/
Nonlinear Systems and Control Lecture   Converse Lyapunov Functions Time Varying Systems Nonlinear Systems and Control Lecture   Converse Lyapunov Functions Time Varying Systems

Nonlinear Systems and Control Lecture Converse Lyapunov Functions Time Varying Systems - PDF document

ellena-manuel
ellena-manuel . @ellena-manuel
Follow
516 views
Uploaded On 2014-11-23

Nonlinear Systems and Control Lecture Converse Lyapunov Functions Time Varying Systems - PPT Presentation

118 brPage 2br Converse Lyapunov TheoremExponential Stability Let 0 be an exponentially stable equilibrium point for the system where is continuously differentiable on k Let and be positive constants with such that k 0 955t 0 where k Then there ID: 15635

118 brPage 2br Converse

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Nonlinear Systems and Control Lecture ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

NonlinearSystemsandControlLecture#12ConverseLyapunovFunctions&TimeVaryingSystems –p.1/18 ConverseLyapunovTheorem–ExponentialStability Letx=0beanexponentiallystableequilibriumpointforthesystem_x=f(x),wherefiscontinuouslydifferentiableonD=fkxkrg.Letk,,andr0bepositiveconstantswithr0r=ksuchthatkx(t)kkkx(0)ket;8x(0)2D0;8t0whereD0=fkxkr0g.Then,thereisacontinuouslydifferentiablefunctionV(x)thatsatisestheinequalities–p.2/18 c1kxk2V(x)c2kxk2@V @xf(x)c3kxk2\r\r\r\r@V @x\r\r\r\rc4kxkforallx2D0,withpositiveconstantsc1,c2,c3,andc4Moreover,iffiscontinuouslydifferentiableforallx,globallyLipschitz,andtheoriginisgloballyexponentiallystable,thenV(x)isdenedandsatisestheaforementionedinequalitiesforallx2Rn–p.3/18 Ideaoftheproof: Let (t;x)bethesolutionof_y=f(y);y(0)=xTakeV(x)=Z0 T(t;x) (t;x)dt;�0–p.4/18 Example: Considerthesystem_x=f(x)wherefiscontinuouslydifferentiableintheneighborhoodoftheoriginandf(0)=0.ShowthattheoriginisexponentiallystableonlyifA=[@f=@x](0)isHurwitzf(x)=Ax+G(x)x;G(x)!0asx!0GivenanyL�0,thereisr1�0suchthatkG(x)kL;8kxkr1Becausetheoriginof_x=f(x)isexponentiallystable,letV(x)bethefunctionprovidedbytheconverseLyapunovtheoremoverthedomainfkxkr0g.UseV(x)asaLyapunovfunctioncandidatefor_x=Ax–p.5/18 @V @xAx=@V @xf(x)@V @xG(x)xc3kxk2+c4Lkxk2=(c3c4L)kxk2TakeLc3=c4;\rdef=(c3c4L)&#x-320;&#x.323;0)@V @xAx\rkxk2;8kxkminfr0;r1gTheoriginof_x=Axisexponentiallystable–p.6/18 ConverseLyapunovTheorem–AsymptoticStability Letx=0beanasymptoticallystableequilibriumpointfor_x=f(x),wherefislocallyLipschitzonadomainDRnthatcontainstheorigin.LetRADbetheregionofattractionofx=0.Then,thereisasmooth,positivedenitefunctionV(x)andacontinuous,positivedenitefunctionW(x),bothdenedforallx2RA,suchthatV(x)!1asx!@RA@V @xf(x)W(x);8x2RAandforanyc�0,fV(x)cgisacompactsubsetofRAWhenRA=Rn,V(x)isradiallyunbounded–p.7/18 Time-varyingSystems _x=f(t;x)f(t;x)ispiecewisecontinuousintandlocallyLipschitzinxforallt0andallx2D.Theoriginisanequilibriumpointatt=0iff(t;0)=0;8t0Whilethesolutionoftheautonomoussystem_x=f(x);x(t0)=x0dependsonlyon(tt0),thesolutionof_x=f(t;x);x(t0)=x0maydependonbothtandt0–p.8/18 ComparisonFunctions Ascalarcontinuousfunction (r),denedforr2[0;a)issaidtobelongtoclassKifitisstrictlyincreasingand (0)=0.ItissaidtobelongtoclassK1ifitdenedforallr0and (r)!1asr!1 Ascalarcontinuousfunction (r;s),denedforr2[0;a)ands2[0;1)issaidtobelongtoclassKLif,foreachxeds,themapping (r;s)belongstoclassKwithrespecttorand,foreachxedr,themapping (r;s)isdecreasingwithrespecttosand (r;s)!0ass!1–p.9/18 Example (r)=tan1(r)isstrictlyincreasingsince 0(r)=1=(1+r2)�0.ItbelongstoclassK,butnottoclassK1sincelimr!1 (r)==21 (r)=rc,foranypositiverealnumberc,isstrictlyincreasingsince 0(r)=crc1�0.Moreover,limr!1 (r)=1;thus,itbelongstoclassK1 (r)=minfr;r2giscontinuous,strictlyincreasing,andlimr!1 (r)=1.Hence,itbelongstoclassK1–p.10/18 (r;s)=r=(ksr+1),foranypositiverealnumberk,isstrictlyincreasinginrsince@ @r=1 (ksr+1)2�0andstrictlydecreasinginssince@ @s=kr2 (ksr+1)20Moreover, (r;s)!0ass!1.Therefore,itbelongstoclassKL (r;s)=rces,foranypositiverealnumberc,belongstoclassKL–p.11/18 Denition: Theequilibriumpointx=0of_x=f(t;x)is uniformlystableifthereexistaclassKfunction andapositiveconstantc,independentoft0,suchthatkx(t)k (kx(t0)k);8tt00;8kx(t0)kc uniformlyasymptoticallystableifthereexistaclassKLfunction andapositiveconstantc,independentoft0,suchthatkx(t)k (kx(t0)k;tt0);8tt00;8kx(t0)kc globallyuniformlyasymptoticallystableiftheforegoinginequalityissatisedforanyinitialstatex(t0)–p.12/18 exponentiallystableifthereexistpositiveconstantsc,k,andsuchthatkx(t)kkkx(t0)ke(tt0);8kx(t0)kc globallyexponentiallystableiftheforegoinginequalityissatisedforanyinitialstatex(t0)–p.13/18 Theorem: Lettheoriginx=0beanequilibriumpointfor_x=f(t;x)andDRnbeadomaincontainingx=0.Supposef(t;x)ispiecewisecontinuousintandlocallyLipschitzinxforallt0andx2D.LetV(t;x)beacontinuouslydifferentiablefunctionsuchthatW1(x)V(t;x)W2(x)(1)@V @t+@V @xf(t;x)0(2)forallt0andx2D,whereW1(x)andW2(x)arecontinuouspositivedenitefunctionsonD.Then,theoriginisuniformlystable–p.14/18 Theorem: Supposetheassumptionsoftheprevioustheoremaresatisedwith@V @t+@V @xf(t;x)W3(x)forallt0andx2D,whereW3(x)isacontinuouspositivedenitefunctiononD.Then,theoriginisuniformlyasymptoticallystable.Moreover,ifrandcarechosensuchthatBr=fkxkrgDandcminkxk=rW1(x),theneverytrajectorystartinginfx2BrjW2(x)cgsatiseskx(t)k (kx(t0)k;tt0);8tt00forsomeclassKLfunction .Finally,ifD=RnandW1(x)isradiallyunbounded,thentheoriginisgloballyuniformlyasymptoticallystable–p.15/18 Theorem: Supposetheassumptionsoftheprevioustheoremaresatisedwithk1kxkaV(t;x)k2kxka@V @t+@V @xf(t;x)k3kxkaforallt0andx2D,wherek1,k2,k3,andaarepositiveconstants.Then,theoriginisexponentiallystable.Iftheassumptionsholdglobally,theoriginwillbegloballyexponentiallystable.–p.16/18 Example: _x=[1+g(t)]x3;g(t)0;8t0V(x)=1 2x2_V(t;x)=[1+g(t)]x4x4;8x2R;8t0Theoriginisgloballyuniformlyasymptoticallystable Example: _x1=x1g(t)x2_x2=x1x20g(t)kand_g(t)g(t);8t0–p.17/18 V(t;x)=x21+[1+g(t)]x22x21+x22V(t;x)x21+(1+k)x22;8x2R2_V(t;x)=2x21+2x1x2[2+2g(t)_g(t)]x222+2g(t)_g(t)2+2g(t)g(t)2_V(t;x)2x21+2x1x22x22=xT"2112#xTheoriginisgloballyexponentiallystable–p.18/18