI 20 40 60 80 100 120 0.2 0.4 0.6 0.8 1.0 1.2 Receiver IndexTime (s)(c) Calculated CSG #11 with Conventional EWI 20 40 60 80 100 120 0.2 0.4 0.6 0.8 1.0 1.2 Figure13:(a)TheprocessedCSG#11,(b)thecalculatedCSG#11withtheWEWIgradient,and(c)thecalculatedCSG#11computedwithconventionalEWI.thee ectsofnoiseandunpredictedamplitudevariations,anditstrengthensthefrequencydi erencebetweentheobservedandcalculateddatainthebackpropagatedwaveelds.Therobustnessandthephasematchingpro

7 pertyofWEWIarethenvalidatedbyinvertingfo
pertyofWEWIarethenvalidatedbyinvertingfortheMarmousimodelusingapol-luteddataset.ThismethodisalsotestedonarealcasebyinvertingCSGsofalanddatasetafterregularprocessing.Adynamictimewindowisalsousedtoinverttheearlyarrivals.SothatbothrefractionsandsomeearlyarrivingreectionsareincludedintheWEWIapproach.OurelddataresultssuggestthatWEWIcangenerateamoreaccurateandhighlyresolvedvelocitymodelcomparedtotheconventionalEWItomogram.Althoughthedatawithpeakfrequencyaround15Hzarerstusedintheinversion,thedrawbacksofWEWIforlanddatalargelycomefromthelackoflowerfrequencydatafrom1-5Hz.Partofthisproblemcancomefromtheltersthatre-movelowfrequencyinformationpollutedbysurfacewavesorothernoise,andthismightberemediedbybetterprocessing WeightedEWItoShallowLandData67 (a) Observed CSG #11 Muted by A Dynamic Time WindowReceiver IndexTime (s) 20 40 60 80 100 120 0.2 0.4 0.6 0.8 1.0 1.2 (b) Calculated CSG #11 Muted by A Dynamic Time WindowReceiver IndexTime (s) 20 40 60 80 100 120 0.2 0.4 0.6 0.8 1.0 1.2 (c) Calculated CSG #11 with Conventional EWIReceiver IndexTime (s) 20 40 60 80 100 120 0.2 0.4 0.6 0.8 1.0 1.2 Figure14:(a)TheprocessedCSG#11,(b)thecalculatedCSG#11withWEWI,and(c)thecalculatedCSG#11withEWImutedbyadynamictimewindow. 1 10 20 30 0.7 0.8 0.9 1 Iteration NunberNormalized L2 Data ResidualData Residual Convergence Rate Comparison for Land Data WEWI Conventional EWI Figure15:TheconvergencerateofWEWIfor30iterations.techniques.Also,WEWImaystillencounterthecycleskip-pingproblemalthoughitbetterutilizesthephaseinformationinthedata.Cycleskippingproblemscanbepartlyovercomebyonlyinvertingthenearo settraces,andthenwithlaterit-erationsinvertthelargero settraces.Forreectionseventsfromdeepreservoirgeologyinoilindustry,itisalsonecessary Distance X (m)Depth Z (m)(a) RTM Image Using Traveltime Tomogram 1125 2250 3375 4500 5625 180 360 540 720 Distance X (m)Depth Z (m)(b) RTM Image using WEWI Tomogram 1125 2250 3375 4500 5625 180 360 540 720 Distance X (m)Depth Z (m)(c) RTM Image Using Conventional EWI Tomogram 1125 2250 3375 4500 5625 180 360 540 720 Figure16:RTMimagesbasedon(a)thetraveltimetomogram,(b)theWEWItomogram,and(c)theconventionalEWItomo-gram.tocontinuewideningthetimewindoworinvertingtheeventsfromdeeperreectors.5.ACKNOWLEDGMENTSWewouldliketothankthe2013sponsorsoftheCSIMConsor-tium(http://csim.kaust.edu.sa/web/)fortheirnancialsupport.ThecomputationresourceShaheen(http://shaheen.hpc.kaust.edu.sa/)forinversionprovidedbythehighperformancecomputing(HPC)centerofKingAbdullahUniversityofScienceandTechnology(KAUST)isgreatlyappreciated.WealsothankProf.Schus-terandanonymousCSIMmembersfortheirprofessionalcom-mentsinthedevelopmentofthiswork.REFERENCESAki,K.andP.G.Richards,2002,Quantitativeseismology:2ndedition.UniversityScienceBooks.Amorium,W.N.D.,P.Hubral,andM.Tygel,1987,Computingeldstaticswiththehelpofseismictomography:Geophys-icalProspecting,35,907–919.Boonyasiriwat,C.,G.T.Schuster,P.Valasek,andW.Cao,2010

8 ,Applicationsofmultiscalewaveforminversi
,Applicationsofmultiscalewaveforminversiontoma-rinedatausingaoodingtechniqueanddynamicearly-arrivalwindows:Geophysics,75,R129–R136.Causse,E.,R.Mittet,andB.Ursin,1999,Preconditioningforfull-waveforminversioninviscoacousticmedia:Geo-physics,64,130–145.Levander,A.R.,1988,Fourth-ordernite-di erencep-svseis-mograms:Geophysics,53,1425–1437. 68Yuetal. Distance X (m)Depth Z (m)(a) CIGs based on Traveltime Tomogram 1515 2430 180 360 540 720 Distance X (m)Depth Z (m)(b) CIGs based on WEWI Tomogram 1515 2430 180 360 540 720 Distance X (m)Depth Z (m)(c) CIGs based on Conventional EWI Tomogram 1515 2430 180 360 540 720 Figure17:Onezoomedviewofcommonimagegathersbasedon(a)thetraveltimetomogram,(b)theWEWItomogram,and(c)theconventionalEWItomogram.Marsden,D.,1993,Staticscorrections-areview:TheLeadingEdge,12,43–49.Mora,P.R.,1987,Nonlineartwo-dimensionalelasticinversionofmultio -setseismicdata:Geophysics,52,1211–1228.Nemeth,T.,E.Normark,andF.Qin,1997,Dynamicsmooth-ingincrosswelltraveltimetomography:Geophysics,62,168–176.Nocedal,J.andS.J.Wright,1999,Numericaloptimization:Springerseriesinoperationsresearchandnancialengineer-ing.Pratt,R.G.andN.R.Goulty,1991,Combiningwave-equationimagingwithtraveltimetomographytoformhigh-resolutionimagesfromcrossholedata:Geophysics,56,208–224.Shen,X.,2010,Near-surfacevelocityestimationbyweightedearly-arrivalwaveforminversion:80thSEGTechnicalPro-gramExpandedAbstracts,1975–1979.Sheng,J.,A.Leeds,M.Buddensiek,andG.T.Schuster,2006,Earlyarrivalwaveformtomographyonnear-surfacerefrac-tiondata:Geophysics,71,U47–U57.Shin,C.andD.J.Min,2006,Waveforminversionusingalogrithmicwaveeld:Geophysics:Geophysics,71,R31–R42. Distance X (m)Depth Z (m)(a) CIGs based on Traveltime Tomogram 3528 4077 4626 180 360 540 720 Distance X (m)Depth Z (m)(b) CIGs based on WEWI Tomogram 3528 4077 4626 180 360 540 720 Distance X (m)Depth Z (m)(c) CIGs based on Conventional EWI Tomogram 3528 4077 4626 180 360 540 720 Figure18:Anotherzoomedviewofcommonimagegathersbasedon(a)thetraveltimetomogram,(b)theWEWItomo-gram,and(c)theconventionalEWItomogram.Sirgue,L.andR.G.Pratt,2004,Ecientwaveforminversionandimaging:Astrategyforselectingtemporalfrequencies:Geophysics,69,231–248.Sun,Y.andG.T.Schuster,1993,Time-domainphaseinver-sion:SEGTechnicalProgramExpandedAbstracts1993,684–687.Taner,M.T.,D.E.Wagner,E.Baysal,andL.Lu,1998,Auni-edmethodfor2-dand3-drefractionstatics:Geophysics,63,260–274.Tarantola,A.,1984,Inversionofseismicreectiondataintheacousticapproximation:Geophysics,49,1259–1266.White,D.J.,1989,Two-dimensionalseismicrefractiontomog-raphy:Geophysics,2,223–245.Zhou,C.,W.Cai,Y.Luo,G.T.Schuster,andS.Hassanzadeh,1995,Acousticwave-equationtraveltimeandwaveformin-versionofcrossholeseismicdata:Geophysics,60,765–773.Zhu,X.andG.A.McMechan,1989,Estimationofatwo-dimensionalseismiccompressional-wavevelocitydistribu-tionbyiterativetomographicimaging:InternationalJournalofImagingSystemandTechnology,1,13

Related Contents


Next Show more