/
EQUILIBRIUMSTATESWITHPOLYNOMIALDECAYOFCORRELATIONSHuyiHuAbstractThepu EQUILIBRIUMSTATESWITHPOLYNOMIALDECAYOFCORRELATIONSHuyiHuAbstractThepu

EQUILIBRIUMSTATESWITHPOLYNOMIALDECAYOFCORRELATIONSHuyiHuAbstractThepu - PDF document

felicity
felicity . @felicity
Follow
343 views
Uploaded On 2021-07-02

EQUILIBRIUMSTATESWITHPOLYNOMIALDECAYOFCORRELATIONSHuyiHuAbstractThepu - PPT Presentation

2HUYIHUmeasuresoffullHausdor dimensioninalmostexpandingsystemsThedensityfunctionsusuallyapproachtoin nityasxapproachestotheindi erent xedpointpWeshowthattheincreaseratesareboundedbypolynomialsCons ID: 851944

0nx x0000 proof iii x0000 0nx iii proof ejd esn erent y2qk 0ny esj 0jx jxj lng satis nf0g

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "EQUILIBRIUMSTATESWITHPOLYNOMIALDECAYOFCO..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 EQUILIBRIUMSTATESWITHPOLYNOMIALDECAYOFCO
EQUILIBRIUMSTATESWITHPOLYNOMIALDECAYOFCORRELATIONSHuyiHuAbstract.Thepurposeofthispaperistostudystatisticalpropertiesofsomeal-mostexpandingdynamicalsystems.Examplesofsuchsystemsincludepiecewiseexpandingmapsontheunitinterval,expandingmapsonCantorsets,andsomepiecewiseexpandingmapsontheunitcubes,allofwhichcontainanindi erent xedpoint.WesupposethesystemshaveMarkovpartition.Sowecanworkonsymbolicdynamicalsystems.WeproveexistenceofabsolutelycontinuousinvariantmeasureswithrespecttoeitherLebesguemeasuresorconformalmeasures,andshowthatthesemeasuresareweakGibbsstatesandequilibriumstates.Further,byusingtheprojectivemetricweobtainthatunderiterationofthePerron-Frobeniusoperators,functionsconvergetotheequilibriumsinpolynomialspeed,andthereforethesystemshavepolynomialdecayofcorrelations.0.IntroductionThemotivationofthepaperistounderstandstatisticalpropertiesforalmostex-pandingdynamicalsystemsthatallowabsolutelycontinuousprobabilityinvariantmeasureswithrespecttoLebesgueorconformalmeasures.Wesaythatapiecewisesmoothsystemisalmostexpanding,ifitisexpandingeverywhereexceptata nitenumberofperiodicorbits.Thesystemscanbede nedonintervals,higherdimen-sionalmanifolds,ornowheredensesubsets(fractals).Inthispaperweonlyconsiderthecasethatthesystemscontainoneindi erent xedpointp.Systemswithmoreindi erentperiodicorbitscanbetreatedsimilarly.InSection2wediscussthreetypesofsystemsasexamples:pi

2 ecewiseexpandingmapsontheunitinterval,ex
ecewiseexpandingmapsontheunitinterval,ex-pandingmapsonnowheredenseclosesubsets,andsomepiecewiseexpandingmapsontheunitcubes.Allofthemhaveanindi erent xedpoint.WeassumethatthesystemshaveMarkovpartitions.Sothesystemscanberepresentedbyone-sidedsubshiftof nitetype,andwecanworkonpotentials'.TheresultsinthispaperareinfactforaclassofpotentialswhichdonotsatisfyingHolderconditionswiththeusualmetriconsymbolicspace.However,wetakeaspecialmetricunderwhichthepotentialsbecomeLipschitzfunctions.Thisdoesnota ecttheresults,sincetheyareindependentofmetric.We rstproveexistenceofinvariantprobabilitymeasuresofcertainpoten-tialfunctions,whichcorrespondtoabsolutelycontinuousinvariantmeasuresorThisworkwassupportedbyNSFundergrantsDMS-9970646.TypesetbyAMS-TEX1 2HUYIHUmeasuresoffullHausdor dimensioninalmostexpandingsystems.Thedensityfunctionsusuallyapproachtoin nity,asxapproachestotheindi erent xedpointp.Weshowthattheincreaseratesareboundedbypolynomials.Consequently,theupperboundsofmeasuresofn-cylindersalsodecreasepolynomiallyasnincreases.Somealmostexpandingsystemsonlyadmit- niteabsolutelycontinuousmeasure.Wearenotgoingtoconsiderthecaseinthispaper.Second,westudysomeergodicpropertiesofthemeasuressuchasexactness,Gibbsstatesandequilibriumstates.Themeasuresareexact,andthereforeareergodicandmixing.However,arenotGibbsstates.Infact,foranygivenn,expnP+Sn'(x) canbearbitrarilycloseto1asxcl

3 osetop,ifP=0and'(0)=0.Thereforewecannote
osetop,ifP=0and'(0)=0.Thereforewecannotexpectuniformboundsfortheratiobetweenthisquantityandmeasuresofn-cylinders.Ourresultsshowthatareunique\weak"Gibbsstatesinthesensethattheboundsaregivenbysubexponentialfunctions.Usingthispropertywecanalsoshowthatthemeasuresareequilibriumstatesofthepotentialfunctions.Anotherimportantpartofthepaperistoprovethepowerlaw:theratesofconvergenceoftestfunctionsundertheiterationofthePerron-Frobeniusoperatorsarepolynomial.Theseratesgivethespeedofconvergenceofsmoothmeasurestendingtotheirequilibriums,andthespeedofdecayofcorrelations.Thepowerlawisaphenomenonthathasonlyprovedforalmostexpandingmaps,thoughitisbelievedtohappeninmanydi erentkindsofsystems.Ourproofshowsthatdegreeofthedecayratedependontherateofchangeofthepotentialfunctionsnearthe xedpointp.Asaconsequence,theCentralLimitTheoremholdsforsuchsystemsiftheorderofdecayratesishigherthanO(n1),�0.ThemaintoolweuseinthispaperisthePerron-FrobeniusoperatorsL'.Forex-istenceofabsolutelycontinuousinvariantmeasure,weobtainthedensityfunctionshas xedpointsofL'insomefunctionalspaces.hisusuallyunboundedneartheindi erent xedpoint.WeusethefactL'h=htoestimatetheincreasingratesofhasxnearp.ThisestimatesallowustounderstandnearphowvaluesoftestfunctionsgchangeunderiterationsoftheoperatorL'.ThisbehaviordeterminestheconvergentrateoffLngg,sincethemotionnearpisslowerthananywhereelseinthedynamical

4 systems.Ourproofforpolynomialdecayratesc
systems.Ourproofforpolynomialdecayratescarriesoverthisobservation.Tocontrolthedistancebetweentestfunctionsandtheirequilibriums,weusetheprojective(Hilbert)metric,atechniqueoriginallyduetoG.Birkho ([Bi])andthenFerreroandSchmitt([FS])forintroducingintodynamicalsystems(seealso[Li1]).Ourprooffordecayofcorrelationgivesagoodgeometricdescriptionfortestfunctionsconvergingtoitslimit.Considerasystemwithdecayraten( 1).Weshowsthatatthestepn,awayfromp,thedi erencebetweenthetestfunctionanditsequilibriumisoforderO(n )inshape,whichcanbemeasuredbytheprojectivemetric(PropositionC,and(An)intheproofoftheproposition),whilethedi erenceisoforderO(n( 1))ifmeasuredinC0norm(TheoremD).Ontheotherhand,nearp,functionschangeslowlyunderthePerron-Frobeniusoperators.Forcompletionourstatementsincludesomeknownresults.Thoughwewillgiverelatedreferencesaswestatethetheorems,wewouldliketomentionsomeofthem POLYNOMIALDECAYOFCORRELATIONS3here.Existenceofabsolutelycontinuousinvariantmeasuresforpiecewiseexpandingmapsontheunitintervalwithindi erent xedpointswasstudiedtwodecadesago.(Seeforexample,[Pi],[T].)ForexpandingsystemsonCantorsetswithindi erent xedpoints,someergodicpropertiesincludingconditionsforexistenceofmeasuresoffullHausdor dimensionandequilibriums,aswellasrigidproperties,wasstudiedbyUrbanski([U]).Polynomialdecayofcorrelationswas rstprovedbyM.Mori([M])andbyLambert,SiboniandVaienti([LaSV]

5 )forpiecewiselinearmapswithindi erent xe
)forpiecewiselinearmapswithindi erent xedpoints(Takahashimodel).ForsymbolicdynamicalsystemsitwasstudiedbyFisherandLopesforlocallyconstantpotentials([FL]),andbyPollicottforsummablepotentials([P],seealso[BFG]).Fornonlinearmapsontheinterval,polynomialdecaywasobtainedbyYoung([Y]),Liverani,SaussolandVaienti(LiSV]),PollicottandYuri([PY1]),andtheauthor([H])recently.Amongwhichestimatesin[Y]and[H]aresharp,however,theapproachesfordecayofcorrelationsaredi erent.ThemaintoolisprobabilisticcouplinginYoung'swork([Y]),andisHilbertmetricinours.Ontheotherhand,theargumentsin[H]areessentiallyforlowerboundestimates,andtheupperboundsareobtainedasabyproduct.Thispaperisorganizedasfollows.TheassumptionsandgeneralresultsarestatedinSection1.InSection2weapplytheseresultstopiecewisesmoothal-mostexpandingmaps.TheoremA,mainlydealingwithexistenceandpropertiesofinvariantmeasures,isprovedinSection3.Section4isforsomepreliminaryresultsconcerningpropertiesofthePerron-FrobeniusoperatorL .TheoremBisconcerningergodicproperties:exactness,weakGibbsandequilibriumstates,oftheinvariantmeasures,andisprovedinSections5.ThemainsteptowardspolynomialdecayofcorrelationsistoprovePropositionC,whichiscarriedoverinSection6and7.InthelastsectionweproveTheoremD,EandF,whichareconcerningrateofconvergenceoftestfunctions,decayofcorrelationsandtheCentralLimitTheoremrespectively.1.Assumptions,StatementsofResultsandNotati

6 onsLet+=Q1f0;1;;r1g,and:+!+bethe
onsLet+=Q1f0;1;;r1g,and:+!+betheleftshift.IfAisanrrmatrixof0'sand1's,let+=fx2+:Axixi+1=18i0g.Itiswellknownthat+A=+A.Weassumethatistopologicallymixing.WealsoassumeA00=1.So,0=000isa xedpointof.Wesaythatwisann-wordifw=w0w1wn1andAwiwi+1=180in2.Theworduwisthewordufollowedbythewordw.Givenann-wordw=w0w1wn1,wede neRw=fx2+:xi=wi;80in1g:Thissetiscalledann-cylinder,orsimplyacylinder.Letbethepartitionof+AintofRs:s=0;1r1g,andn=_1__n1.Foranyn-wordw,wehaveRw2n.Wesimplywritew2ninstead.Fork0,wedenoteOk=R0k,Pk=OknOk+1,andQk=+AnOk+1.Inotherwords,Ok,PkandQkaresetsofthepointsthatstartwithatleast,exact,andatmostkzerosrespectively.Also,wedenoteP0k=Pk[Pk+1. 4HUYIHUTake2(0;1)and �0.LetK0bethelargestnumberksuchthatk(k+1)(1+ ).De neametricon+inductivelybythefollowingrules.i)d(x;y)=1ifx06=y0.ii)d(x;y)=d(x;y)ifx0=y0andx;y2QK0.iii)d(x;y)=(k+1)( +1)d(kx;ky)ifx2Pk,y2P0k,k�K0.iv)d(x;y)=k+l1Pi=kd(x(i);x(i+1)),ifx2Pkandy2Pk+l,kK0,wherex(k)=x,x(k+l)=y,andx(i)2Pifori=k;;k+l.Withthismetric,theleftshift:+A!+Aisuniformlyexpandingwitharate1onQK0.TheexpandingrateonPkconvergesto1ifk!1.Bythemetricwecanseethatifx=0k~x2Pk,y=0k~y2P0ksuchthat~x06=~y0,thend(x;y)=maxfk;(k+1)( +1)g.Hence,thereexistsC 1suchthatdiamOkC k 8k0;(1:1)wherethediameterofasetSisde nedbydiamS=supfd(x;y):x;y2Sg.Weassumethatthepotentialfunc

7 tion'satis esthefollowing.AssumptionA.(I
tion'satis esthefollowing.AssumptionA.(I)'isacontinuousfunctionon+A;(II)9C'�0suchthatj'(x)'(y)jC'maxfK 10;k 1gd(x;y)8x2Pk;y2P0k;(III)9 �1,K1�0suchthatforallkK1,'(0)'(x) +1k+1C(k+1)1+8x2Pkforsomeconstants�0andC�0independentofkandx.Wemayassumeminf ;1gsincewecanalwaysreduce.Remark1.1.Itiseasytoseethat'satis estheHoldercondition.However,ifwetakeametricbetweenx=fxigandy=fyigas~d(x;y)=1Xi=0signjxiyij2i,then'maynotbeaHolderfunction.Remark1.2.Ifwedenotevark(')=maxfj'(x)'(y)j:xi=yi;8i=0;;k1g,thenbyAssumptionA(II)vark(')Ck1forsomeC�0.Sothepotential'doesnothavesummablevariationssince1Pk=0vark(')isnotnecessarysummable.LetC0(S)denotethesetofcontinuousrealfunctionsonthesetS.De nethePerron-FrobeniusOperatorL'fromC0+nf0gtoitselfbyL'g(x)=Xy21xe'(y)g(y): POLYNOMIALDECAYOFCORRELATIONS5DenoteDk=maxfk;K0g.ForJ0,wede neHJ=fg2C0+nf0g:g�0;g(y)g(x)eJD kd(x;y)8x2Pk;y2P0k;8k0g:WewillseethatL'HJHJifJislargeenough.Forafunctiong2C0+nf0g,x=0^x2O1,wedenote^g(x)=Xs6=0e'(s^x)g(s^x):(1:2)DenotebyM(+)thesetofBorelprobabilitymeasureson+A.TheoremA.(Existenceandpropertiesofdensityfunctions.)Suppose'satis esAssumptionA(I)-(III).Thenthereisameasure2M(+A),whichispositiveonnonemptyopensets,aconstante'(0),andafunctionh2HJ'forsomeJ'�0suchthatL=,L'h=h,(h)=1,andlimsupn!1 nh(0nx)^h(0)8x6=0:(1:3)M

8 oreover,(g)=(hg)de nesa-invariantprob
oreover,(g)=(hg)de nesa-invariantprobabilitymeasuresatisfyingPnCn ;OnCn( 1)8n0(1:4)forsomeC�0.Remark1.3.IfwealsoassumeinadditiontoAssumptionA(III)that'(0)'(x) +1k+1C(k+1)1+8x2Pkforsomeconstants�0andC�0independentofkandx,thenwehaveaninequalityoppositeto(1.4)forthelowerlimit,andthereforethelimitexistsandisequalto^h(0).(See[H]forone-dimensionalcase.)InthiscaseonecannotexpectthatthemeasureobtainedasaboveisaGibbsmeasure.Thisisnotonlybecausecylindersnear0havelargermeasure,butalsobecausevariationsofthepotentialfunction'arenotsummable.Thelatterimpliesunboundeddistortions,i.e.ratiosbetweeneSn(x)andeSn(y)canbeunboundedforxandyinasamen-cylinderasn!1.De nition1.1.ABorelprobabilityinvariantmeasure='iscalledaweakGibbsmeasureofafunction',if(f0g)=0andifthereisarealnumberP,andafunctionp(x;n)suchthatforeveryx1p(x;n)Rx0x1xn1expfnP+Sn'(x)gp(x;n);(1:5)wherep(x;n)satis esthefollowing:a)limn!11nlogp(x;n)=0for-a.e.x2+;b)limk!11klogsupx2Qk\n+1Q0p(x;n)=0. 6HUYIHURemark1.5.Partb)impliesthatwecan nduniformboundsforcylinderswhicharepreimagesofRu,u=1;;r1,andareawayfrom0,eventhoughwecannotdoitforallcylinders.Remark1.6.ThenotionweakGibbsmeasurewasalsousedbyM.Yuri([Yu1],[Yu2])forsomenonuniformexpandingmapsaboutthesametimeasthispaperwaswriting.Ourde nitionisslightlymoregeneral.Thisisbecauseinherassumption,potentialfunctionssatis

9 fyweakboundedvariation,whichfailsinourse
fyweakboundedvariation,whichfailsinoursetting.Inthecaseweareinterested,thepotentials'areusuallyequalto0atthe xedpoint0,sinceeigenvaluesofDfareequalto1atindi erent xedpoints.Recallthatasystem(;)isanexactendomorphism,if1Tn=0nBconsistsonlysetsofmeasure0and1for.Itiswellknownthatif(;)isanexactendomor-phism,thenitismixing.(See[R].Alsosee[PY2]forrecentreference.)Aninvariantmeasureisanequilibriumstateof'ifP(';)=h()+Z'd,whereP(';)isthetopologicalpressure,andh()isthemeasuretheoreticen-tropy.TheoremB.(Ergodicpropertiesoftheinvariantmeasures.)Suppose'satis esAssumptionA(I)-(III).Then='hasthefollowingproperties:i)(;)isanexactendomorphism;ii)istheuniqueweakGibbsmeasureof'withconstantP=P(';)=log;iii)isanequilibriumstateof'.Remark1.7.Weshouldnotethatequilibriumstatesfor'isnotunique,sincetheDiracmeasure0isanobviousequilibriumstate.Formanysmoothdynamicalsystems,(1.4)iseasiertocheck.AssumptionA(III0).ThereisC�0suchthatforalln0,OnCn( 1):ForPropositionCandTheoremD-Fbelow,wealwaysassumethateither(1)'satis esAssumptionA(I)-(III),or(2)'satis esAssumptionA(I),(II)and='satis esAssumptionA(III0).De ne (x)='(x)+logh(x)logh(x)logforx2+nf0g,whereweregardh(0)=1iflimx!0h(x)=1andthereforelogh(0)logh(0)=0.Thende neL :C0(+)!C0(+A)byL g=1hL'(hg),or,equivalentlyL g(x)=Xy21(x)e (y)g(y)=1h(x)Xy21(x)e'(y)h(y)g(y):However,L HJ6HJforanyJ�

10 0;0ingeneral.(SeeLemma4.6.i)forreasons.)
0;0ingeneral.(SeeLemma4.6.i)forreasons.)ForJ�0,wedenoteG+J=HJ\C0(+) POLYNOMIALDECAYOFCORRELATIONS7PropositionC.ThereexistsJ�0suchthatforanyk�0,wecan ndA�0suchthatforallg2G+Jwith(g)=1,jg(x)1j1=38x2+andforallx;y2Qk,Lng(y)Lng(x)1+A(n+1) 8n0:ThispropositionisthemainsteptoestimatetheratesofconvergenceofLngandtheratesofdecayofcorrelations.ItsaysthatonQk,thedi erencebetweenLngandaconstantfunctionisoforderO(n ).DenoteG=g2C0+:9L�0s.t.jg(y)g(x)jLd(x;y)8x2Pk;y2P0k8k0 :Clearly,ifg2G,thenforanyJ�0,therearerealnumbersc1;c2suchthatc1g+c22G+J,(c1g+c2)=1andjc1g(x)+c21j1=38x2+.TheoremD.(Rateofconvergence.)Letk�0begiven.Foranyg2G,thereexistsC�0suchthati)jLng(x)(g)jC(n+1) 18x2Qk,n0;ii)ZjLng(x)(g)jd(x)C(n+1) 18n0.Denotebykgk1theL1normofafunctiong.TheoremE.(Decayofcorrelations.)Foranyg2G,thereexistsC�0suchthatforany~g2L1(+;) Z~gngdZ~gdZgd C(n+1) 1k~gk18n0:WesaythattheCentralLimitTheoremholdsforafunctiongif1pnn1Pi=0giconvergesinlawtoanormaldistribution.TheoremF.(CentralLimitTheorem.)TheCentralLimitTheoremholdsforallfunctioninGif �2.2.Almostexpandingmaps:ApplicationsInthissectionweconsiderpiecewiseexpandingmapswithanindi erent xedpoint.DenoteI=[0;1].Letf:Im!Rmbeamap.AclosedsubsetImiscalledinvariantiff=. 8HUYIHUAssumptionB(I).fj:!istopologicallymixing.AsubsetR

11 isproperifR=intR.A nitecoverfR0;;Rr
isproperifR=intR.A nitecoverfR0;;Rr1gofbypropersetsisaMarkovpartitionifi)intRi\intRj=;fori6=j;ii)f(intRi)isaunionofsomeRj.AssumptionB(II).fj:!hasaMarkovpartitionintosubsetsfRigr1i=0.AssumptionB(III).fispiecewisesmooth.Moreprecisely,foreachi,fjintRiisaC2mapfromintRitoitsimage,anditcanbeC1extendedtoRi.Apiecewisesmoothmapfiscalleduniformlyexpandingonasubset,ifthereis�1suchthatforallx2,v2Rm,kDfx(v)kkvk:A xedpointpoffiscalledindi erentifDfphasaneigenvalueontheunitcircleinC.De nition2.1.Letf:Im!RmandImbeaclosedinvariantsubset.Themapfissaidtobeexpandingonwithanindi erent xedpointpifi)p2andpisanindi erent xedpointoff;ii)fisuniformlyexpandingawayfromp,thatis,foranyopenneighborhoodUofp,fisuniformlyexpandingonnU.Iffisexpandingonaninvariantsubset,withorwithoutindi erent xedpoints,andhasaMarkovpartition,thenthereisamap:+!givenby(fxig)=1Tj=0fiRxj,wherefxig2+A,suchthatf=.Assumethatfhasanindi erent xedpointp,andfissmoothinaneighborhoodofp.ThenwecanalwayschooseaMarkovpartitionfRigr1i=0suchthatp2intR0.Hence,(0)=p.Notethattheprojection:+!inducesamap^:C0()!C0(+A)by^g=g8g2C0().WedenoteHJ()=g2C0(nfpg):^g2HJ ;G()=g2C0():^g2G :Forthesakeofnotationalsimplicity,weidentifythesetsPkwithPk,QkwithQketc.Sometimeswealsosimplywritefunctions^gasg.Assumefurtherthatnearp,thereisalocalcoordinatesystemsuchthatfx=x1+jxj\r+(x);(2

12 :1)wherej(x)j;jxjkD(x)k;jxj2kD2(x)k=O
:1)wherej(x)j;jxjkD(x)k;jxj2kD2(x)k=O(jxj1+\r0)(2:2)forsome\r0�\rasxnearp. POLYNOMIALDECAYOFCORRELATIONS9Lemma2.1.Supposef(x)satis es(2.1)and(2.2).Thenthereis01,integersk0k00suchthatforalllargek,1(k+k0)\r11(k+k0)jxj\r1(k+k00)\r1+1(k+k00)8x2Pk:(2:3)Proof.WemayassumethatIsothatwecandropthenormsignjj.Weclaimthatiffxx+x1+\r+0x1+\r0forsome0�0,thenthereis01suchthatforalllargen,x\r1n\r11nimpliesfx\r1(n1)\r11(n1):(2:4)Thisimpliesthe rstinequalityof(2.3).Infact,foranylargekwecanalways ndk0suchthatx\r1(k+k0)\r11(k+k0)8x2Pk+k0.Thenweuseinduction.Denote\rn=\r1n1.Bythecondition,fx\rx\r1+x\r+0x\r0\r1n\rn1+1n\rn+0(n\rn)\r0=\r\r:Toprovethelemmaweonlyneedshowthat1n\rn1+1n\rn+0(n\rn)\r0=\r\r1(n1)\rn1;or,equivalently,n1n1+1n\r1n1+\r+0(n\rn)\r0=\r\r\rn\rn1=1(n1)1n:(2:5)Takeminf1;\r0=\r1g.Then(n\rn)(\r0=\r)isofhigherorder.Itiseasytoseelimn!1n1+n1n1+1n\r1n1+\r\r1=limn!1n1+\rn1+\r\r32n2\r=1;andlimn!1n1+1(n1)1n1=limn!1n1(1n1)1n=:Soweknowthatasn!1,theleftsidein(2.5)islike1n(1+)andtherightsideislike1n(1+).Since1,therightsideislargerforalllargen.Thesecondinequalityin(2.3)canbeprovedsimilarly.2.1Mapsontheunitinterval.LetfbeapiecewisesmoothexpandingmapfromtheunitintervalIontoitselfwithanindi erent xedpointp=0.Denotebyf0thederivativeoff. 10HUYIH

13 UTheoremG.Supposef:I!Isatis esAssumption
UTheoremG.Supposef:I!Isatis esAssumptionB(I)-(III)with=I,andisexpandingwithanindi erent xedpoint0,andnear0hasthefrom(2.1)with0\r1.Thenthefollowingholds:(a)fadmitsanabsolutelycontinuousinvariantprobabilitymeasurewhosedensityfunctionh2HJ(I)forsomeJ�0andsatis eslimsupx!0x\rh(x)Xx2f1(0)nf0gh(x)f0(x):(2:6)(b)isaweakGibbsstateandanequilibriumstateof'(x)=logf0(x).(c)Foranyg2G(I),thereisaconstantC�0suchthatforany~g2L1(I;), Z~gngdZ~gdZgd C(n+1) 1k~gk18n0:(2:7)(d)TheCentralLimitTheoremholdsforallg2G(I)if\r12Remark2.1.Therequirementonconditions(2.1)canbeslightlyrelaxed.Forexample,thesameproofcangothroughifweassumex+ax1+\rfxx+bx1+\rforsome0ab.Remark2.2.The rstpartof(a),concerningexistenceofabsolutelycontinuousinvariantmeasure,iswellknown(seee.g.[Pi],[T]).Forthesecondpart,asmen-tionedinRemark1.3,wecanprovethatthelimitexistsandtheequalityholds.(See[H],TheoremA).Formapswith- niteabsolutelycontinuousinvariantmeasures,similarresultswereobtainedbyP.ColletandP.Ferrero(see[CF1]and[CF2]).Remark2.3.ThesameestimatesasinPart(c)wereobtainedbyYoung[Y]andtheauthor[H]withdi erentapproaches.Liverani,SaussolandVaienti(LiSV])obtainedOn( 1)(logn) andPollicottandYuri([PY1])obtainedOn( 1)8�0astheupperboundsofdecayofcorrelations.ProofofTheoremG.Take = =\r1.Toprovethetheoremweonlyneedshowthat'satis esAssumptionA(I)-(III).Clearly,'iscontin

14 uous.By(2.1)and(2.2)wehavethatthereexist
uous.By(2.1)and(2.2)wehavethatthereexist1;2�0suchthatf0(x)1+(1+\r)x\r1x\r0;f00(x)\r(1+\r)x1+\r+2x1+\r0Cx1+\rforsomeC\r(1+\r).Letkbealargeintegerandx2Pk.Bythe rstinequalityin(2.3),wehavex\r(k+k0)1\r1andthereforef00(x)C(k+k0)\r (1\r)C\r 1(k+k0) 1C'k 1(2:8) POLYNOMIALDECAYOFCORRELATIONS11forsomeC'C(2\r) 1�0ifkk0.Also,notethatf0(x)isboundedbelowby1+(1+\r)1(k+k0)\r11(k+k0)1 k+k0 \r011(k+k0) \r0:Since \r01+,wecan ndCC0�0suchthatf0(x)1+1+\r(k+k0)\rC0(k+k0)1+1+ +1kCk1+:(2:9)Hence,AssumptionA(II)and(III)followfromthede nitionof'andthefacts�log(1+s)ss2=2.NowweapplyTheoremA,B,EandFtogettheresults.2.2.Cantorsets.Letf:I!R+beapiecewisesmoothexpandingmapwithanindi erent xedpointp=0,andnear0,(2.1)holds.Denote=fx2I:fnx2I8n0g.Clearly,02.LettbetheHausdor dimensionof,i.e.t=dimH().WesayameasureonisameasureoffullHausdor dimensionifdimH()=dimH(),wheredimH()=inffdimH(0):0;(0)=1g.TheoremH.Supposefj:!satis esAssumptionB(I)-(III),andisexpandingwithanindi erent xedpoint0,andnear0hasthefrom(2.1)with\r1�2t11.Thenthefollowingholds:(a)fadmitsaconformalmeasureandaninvariantmeasure,bothareprobabilitymeasuresoffullHausdor dimension,suchthatwiththedensityfunctionh=d=d2HJ()forsomeJ�0andsatisfying(2.6).(b)isaweakGibbsstateandanequilibriumstateof'(x)=tlogf0(x).(c)Forany

15 g2G(),thereisaconstantC�0suchtha
g2G(),thereisaconstantC�0suchthat(2.7)holdsforany~g2L1(;).(d)TheCentralLimitTheoremholdsforallg2G()if\r1�3t11.Remark2.4.ThepartsregardingexistenceofprobabilitymeasuresoffullHausdor dimensionandequilibriumstateinthetheoremwereobtainedbyM.Urbanski([U])inasimilarsetting.Healsoprovedthat =t1+\r111isanecessaryconditionformeasuretobe nite.ProofofTheoremH.Take =\r1and =t1+\r11.AssumptionA(I)isclear.AssumptionA(II)followsfrom(2.8)andthede ni-tionof'.ForAssumptionA(III)wecanseeby(2.9)that'(x)tlog1+1+\r1kCk1+=t(1+\r1)ktCk1++O1k2 12HUYIHUforsomeC�0.Since\r1�2t11,wehave =t(1+\r1)1�1.SotheresultfollowsfromTheoremA,B,EandFifwecanprovethatisameasureoffullHausdor dimension.ItisclearthatP(^';)=P(';f)andh^()=h(f),where^(g)=(^g).ByTheoremAandB(ii)wehaveP(';f)=log'(0)=0:Sinceisanequilibriumstate,wehave0P(';f)=h(f)+Z'd=h(f)tZlogf0d:Thatis,th(f)Rlogf0d:Notethatisergodic,therightsideoftheequalityisequaltodimH().WegettdimH().ThisiswhatwewantsincewealwayshavetdimH().2.3.Mapsonhigherdimensionalspaces.Letfbeapiecewisesmoothexpandingsmoothmapfromthem-dimensionalcubeImontoitselfwithanindi erent xedpointp=0.Also,near0,fisoftheform(2.1)and(2.2).Inotherwords,f(x)isthemapx!x(1+jx\rj)plusahigherorderperturbation.DenotebydetDf(x)thedeterminantofDfatx.TheoremI.Supposef:Im!Imsatis esAssump

16 tionB(I)-(III)andisexpand-ingwithanindi
tionB(I)-(III)andisexpand-ingwithanindi erent xedpoint0,andnear0hasthefrom(2.1)with0\rm.Thenthefollowingholds:(a)fadmitsanabsolutelycontinuousinvariantprobabilitymeasurewhosedensityfunctionh2HJ(Im)forsomeJ�0andsatis es(2.6).(b)isaweakGibbsstateandanequilibriumstateof'(x)=logjdetDf(x)j.(c)Foranyg2G(Im),thereisaconstantC�0suchthat(2.7)holdsforany~g2L1(Im;).(d)TheCentralLimitTheoremholdsforallg2G(Im)if\rm=2.Remark2.5.PollicottandYuriobtainedadi erentexampleofalmostexpandingsystemonasubsetoftheplane,theinhomogeneousDiophantineapproximationtransformation,whichhaspolynomialdecayofcorrelations([PY1]).Remark2.6.WecanalsodiscussthecasethatisafractalinIm.Supposethatnearthe xedpointthesethastheformfcs:c2;s2Sg,where[0;a],0a1,andSSm1arebothclosedsubsetwithHausdor dimensionstandtSrespectively.Take =\r1tS+(1+\r1)t1.Thenwecangetresultssimilartopart(a),(b)and(c)if �1andtopart(d)if �2.ProofofTheoremI.Take =\r1and =m\r1. POLYNOMIALDECAYOFCORRELATIONS13Sincethemapx!x(1+jx\rj)hasthedeterminant1+jxj\rm11+(1+\r)jxj\r,wehavejdetDf(x)j=1+jxj\rm11+(1+\r)jxj\r+O(jxj\r0)=1+(m+\r)jxj\r+O(jxj\r0)ifweassume\r02\r.So'(x)=logh1+(m+\r)jxj\r+O(jxj\r0)i:Clearly,AssumptionA(I)follows.NotethatbyLemma2.1jxj\r(k+k0)1\r1ifx2Pk.WecanseethatthenormofthederivativeofdetDf(x)isboundedby(m+\r)jxj1+\r+O(jxj1+\r0)C(m+\r)\r 1(k+k0) 1C'k 1fo

17 rsomeC�1andC'(2\r) 1C(m+\r)if\r
rsomeC�1andC'(2\r) 1C(m+\r)if\r1.If\r1,thenweusejxj\r(k+k00)1\r1togetasimilarestimate.TheseimplyAssumptionA(II).AlsobyLemma2.1forthelowerboundofjxj,wehavethatforallx2Pk,logjdetDf(x)j=logh1+(m+\r)jxj\r+O(jxj\r0)i(m+\r)(k+k0)\rC0(k+k0)1+\r1m+1kCk1+forsomeCC00.HenceAssumptionA(III)followswith =\r1m.ByTheoremA,B,EandFwegettheresultsofthetheorem.3.TheOperatorL':ProofofTheoremAProposition3.1.ThereisJ'�0suchthatforallJJ',thefollowinghold.i)Forx2Pk,y2P0k, '(0x)'(0y) +JD k+1d(0x;0y)JD kd(x;y);andifs6=0,thenforx;y2+, '(sx)'(sy) +JK 0d(sx;sy)JK 0d(x;y):ii)Forx2Pk,y2P0k,andforw=w0w1wn1withwx2Pm,wy2P0m, Sn'(wx)Sn'(wy) +JD md(wx;wy)JD kd(x;y);andifwn16=0,thenforx;y2+, Sn'(wx)Sn'(wy) +JD md(wx;wy)JK 0d(x;y): 14HUYIHUProof.i)FirstweassumekK0andx2Pk,y2P0k.ByAssumptionA(II), '(0x)'(0y) +J(k+1) d(0x;0y)C'(k+1) 1d(0x;0y)+J(k+1) d(0x;0y)C'k(k+1)2+Jkk+1k d(x;y)Jk d(x;y);ifJ'C'.IfkK0ors6=0,thenwetakeJ'�0suchthatC'K 0+J'K 0J'K 0.Thereforewecangettheresultsinasimilarway.ii)Itcanbeobtainedfromi)byinduction.Recallthat^gisde nedin(1.2).Corollary3.2.LetJJ'andx=0~x;y=0~y2O2.Ifg(s~y)g(s~x)eJK 0d(s~x;s~y)8s6=0,then^g(y)^g(x)eJK 0d(x;y):Proof.ItfollowsfromProposition3.1.i)andthefactthat^g(y)^g(x)maxs6=0ne'(s~y)g(s~y)e'(s~x)g(s~x)omaxs6=0ne'(s~y)'(s~x)eJK 0d(s~x;s~y)o:ProofofTheoremA.Existenceandpropertiesofa

18 ndaregivenbyLemma3.3.FixJJ'.LetB=C0+
ndaregivenbyLemma3.3.FixJJ'.LetB=C0+nf0gbutwiththenormkgk=supx2+nf0g(k(x)+1)2g(x) ;(3:1)wherek(x)=kifx2Pk.ItiseasytocheckthatBisaBanachspace.Lemma3.5belowimpliesthatL':B!Biscontinuous.TakeH=fg2HJ:(g)=1;g(x)k(x)+1H8x2Pk;kK2g:whereHandK2areaconstantstobedeterminedintheproofofLemma3.7.Hisnotemptysinceitcontainsaconstantfunctiong(x)=1.Clearly,Hisaconvexset.ByLemma3.6,Hiscompact.ByLemma3.7,1L'HH.BytheSchauder-Tychono FixedPointTheorem(seee.g.[DS]),1L'hasa xedpointh2H.Sowehaveh2HJ,8JJ',andL'h=h.Toprovethatis-invariant,wecancheckdirectlythatL'h(g)=g(L'h),then(g)=h(g)=1L'h[g]=(1L'h)g=(hg)=(g).(Seee.g.[B]formoredetails.)Theinequalities(1.3)isgivenbyLemma3.8.Use(1.3)andLemma3.4wecangetPnC0n forsomeC0�0.SoOn1Pk=nC0k Cn( 1)forsomeCC0.Thesegive(1.4). POLYNOMIALDECAYOFCORRELATIONS15Lemma3.3.Thereisarealnumbere'(0),andameasure2M(+),whichispositiveonnonemptyopensets,suchthatL=.Proof.Themap!L(L')(1)isacontinuousmapfromM(+)toitself.SinceM(+A)iscompactinweaktopology,bytheSchauder-Tychono FixedPointTheoremthemaphasa xedpoint.Soifwetake=(L)(1),thenL'=.ToproveU�0foranyopensetU,itisenoughtoshowthatforanywordu,Ru�0.Sinceistopologicallymixing,nRu=+forsomen�0.Henceforanyx2+A,thereisann-wordvsuchthatvx2Ru.WehaveLnRu(x)=Xw2neSn'(wx)Ru(wx)eSn'(vx)Ru(v

19 x)enk'k�0;SoRu=1n(L)n(Ru)
x)enk'k�0;SoRu=1n(L)n(Ru)1n(LnRu)1n(enk'k)=1nenk'k�0:Nowweprovee'(0).Supposee'(0).Since'isacontinuousfunction,thereisk�0suchthat1e'(x)�18x2Ok.Notethatify2Pi+1,theny2Pi.Wegetthatforik,Pi+1=1L'Pi+1=Z1Xy21xe'(y)Pi+1(y)d(x)=Z1e'(0x)Pi(x)d(x)�ZPi(x)d(x)=Pi:(3:2)Hence,wehavePi�Pk8i�k,contradicting nitenessof.Lemma3.4.ThereexistsC�0suchthatforallk�0,PkCk( +1).Proof.i)Usingthesameargumentasthatin(3.2),andthenusingAssumption(III),wehavePk+1=Z1e'(0x)Pk(x)d(x)e( +1)=(k+1)Pk11k+1+12(k+1)2 +1Pk=kk+1 +11+12k(k+1) +1Pk;fork�K0.Inductively,Pk+jkk+j +1k+j1Yi=k1+12i(i+1) +1PkCkk+j +1PkforsomeC�0sincetheproductconvergesasj!1.Itmeansthatk +1Pkisboundedabove.SoPkisoforderk( +1). 16HUYIHULemma3.5.L'isaboundedlinearoperator.Proof.Takeg(x)=(k(x)+1)2,wherek(x)=kifx2Pk.Clearlygthemaximalelementintheunitballwithrespecttothenormin(3.1).SinceL'isapositiveoperator,weonlyneedprovethatk(x)2L'g(x)isbounded.Notethatk(0x)=k(x)+1.Also,k(sx)=0ifs6=0.Sowehavek(x)+12L'g(x)=k(x)+12e'(0x)k(0x)+12+Xs6=0e'(sx)k(sx)+12;whichisboundedby2ek'k+rek'k,whereristhenumberofdi erentsymbolsusedin+.Lemma3.6.ThesetHiscompact.Proof.Foranyx2Pk,wehaveg(y)g(x)eJD kd(x;y)g(x)eJD k=k +18y2Pkbecauseg2HJ.Hence,1ZPkg(y)d(y)g(x)eJD k=k +

20 1Pk.Thatis,g(x)eJD k=k +1(Pk)1.Ifx
1Pk.Thatis,g(x)eJD k=k +1(Pk)1.Ifx2OK2,thenk(x)+12g(x)k(x)+11HH.SoHisboundedabove.SinceHisequicontinuousoutsideOkforanylargek,itisequicontinuous.NowweonlyneedshowthatHisaclosedsubsetinB.ItisenoughtoprovethatforanyconvergentsequencefgfigginH,Zlimi!1gfigd=1.ThisistruebytheLebesgueDominatedConvergenceTheorem.Infact,wecantakethedominantfunctionG(x)=eJD k=k +1(Pk)1asx2Pk,kK2andG(x)=k(x)+1Hasx2OK2.Clearly,gGforallg2H,andGisintegrablebecauseZOK1Gd=1Xk=K1(k+1)HPk1Xk=K1CHk+1k +11:Lemma3.7.1L'HH.Proof.Takeg2H.Weprove1L'g2H.Itisclearthat1L'g�0and(1L'g)=1L(g)=(g)=1.Takex2Pk,y2P0k.Then1Lg(y)1Lg(x)=Psy2+e'(sy)g(sy)Psy2+e'(sx)g(sx)maxsx;sy2+Ane'(sy)g(sy)e'(sx)g(sx)o:Notethatg(sy)g(sx)eJK 0d(sx;sy)ifs6=0andg(0y)g(0x)eJD k+1d(0x;0y).SobyPropo-sition3.1,therightsideofaboveinequalityislessthanorequaltoeJD kd(x;y). POLYNOMIALDECAYOFCORRELATIONS17Itremainstoshowthatforx2Pk,kK1,1L'g(x)(k+1)H.Since �1,wecantakeK2maxfK0;K1glargeenoughsuchthatforallkK2,k+2k=1+2ke( +1)=(k+1)C=(k+1)1+:Hence,byAssumptionA(III)andLemma3.3,1e'(0x)=1e'(0)e'(0x)'(0)e( +1)=(k+2)+C=(k+1)1+kk+2:Sinceg(0x)(k+2)H,wehave1(k+1)L'g(x)=1k+11e'(0x)g(0x)+1(k+1)Xs6=0e'(sx)g(sx)1k+1kk+2(k+2)H+1(k+1)Xs6=0e'(sx)g(sx)kk+1H+1(k+1)Xs6=0e'(sx)g(sx):Notethatg(sx)fors6=0isuniformlybounded.IfHislargeenough,thenthesecondtermisless

21 thanorequaltoH=(k+1).Hence,1L'g(x)(k+
thanorequaltoH=(k+1).Hence,1L'g(x)(k+1)H.Lemma3.8.ThereisCh�0suchthatforallx2P0,foralllargen, nh(0nx)^h(0)1+Chn:Proof.Recallthatweassumeminf1; gafterAssumptionA(III)isstated.TakeCh�0suchthatforalllargen,( 1)n2(n+1)2Chn(1+ )2(n+1)2n+ +2(n+1)22 J0C n C(n2 )(n+1)2+�0;whereJ0=J'K 0.Firstweclaimthatifthereisx2P0suchthatforChn, nh(0nx)^h(1+(3:3)holdsforsomelargen,then n+1h(0n+1x)^h(0)1++1n+1:(3:4) 18HUYIHUByLemma3.3andAssumptionA(III),e'(0n+1x)=e'(0)e'(0)'(0n+1x)1+ +1n+1C(n+1)1+:(3:5)SinceL'h=h,wehavee'(0n+1x)h(0n+1x)+^h(0n+1x)=h(0nx),where^hisde nedin(1.2).Thatis,h(0n+1x)=e'(0n+1x)h(0nx)^h(0n+1x):(3:6)Notethath2HJ'.ByCorollary3.2and(0.1),ifnislargeenough,then^h(0n+1x)^h(0)eJ0d(0nx;0)^h(0)eJ0C =n ^h(0)(1+2J0C =n ):(3:7)Soby(3.3),ifnislargeenough,then1^h(h(0nx)^h(0n+1x)n 1+1+2J0C n =n +n 2J0C n n2 :(3:8)By(3.6)andthenby(3.5)and(3.8),wehave n+1h(0n+1x)^h( n+1e'(0n+1x)1^h(h(0nx)^h(0n+1x) n+1n+ +2n+1hn +n 2J0C n i n+1C(n+1)1+n2 =(n+ +2)(n )(n+1)2+(n+ +2)n(n+1)2n+ +2(n+1)22 J0C n C(n2 )(n+1)2+Notethat(n+ +2)(n )(n+1)2=1(1+ )2(n+1)2;(n+ +2)n(n+1)2=+1n+1+( 1)n2(n+1)2;AlsonotethatChn.BythechoiceofCh,weget(3.4).Theclaimistrue.Usingthisclaimwecangettheresultofthelemma.Otherwisewehavean�Chn0suchthat(3.3)holdsforsomelargen0.

22 Thenusingtheclaimrepeatedly,weget n0+kh(
Thenusingtheclaimrepeatedly,weget n0+kh(0n0+kx)^h(0)1+n0+k1Yi=n01+1i+18k0:Sincethesecondtermgoestoin nityask!1,itcontradictsthefactthath(0nx)(n+1)Hforalln�0. POLYNOMIALDECAYOFCORRELATIONS194.TheOperatorL :SomelemmasLemma4.1.i)L c=cforanyconstantfunctionc.ii)(L g)=(g)foranyintegrablefunctiong.iii)(jL gj)(jgj)foranyfunctionginL1(+;).Proof.i)SinceL'h=h,wegetL c=1hL'(ch)=chL'h=c.ii)Thisisbecause(L g)=h1hL'(hg)=1L'(hg)=hg=(g).iii)Itiseasytocheckthatforanyx,jL g(x)jL jg(x)j.Hence,byPartii),(jL gj)(L jgj)=(jgj).Lemma4.2.Letwbeann-word,n�0.Thenforanywordu,ZRueSn (wx)d(x)=Rwu:Proof.Notethatn:Rwu!Ruisone-to-one,andRwu(wx)=Ru(x).HenceLnRwu(x)=eSn (wx)Rwu(wx)=eSn (wx)Ru(x).ByLemma4.1.ii),ZRueSn (wx)d(x)=ZeSn (wx)Ru(x)d(x)=LnRwu=RwuLemma4.3.i)e (0x)=11h(x)^h(0x)asx2+.ii)9B�0suchthatforalln,e (0x)1 n+Bn1+,asx2Pn.iii)9C �0suchthatforallk;n,eSn (0nx)C kk+n asx2Pk,and(k+n) Pk+nC k Pk.Proof.i)SinceL h(x)=h(x),wehavee'(0x)h(0x)+^h(0x)=h(x).Sobythede nitionof ,e (0x)=e'(0x)h(0x)h(x)=11h(x)^h(0x).ii)ByLemma3.8andasimilarmethodfor(3.7),wehavethatforalllargen,1h(x)^h(0x) n^h(0)1+Chn1^h(0)12C J'n  nBn1+;ifBislargeenough.NowtheresultfollowsfromParti).iii)ByPartii),foralllargek,ifx2Pk,thene (0x)1 k+Bk1+=k k1+Bk(k )11k+1 1+Bk(k ): 20HUYIHUTakin

23 gproduct,wegeteSn (0nx)kk+n k+n1Yi=
gproduct,wegeteSn (0nx)kk+n k+n1Yi=k1+Bi(i )kk+n 1Yi=k1+Bi(i ):Sincetheproductconvergence,itgivesthe rstinequality.ByLemma4.2,Pn+k=RPkeSn (0nx)d.Thenthesecondinequalityfollowsfromthe rstone.Forx=0~x2O1,denoteg(x)=Ps6=0e (s~x)g(s~x)Ps6=0e (s~x)=Ps6=0e'(s~x)h(s~x)g(s~x)Ps6=0e'(s~x)h(s~x):(4:1)Thatis,g(x)istheaverageofg(s~x),s6=0,withweightse'(s~x).ByLemma4.1.i),Ps6=0e (sx)=1e (0x).SowehaveL g(x)=e (0x)g(0x)+(1e (0x))g(0x):(4:2)Lemma4.4.Foranyx2O1,Lng(x)=g(0nx)eSn (0nx)+nXj=1gnj(0jx)1e (0jx)eSj1 (0j1x):Proof.Itcanbeobtainedby(4.2)andinduction.Lemma4.5.LetkK0.Foralln1,eSn (0ny)eSn (0nx)e2J'k d(x;y)8x;y2Qk:Proof.Notethatbythede nitionof ,Sn (0ny)Sn (0nx)Sn'(0ny)Sn'(0nx)+logh(0ny)h(0nx)+logh(x)h(y):Firstweconsiderthecasethatx2Pjandy2P0j,0jk.Sinceh2HJ',logh(0ny)h(0nx)J'D j+nd(0nx;0ny),andlogh(x)h(y)J'D jd(x;y).ByProposition3.1.ii),wehave Sn (0ny)Sn (0nx) 2J'D jd(x;y).SoeSn (0ny)eSn (0nx)e2J'D jd(x;y)eSn (0nx)e2J'k d(x;y):Ingeneral,weassumex2Pjandy2Pl,0jlk.Wecantakex(i)2Pi,jilsuchthatx(j)=xandx(l)=y.Thenaboveresultsholdforanypairx(i)andx(i+1).Nowweusethefactthatd(x;y)=l1Pi=jd(x(i);x(i+1)). POLYNOMIALDECAYOFCORRELATIONS21Lemma4.6.LetJ0.i)Ifgsatis esg(y)g(x)eJ(j+m) d(x;y)8x;y2Qj+mwithmK0,,thenLjg(y)Ljg(x)e(2J'+Jmj+m)m d(x;y)8x;y2Qm:ii)Ifgsatis esg(sy)g(sx)eJd(sx;sy)forallsymbolss6=0,theng(0y)g(0x)e(2

24 J'K 0+J)d(x;y)8x;y2+:Proof.i)Notethatf
J'K 0+J)d(x;y)8x;y2+:Proof.i)Notethatforallj-wordw,d(wx;wy)mj+m +1d(x;y).So2J'm d(x;y)+J(j+m) d(wx;wy)2J'+Jmj+mm d(x;y):ByLemma4.5,theratioLjg(y)=Ljg(x)isboundedbymaxw2jneSj (wy)g(wy)eSj (wx)g(wx)omaxw2jne2J'm d(x;y)+J(j+m) d(wx;wy)oe(2J'+Jmj+m)m d(x;y);ii)Clearly,e'(sy)h(sy)e'(sx)h(sx)eJ'K 0d(sx;sy).Also,2J'K 0d(sx;sy)+Jd(sx;sy)(2J'K 0+J)d(x;y):By(4.1)andthesamemethodasabove,wegettheresult.Lemma4.7.Letg2G+J.Thenforanyx2+nf0g,limn!1Lng(x)=(g);andtheconvergenceisuniformonanyclosedsubsetof+nf0g.Proof.WemayassumeJ3J'.ItiseasytoseebyLemma4.6.i)that8n2k,Lng(y)Lng(x)eJk d(x;y)8x;y2Qk:(4:3)Hence,restrictedtoQk,fLng(x)gareuniformlyboundedandequicontinuous.Sothereisasubsequencefnigsuchthatlimi!1Lni g(x)=g(x)forallx2Qkandthereforeforallx2+nf0g.Nowweprovethatgisaconstantfunction. 22HUYIHUForthispurpose,itisenoughtoshowthat g(g) =0.Notethat Lng(g)  isdecreasingbyLemma4.1.iii).Soc=limn!1 Lng(g) exists.Sincegiscontinuousandmaxx2+ L g maxx2+ g ,weobtainthatc= Ljg(g) foralllimitpointsgofLng andforallj0.However,ifc6=0,thenthereisx2+nf0g,andl-wordsuandvsuchthatg(ux)�(g)andg(vx)(g).Bythede nitionofL andLemma4.1.i),wehave Llg(g)  g(g) ;acontradiction.Sinceonanyclosedsubsetin+nf0g,Lngsatisfy(4.3)ifnislargeenough,andthereforeareequicontinuous.Henceuniformityfollowsfromthefactthatlimn!1 L

25 ng(g) =0.Lemma4.8.Letubeanyword.Foran
ng(g) =0.Lemma4.8.Letubeanyword.Foranyx2+nf0gliml!1Xw2l;RwRueSl (wx)=Ru;andthatconvergenceisuniformonanyclosedsubsetof+nf0g.Proof.Firstweconsiderthecasethatuisanm-wordwithu6=0m.Thereisn�0suchthatn(Ru)=+becauseistopologicallymixing.Notethatforanyn-wordw,Ru(wx)1or0,dependingwhetherRwRuornot.ByLemma4.5,LnRu2G+2J'.SincePw2l;RwRueSl (wx)=LlRu(x),wegetLlRu(x)!Ru=Ruuniformlyonanyclosedsubsetof+nf0gbyLemma4.7.Forthecaseu=0m,wenotethatbyLemma4.1.i),Xu2mXw2l;RwRueSl (wx)=Xw2leSl (wx)=1;andthenusethefactsthatthereareonly nitenumberofm-words,andtheconvergenceisuniformforallotherm-words.5.WeakGibbsandEquilibriumStates:ProofofTheoremBProofofTheoremB.ProofofParti)isthesameasthatin[W1],Corollary12.ByLemma5.1and5.2,wehavep(x;n)=B'maxfh(x);h(x)1gifxn16=0andp(x;n)=q(k+n)maxfh(x);h(x)1gotherwise.Sincen1x2Rxn1,p(x;n)satis esb)inDe nition1.1.Notethatkinq(k+n)isafunctionde nedbyk(nx)=kifnx2Pk.SincePktendto0inapolynomialrateask!1,logk(x)isintegrable.Hencelimn!11nlogk(nx)=0for-a.e.x2+.Thisprovesthatp(x;n)satis esa).Hence,isaweakGibbsmeasure.UniquenessfollowsfromLemma5.4,andP=log=P(';)isprovedinLemma5.3.ByLemma5.3,isanequilibriumstate. POLYNOMIALDECAYOFCORRELATIONS23Lemma5.1.ThereexistsaconstantB'�0suchthatforanyn-wordw=w0w1wn1withwn16=0,B1'h(wx)Rwexpfnlog+Sn'(wx)gB'h(wx):Proof.ByLemma4.2andthede nitionof ,Rw=Z

26 eSn (wz)d(z)=1nZeSn'(wz)h(wz)d(z):(5:
eSn (wz)d(z)=1nZeSn'(wz)h(wz)d(z):(5:1)NotethateJ'C K 0eSn'(wz)h(wz)=eSn'(wx)h(wx)eJ'C K 0byProposition3.1and(1.1).WehaveRw1nZeJ'K 0eSn'(wx)h(wx)d(z)1neJ'C K 0eSn'(wx)h(wx):Ontheotherhand,ifwx2+,thenRw1nZRx0eJ'K 0eSn'(wx)h(wx)d(z)Rx01neJ'C K 0eSn'(wx)h(wx):SowecantakeB'eJ'K 0minf(Ru)1:u=0;1;;r1g.Lemma5.2.Thereexistsapolynomialqofonevariablewithpositivecoecientssuchthatforx2Pk,n-wordw,h(wx)q(k+n)Rwexpfnlog+Sn'(wx)gq(k+n)h(wx):Proof.WeonlyproveforkK0.ThecasekK0canbediscussedsimilarly.First,weconsiderthecasew=0n.Assumez2Pj.Itfollowswz2Pj+n.Also,wx2Pk+n.Ifjk,thenwetakex(i)2Pifori=j+n;;k+nsuchthatx(j+n)=wzandx(k+n)=wx.ThereforeeSn'(wz)h(wz)eSn'(wx)h(wx)k+n1Yi=j+neJ'D id(x(i);x(i+1))=eJ'k+n1Pi=j+nD ii +1C1(k+n)J'(5:2)forsomeC1�0.SinceQk1,wegetZQkeSn'(wz)h(wz)d(z)C1(k+n)J'eSn'(wx)h(wx):(5:3)Ifj�k,thenbyLemma4.2andthede nitionof ,1nZOkeSn'(0nz)h(0nz)d(z)=ZOkeSn (0nz)d(z)=Ok+n:(5:4) 24HUYIHUItiseasytoseebyLemma4.3.iii)thatOk+n=1Xi=k+nPiC 1Xi=k+nk+ni Pk+nC2(k+n)Pk+n:(5:5)forsomeC2�0independentofnandk.Also,byLemma4.2andProposition3.1,Pk+nZPkeSn (wz)d(z)=nZPkeSn'(wz)h(wz)d(z)nCeJ'=keSn'(wx)h(wx)PknC3eSn'(wx)h(wx):(5:6)forsomeC;C3�0independentofnandk.Notethat+=Qk[Ok+1.By(5.1),(5.3),and(5.4)-(5.6),RwnZQkeSn'(uz)h(uz)d(z)+nZOkeSn'(uz)h(uz)d(z)C1(k+n)J'+C2C3(k+

27 n)neSn'(wx)h(wx):(5:7)Byasimilarmetho
n)neSn'(wx)h(wx):(5:7)Byasimilarmethodfor(5.3),wealsohaveRwZQkeSn'(wz)h(wz)d(z)Q0C11(k+n)J'neSn'(wx)h(wx):WegetupperandlowerboundforRwasw=0n.Forthecasew6=0n,wemayassumew=wn10n2,wheren=n1+n2andthelastsymbolofwn1isnotequalto0.NotethatSn'(wz)=Sn1'(wz)Sn2'(0n2z):ByProposition3.1,eSn1'(wz)h(wz)h(0n2z)isboundedbye2J'K 0d(0n2x;0n2z)eSn1'(wx)h(wx)h(0n2x)e2J' K 0eSn1'(wx)h(wx)h(0n2x):Byasimilarmethodasthatforthesecondinequalityin(5.7),wecangetZeSn2'(0n2z)h(0n2z)d(z)C1(k+n2)J'+C2C3(k+n2)eSn2'(0n2x)h(0n2x):Henceby(5.1),Rwisboundedabovebyne2J' K 0eSn1'(wx)h(wx)h(0n2x)C1(k+n2)J'+C2C3(k+n2)eSn2'(0n2x)h(0n2x)e2J' K 0C1(k+n2)J'+C2C3(k+n2)neSn'(wx)h(wx):Similarly,wecangetthatRwisboundedbelowbye2J' K 0Q0C11(k+n)J'neSn'(wx)h(wx):Sowecantakeq(k+n)=e2J' K 0maxC1(k+n)J'+C2C3(k+n);C1(k+n)J'=Q0 : POLYNOMIALDECAYOFCORRELATIONS25Lemma5.3.AweakGibbsmeasureofacontinuousfunction'isanequilibriumstateofthefunction,andtheconstantPinthede nitionofweakGibbsmeasureisequaltothetopologicalpressureof'.Proof.Notethatlimn!11nlogp(x;n)=0for-a.e.x2+.Sinceisergodic,byShannon-McMillan-BreimanTheorem,(1.5)impliesthatfor-a.e.x2+A,h()=limn!11nlogRx0xn1=Plimn!11nSn'(x):Integratingwithrespecttox,andusingBirkho ErgodicTheorem,wegeth()=PZ'd(x):Sobyvariationprinciple,wehaveP(';)h()+R'd(x)=P.ToproveP=P(';),weonlyneedshowthatforany�0

28 ,P+P(';).By[W2]Theorem9.6,P(';)=lims
,P+P(';).By[W2]Theorem9.6,P(';)=limsupn!11nlogXw2ninfwx2RweSn'(wx):(5:8)Foreachn-wordw,take~xwith~x06=0andw~x2Rw.Hencew~x2Qn+1.ByDe nition1.1.b),p(w~x;n+1)e(n+1)ifnislargeenough.Soby(1.5),infwx2RweSn'(wx)eSn+1'(w~x)ek'ke(n+1)e(n+1)PRw~x0ek'k:SinceRw~x0RwandPw2nRw=1,wegetP(';)P+by(5.8).Lemma5.4.UnderthesuppositioninLemma5.3,anyweakGibbsstate0of'coincideswith.Proof.Assume0satis es(1.5)withconstantP0andfunctionp0(x;n).ByLemma5.3,weknowthatP0=P(;')=P.Letw=w0wn1beann-wordwithRwQkforsomekn.Ifwn16=0,thenbyDe nition1.1.b),p0(wx;n)B0kforsomeB0k�0.Soby(1.5),0RwB0kenP+Sn'(wx)B0kBkRw:(5:9)Ifwn1=0,thenwecanalways ndasequenceofwordsfu(i)g1=1whoselastsymbolsarenonzerosuchthatRw=fw0g[1Si=1Rwu(i).Notethatf0g=0impliesfw0g=0.By(5.9)weknow0Rw=1Xi=10Rwu(i)B0kBk1Xi=1Rwu(i)=B0kBkRw: 26HUYIHUSincethisistrueforallcylindersinQk,bytakinglimitweknowthat0(E)B0kB1k(E)foranyBorelsetEQk.Itimpliesthat0isabsolutelycontinuouswithrespecttoonQkandthereforeon+.BytheRadon-NykodymTheoremwehave0=forsomeintegrablefunction.Sinceboth0andare-invariant,isa-invariantfunction.Sinceismixing,andthereforeisergodic,isconstant-almosteverywhere.Hence=1-a.e.and0=.6.Hilbertmetrics:ProveofPropositionCDenotebyC0(S)thesetofcontinuousfunctionsonametricspaceS.ForanyJ�0,de neaconeCJ(S)=ng2C0(S):g(x)�08x2S;g(y)g(x)eJd(x;y)8x;y2S

29 o:Thenwetakeaprojectivemetric(Hilbertmet
o:Thenwetakeaprojectivemetric(Hilbertmetric)oftwofunctionsg;~g2CJ(S)by(g;~g)=loga(g;~g)b(g;~g);wherea(g;~g)=inffa:a~gg2CJ(S)g;b(g;~g)=supfb:gb~g2CJ(S)g:Inparticular,if~g1,thenwedenote(g)=(g;1)=log(ag=bg),whereag=infna:ag(y)ag(x)eJd(x;y)o;bg=supnb:g(y)bg(x)beJd(x;y)o:(6:1)Notethatag(y)ag(x)eJ0d(x;y)ifandonlyifaeJd(x;y)g(x)g(y)eJd(x;y)1.Wealsohaveag=supx;y2SeJd(x;y)g(x)g(y)eJd(x;y)1;bg=infx;y2SeJd(x;y)g(x)g(y)eJd(x;y)1:(6:2)Lemma6.1.Letg2CJ(S)begiven.SupposeS1;S2Swiththepropertiesthat8x2S1,y2S2,9z2S1\S2suchthatd(x;y)=d(x;z)+d(y;z).Then(gjS1[S2)(gjS1)+(gjS2).Proof.Let(gjSj)=logajb1j,j=1;2.Takea=maxfa1;a2gandb=minfb1;b2g.Clearly,ifx;y2S1orS2,thenag(y)ag(x)eJd(x;y)andg(y)bg(x)beJd(x;y).Ifx2S1andy2S2,thenwetakez2S1\S2withd(x;y)=d(x;z)+d(y;z)andthereforeag(y)ag(x)=ag(y)ag(z)ag(z)ag(x);g(y)bg(x)b=g(y)bg(z)bg(z)bg(x)beJd(x;y):Sowehave(gjS1[S2)logab1.Nowweusethefactaba1b1a2b2. POLYNOMIALDECAYOFCORRELATIONS27Lemma6.2.i)Forx;y2S,g(y)g(x)1+e(gjS)11eJd(x;y)1+e(gjS)1Jd(x;y):ii)Ifg(y)g(x)eJ0d(x;y)forallx;y2S,then(gjS)logsupx;y2Sg(y)g(x)+logJ+J0JJ0J0diamS+2J0JJ0:Proof.i)By(6.2),8x;y2S,eJd(x;y)g(y)g(x)aeJd(x;y)1:Sinceg(x)�b,eJd(x;y)g(y)g(x)1abeJ0d(x;y)1;oreJd(x;y)g(y)g(x)1ab1eJd(x;y)1e(gjS)1eJd(x;y)1:ii)Usingtheassumptionandthefactthattheexponentialfunctionisco

30 nvex,wehaveeJd(x;y)g(x)g(y)eJd(x;y)1g
nvex,wehaveeJd(x;y)g(x)g(y)eJd(x;y)1g(x)eJd(x;y)eJ0d(x;y)eJd(x;y)1g(x)J+J0JandeJd(x;y)g(x)g(y)eJd(x;y)1g(x)eJd(x;y)eJ0d(x;y)eJd(x;y)1g(x)JJ0J:Hence(gjS)=logagbglogsupx;y2Sg(y)g(x)+logJ+J0JJ0:Thisistheresult.Lemma6.3.LetA:C0(S1)!C0(S2)beapositivelinearoperatorthatpreservesconstantfunctions(i.e.Ag�0wheneverg�0andAc=c).Suppose(g)=logagbgforsomeg2C0(S1),whereagandbgarede nedasin(6.1).Thene(Ag)1tanh2e(g)1; 28HUYIHUwhere=maxf(agAg);(Agbg)g.Proof.Denote(agAg)=logaagAgbagAg.By(6.1),aagAg=infna:a(agAg(y))a(agAg(x))eJd(x;y)o=agsupnaga:Ag(y)(aga)Ag(x)(aga)eJd(x;y)o=agbAg:Similarly,bagAg=agaAg;aAgbg=aAgbg;bAgbg=bAgbg:Bythede nitionof(agAg)and(Agbg),wehaveagbAgagaAg=aagAgbagAge(agAg)e;aAgbgbAgbg=aAgbgbAgbge(Agbg)e:SoaAgbAge1e+1agbg:SincebAgbg=bAgbg0,wegetaAgbAg1e1e+1agbg1=tanh2agbg1:Lemma6.4.Let0c1anda�0.i)Ifg(y)g(x)1+a,then1+c(g(y)1)1+c(g(x)1)1+acg(x)1+c(g(x)1).ii)If1+c(g(y)1)1+cg(x)11+a,theng(y)g(x)1+a1+c(g(x)1)cg(x).Proof.Usethefactsthatg(y)g(x)1+aisequivalenttog(y)g(x)ag(x)andthat1+c(g(y)1)1+c(g(x)1)=cg(y)g(x).ProofofPropositionC.RecallthatC isde nedin(0.1)andJ'isgivenbyProposition3.1.WealsoassumeC J'20.Takek�0suchthat(6.11)and(6.12)aresatis edandsuchthatkmax14K0;20J';1425C2 J2'1= K0 :(6:3)LetJ=3J'k .

31 POLYNOMIALDECAYOFCORRELATIONS29Takem&#x
POLYNOMIALDECAYOFCORRELATIONS29Takem�0suchthateC J(eJC =m 1)19:(6:4)Take�0suchthateC J+119:(6:5)Takelmaxf14k;mgsuchthatforallm-wordu, Xw2l;RwRueSl (wx)Ru Ru:(6:6)ThisispossiblebecauseofLemma4.8.TakeA0suchthatC J'K 0A3C (k+l) + :(6:7)TakeN0suchthat(N+1) log(25=24)AandsuchthatforallnN,25261(n+1) 1(n+l+1) (6:8)and(7.6)inthenextsectionaresatis ed.The rstrequirementimpliese125248A(N+1) :(6:9)Denotegn=Lng,andQk;l=Pk[[Pk+l.Wealsoassumethefollowing:Foralln=0;1;;N+l1,(An)(gnjQk+l)A(n+1) ,(Bn)(gnjQk;l)2:5C J'K 0k A(n+1) ,(Cn)(gnjQk;l)25C2 J2'K 0k A(n+1) ,(Dn)(gnjQk)125C2 J2'K 0k A(n+1) ;andforalln=0;1;;N1,(B0n)gn(y)gn(x)1+8C J2'K 0A(n+1) 8x;y2Qk;l.ThisispossiblebecausebyLemma6.4.i)andLemma6.4.i)wecanalwaysreplacegby1+c(g1)forsomesmallcindependentofg.WeprovethepropositionbyshowingthatforallnN+l,(An),(Bn),(Cn)and(Dn)hold.ByLemma6.2.i),(An)implytheresultsoftheproposition.ByLemma6.1andthefactQk\Qk;l=Pk,(Cn)and(Dn)imply(An)foreveryn0.Sobyinduction,weonlyneedprovethefollowingclaimstocompletetheproof. 30HUYIHUClaim1.ForallnN,(An)imply(Bn+k).Claim2.ForallnN+l,(B0i)and(Bj)imply(Cn),wherei=0;1;;N1andj=N;;n1,.Claim3.ForallnN,(An)imply(Dn+l).ProofofClaim1.Suppose(gnjQk+l)=loganbnA(n+1) .Wehaveangn(y)angn(x);gn(y)bngn(x)bneJd(x;y)=e3J'k d(x;y)8x;y2Qk:UsingLemma4.6.i)withJ=3J',m=K0andj=

32 k14K0,wegetangn+k(y)angn+k(x);gn+k(y)
k14K0,wegetangn+k(y)angn+k(x);gn+k(y)bngn+k(x)bne2:2J'K 0d(x;y)8x;y2Q0:(6:10)ThenweuseLemma4.6.ii)withJ=2:2J'K 0togetangn+k(y)angn+k(x);gn+k(y)bngn+k(x)bne4:2J'K 0d(x;y)8x;y2O1:NotethatJ=3J'k anddiam(Qk;l)C k .Wecanchooseksuchthat8:43J'k 4:2J'K 06C 10k :(6:11)ThisispossiblesincewehaveassumedC J'20.ByLemma6.2.ii),(angn+kjQk;l);(gn+kjQk;lbn)4:8C J'K 0k :By(6.10)weknowthatangn+k;gn+kbn2CJ(P0).Hence(gn+kjP0)loganbnA(n+1) .ClearlyLemma6.3canbeappliedinthiscase.Usingthefacttanhand(6.9),weget(gn+kjQk;l)124:8C J'K 0k 2524(gn+kjP0)2:5C J'K 0k A(n+1) :ProofofClaim2.ByLemma6.2.i)and(6.9),forallNjn1,(Bj)implygj(y)gj(x)1+8C J'K 0A3k (j+1) Jd(x;y)=1+8C J2'K 0A(j+1) d(x;y)8x;y2Qk;l: POLYNOMIALDECAYOFCORRELATIONS31Hence,theinequalityistrueforallj=0;1;;n1becauseoftheassumption(B0i),i=0;1;;N1.NowweuseProposition7.1,andnotethat8C J2'K 0AiscorrespondingtoAinthisproposition,andthengetgn(y)gn(x)1+24C J2'K 0A(n+1) d(x;y)8x;y2Qk;l:NotethatA(n+1) log(25=24)1andC J'20.Wecanchooseksuchthat48C J2'3J'k 24C J2'C2 J2'k :(6:12)ThenbyLemma6.2.ii)weget(Cn).ProofofClaim3.Assume(gnjQl+k)=loga=b.Thenagn;gnb2CJ(Ql+k).Soagn(y)agn(x);gn(y)bgn(x)beJd(x;y)=e3J'k d(x;y)8x;y2Ql+kByProposition7.4,agn+l(y)agn+l(x);gn+l(y)bgn+l(x)b28x;y2Qk:Also,byusingLemma4.6.i)withJ=3J',m=kandj=l,andthenusingthefactl14k,wehaveagn+l(y)agn

33 +l(x);gn+l(y)bgn+l(x)be2:2J'k d(x;y)8
+l(x);gn+l(y)bgn+l(x)be2:2J'k d(x;y)8x;y2Qk:Hence,byLemma6.2.ii),(agn+ljQk);(gn+ljQkb)log2+log3J'k +2:2J'k 3J'k 2:2J'k =log13:ThenbyLemma6.3,e(gn+ljQk)1tanhlog132e(gnjQk+l)1=67e(gnjQk+l)1:Hence,by(6.9),(6.8),and(6.3),(gn+ljQk)e(gn+ljQk)167e(gnjQk+l)12528(gnjQk+l)2528A(n+1) 2628A(n+l+1) A(n+l+1) 125C2 J2'K 0k : 32HUYIHU7.EstimatesofgnonQk;landQk:TwosupplementarypropositionsProposition7.1.Supposeg2G+Jwith(g)=1andjg(x)1j1=38x2+,andgj(y)gj(x)1+A(j+1) d(x;y)8x;y2O1(7:1)forall0jn1,nN.Thengn(y)gn(x)1+3A(n+1) d(x;y)8x;y2Qk;l:Proof.Sincegn(x)2=3,itisenoughtoprovethatgn(y)gn(x)2A(n+1) d(x;y)8x;y2Qk;l:ByLemma4.4,wehavethatforx;y2Qk;l,gn(y)gn(x)=eSn (0ny)g(0ny)eSn (0nx)g(0nx)+nXj=1gnj(0jy)gnj(0jx)1e (0jx)eSj1 (0j1x)+nXj=1gnj(0jy)h1e (0jy)eSj1 (0j1y)1e (0jx)eSj1 (0j1x)i=(I)+(II)+(III):(7:2)If(III)0.ThereforebyLemma7.2and7.3,gn(y)gn(x)16+32A(n+1) d(x;y)=5A3(n+1) d(x;y):Nowweconsiderthecase(III)0.Wereplacegby2gandthengetanequalitysimilarto(7.2).ItisclearthatestimatesinLemma7.2and7.3stillholdfor2gbecause2g(y)2g(x)=g(x)g(y).Sotheupperboundsfor(I)and(II)remainthesame.Now(III)becomesnXj=12gnj(0jy)h1e (0jy)eSj1 (0j1y)1e (0jx)eSj1 (0j1x)inXj=12heSj1 (0j1y)eSj (0jy)eSj1 (0j1x)eSj (0jx)i2eSn (0nx)eSn (0ny)2A6(n+k) d(x;y);whereweuseLemma7.2withg=1inthe

34 laststep.Hence,2gn(y)2gn(x)16+3
laststep.Hence,2gn(y)2gn(x)16+32+26A(n+1) d(x;y)=2A(n+1) d(x;y):Thisistheresultsincetheleftsideisequaltogn(x)gn(y). POLYNOMIALDECAYOFCORRELATIONS33Lemma7.2.UndertheconditionsofProposition7.1,forallx;y2Qk;l,eSn (0ny)g(0ny)eSn (0nx)g(0nx)A6(n+1) d(x;y):Proof.Firstweconsiderthecasethatx2Pi,y2P0iforsomekik+l.By(6.3),thechoiceofkimpliesthat2J'i d(x;y)2J'=i2J'=klog(3=2).SousingLemma4.5.i)withJ=J',m=iandj=n,wegeteSn (0ny)g(0ny)eSn (0nx)g(0nx)e2J'i d(x;y)1+3J'i d(x;y):ByLemma4.3.iii),eSn (0nx)g(0nx)C in+i 434C 3k+ln+k+l :Recall(6.7)andthefactthatwehavereplaced8C'J2'K 0AbyA.ItfollowsthateSn (0ny)g(0ny)eSn (0nx)g(0nx)eSn (0nx)g(0nx)3J'i d(x;y)4C 3k+ln+k+l 3J'i d(x;y)A6(n+1) d(x;y):Ingeneral,forx;y2Qk;l,wetakex(0);x(1);;x(j)suchthatx(0)=x,x(j)=y,andx(i)2Pi+i0forsomei0.Foreachpairx(i),x(i+1),weuseaboveresult.Sinced(x;y)=j1Pi=0d(x(i);x(i+1))andeSn (0ny)g(0ny)eSn (0nx)g(0nx)=j1Pi=0eSn (0nx(i+1))g(0nx(i+1))eSn (0nx(i))g(0nx(i)),wegettheresult.Lemma7.3.UndertheconditionsofProposition7.1,forallx;y2Qk;l,nXj=1gnj(0jy)gnj(0jx)1e (0jx)eSj1 (0j1x)3Ad(x;y)2(n+1) :(7:3)Proof.Notethatd(0jx;0jy)k+lj+k+l +1d(x;y)foranyx;y2Qk;l.By(7.1),gnj(0j1y)gnj(0j1x)gnj(0j1x)A(nj+1) d(0jx;0jy)gnj(0j1x)A(nj+1) k+lj+k+l +1d(x;y):(7:4)Letn1=maxfi:( +1+ )i( +1)(n+1) (k+l)g:(7:5) 34HUYIHUWritethesumin(7.3)asnXj=1=n1Xj=1

35 +nXj=n1+1=(IIa)+(IIb):Forallj=1;;n1,
+nXj=n1+1=(IIa)+(IIb):Forallj=1;;n1,(n+1) (k+l) +1(nj+1) (j+k+l) +1;because(j+k+l) +1(nj+1) increasesas0jn1.Henceby(7.4)andLemma4.4,(IIa)n1Xj=1gnj(0j1x)Ad(x;y)(n+1) 1e (0jx)eSj1 (0j1x)Ad(x;y)(n+1) gn(x)4Ad(x;y)3(n+1) :WeassumethatNislargeenoughsuchthatforallnN8C k+ln+k+l +1k+ln1+k+l 1(n+1) ;(7:6)wheren1isde nedin(7.5)andC isgivenbyLemma4.3.iii).Itispossiblesinceby(7.5),n1nisroughlyproportionalto +1 +1+ .Notethatforallj=n1+1;;n,(n+k+l) +1(nj+1) (j+k+l) +1;(7:7)becausetherightsideisdecreasingwithjifn1jn.AlsobyLemma4.3.iii),nXj=n1+11e (0jx)eSj1 (0j1x)eSn1 (0n1x)C k+ln1+k+l :(7:8)Henceby(7.4),(7.7)andby(7.8),andthenby(7.6),(IIb)4A3k+ln+k+l +1d(x;y)nXn1+11e (0jx)eSj1 (0j1x)4A3k+ln+k+l +1C k+ln1+k+l d(x;y)A6(n+1) d(x;y):Nowwehave(IIa)+(IIb)43+16A(n+1) d(x;y)=3A2(n+1) d(x;y): POLYNOMIALDECAYOFCORRELATIONS35Proposition7.4.Foranyg�0suchthatg(y)g(x)eJd(x;y)8x;y2Qk+l,Llg(y)2Llg(x)8x;y2Qk:Proof.Bytheconditionand(1.1),wehaveg(x)(g)eC Jforanyx2Qk+l.Wemayassumethattheinequalityholdsforanyx2+sincethevaluesofLlgonQkonlydependonthevaluesofgonQk+l.Forawordw,denoteIw(g)=1RwZRwg(g)d:Letubeanm-word.By(1.1)and(6.4),forx;y2Ru,g(y)g(x)g(x)eJd(x;y)1(g)eC JeC J=m 119(g):Sincel�m,itimpliesthatforanyl-wordw, g(wx)(g)Iw(g) 19(g);(7:9)andifRwRu,then Iu(g)Iw(g) 19(g):(7:10)Recallth

36 attheconditionalexpectationofg(g)corre
attheconditionalexpectationofg(g)correspondingtolisEg(g)jl(x)=1l(x)Zl(x)g(z)(g)d(z)=Xw2lIw(g)Rw(x);wherel(x)istheelementoflcontainingx.HenceLlEg(g)jl(x)=Xw2leSl (wx)Xw02lIw0(g)Rw0(wx)=Xw2leSl (wx)Iw(g):Foranyx2Qk,wehave Llg(x)(g)  Llg(x)LlE(gjl)(x) + LlE(gjl)(x)(g) :(7:11)ByLemma4.1.i)and(7.9),the rsttermisboundedby Xw2leSk (wx)g(wx)(g)Iw(g) 19(g)Xw2leSk (wx)=19(g): 36HUYIHUToestimatethesecondterm,wewriteLlEg(g) l(x)=Xw2leSl (wx)Iw(g)=Xu2mXw2lRwRueSl (wx)Iw(g)=Xu2mXw2lRwRueSl (wx)Iu(g)+Xu2mXw2lRwRueSl (wx)Iw(g)Iu(g):(7:12)Notethat Iu(g) maxxfjg(x)jg+(g)eC J+1(g):Denote(u)=1RuXRwRueSl (wx)1.By(6.6),j(u)jforanym-wordu.Soby(6.5),the rstsumin(7.12)isboundedby XuIu(g)XwRueSl (wx) = XumIu(g)1+(u)Ru = XumIu(g)Ru+Xum(u)Iu(g)Ru 0+eC J+1(g)19(g):By(7.10),thesecondsumin(7.12)isalsoboundedby19(g).Henceby(7.11), Llg(x)(g) (g)=3.Thatis,23 Llg(x)(g) 438x2Qk;whichimpliestheresultoftheproposition.8.Convergencerate:ProofofTheoremD,EandFProofofTheoremD.Denotegn=Lng.Byconsideringc1g+c2wemayassumeg2G+J,(g)=1andjg(x)1j1=38x2+sothatPropositionCcanbeapplied.Takekk1suchthatQk2=3,wherek1isasinSublemma8.2.TakeCmaxf6A;4Ckg1k0gwhereAisgivenbyPropositionC,Cisgivenby(1.4),andkk0istheC0norm.Letn1�0satisfySublemma8.2andsatisfythatforanynn1,C(n+1)6A.WemayincreaseC

37 ifnecessarysuchthatforallj=0;1;;n1,jg
ifnecessarysuchthatforallj=0;1;;n1,jgj(x)1jC(j+1) 18x2Qk:(8:2) POLYNOMIALDECAYOFCORRELATIONS37Toprovethetheorem,weonlyneedshowthatforalln�n1,(En) gn(x)1 C(n+1) 1foranyx2Qk;(Fn)ZOk+1 gn(x)1 dC2(n+1) 1.Clearly,(En)and(8.2)givetheresultsofParti).Sincetheintegralofjgn(x)1jonQkisboundedbyC(n+1)( 1)Qk,andQk[Ok+1=+,wehavePartii)ifwereplaceC(Qk+1=2)byC.ByLemma8.1,(Ej),j=0;1;;n1,imply(Fn).AndbyLemma8.3andPropositionC,(Fn)imply(En).Thentheresultsfollowfrominduction.Lemma8.1.Letnn1.Ifforj=0;1;;n1,jgj(x)1jC(j+1) 18x2Qk;(8:3)thenZOk+1 gn(x)1 dC2(n+1) 1:Proof.ByLemma4.2,(1.4),andthechoiceofC,ZOk+1jgn(x)1jeSn (0nx)dkg1kOk+n+1Ckg1k(n+k+1) 1C4(n+1) 1:Ontheotherhand,(8.3)andthede nitionofgimplythatforj=0;1;;n1,jgj(x)1jC(j+1) 18x2O1:Also,byLemma4.2,ZOk+11e (0jx)eSj1 (0j1x)d(x)=Ok+jOk+j+1=Pk+j:Hence,by(1.4)andSublemma8.2,ZOk+1nXj=1 gnj(0j1x)1 1e (0jx)eSj1 (0j1x)d(x)nXj=1C(nj+1) 1Pk+jnXj=1C(nj+1) 1C(k+j) C4(n+1) 1NowtheresultfollowsfromLemma4.4. 38HUYIHUSublemma8.2.Therearek1;n1�0suchthatifkk1,thennXj=11(nj+1) 11(j+k) 14C(n+1) 18nn1:Proof.NotethatnXj=11(nj+1) 11(j+k) 1(n2+1) 1[n=2]Xj=11(j+k) +1(n2+k) nXj=[n=2]+11(nj+1) 12 1(n+1) 11Xj=11(j+k) +2 (n+1) 1[n=2]+1Xj=11j 1(n+1)=(I)+(II):Theseriesin(I)isoforderk( 1),andthesumin(II)isofordern( 1).Since �

38 0;1,theresultfollows.Lemma8.3.Suppose(
0;1,theresultfollows.Lemma8.3.Suppose(g)=1,gn(y)gn(x)1+A(n+1) 8x;y2Qk;(8:4)andZOk+1jgn(x)1jdC2(n+1) 1:Thenjgn(x)1jC(n+1) 18x2Qk:Proof.Since(g)=1, ZQkgn1d = ZOk+1gn1d ZOk+1 gn1 dC2(n+1) 1:By(8.4),foranyx;y2Qk,gn(y)1gn(x)1+gn(x)A(n+1) :IntegratingwithrespecttoxoverQk,andusingthefact6AC(n+1),weget gn(y)1 Qk ZQkgn(x)1d +(gn)A(n+1) C2(n+1) 1+A(n+1) =2C3(n+1) 1: POLYNOMIALDECAYOFCORRELATIONS39SinceQk2=3,wegettheresult.ProofofTheoremE.Notethatbythede nitionofL ,foranyfunctions~gandgde nedon+,Ln(~g)g=~gL g.So,wehave(~g)g=L (~g)g=~gL g:(8:5)Hence, (~gn)g(~g)(g) = ~gLng~g(g) = ~g[Lng(g)] (j~gj) Lng(g) :NowtheresultfollowsfromTheoremD.ToproveTheoremF,we rstrecallageneralresultfortheCentralLimitTheo-remfrom[Li2].Theorem.Let(X;)beaprobabilityspace,andletT:X!Xbeanoninvertibleergodicmeasure-preservingtransformation.Letg2L1(X;)besuchthat(g)=0.Assumei)1Pn=1 R(gTn)gd 1,ii)1Pn=1^Tn(g)isabsolutelyconvergenta.e.ThentheCentralLimitTheoremholdsforg.Inthestatement,^Tdenotesthedualoftheoperator^T:L2(X;)!L2(X;)de nedby^T(g)=gT.ProofofTheoremF.Weonlyneedchecktheconditionsinabovetheorem.Clearly,conditioni)followsfromTheoremEwith~g=g.NotethatL isthedualoperatorof^becauseof(8.5)andthefact^~g=~g.Thenconditionii)followsfromTheoremD.i).References[B]R.Bowen,Equilibriumstatesa

39 ndtheergodictheoryofAnosovdi eomorphisms
ndtheergodictheoryofAnosovdi eomorphisms,LectureNotesinMath.,vol.470,Springer,NewYork,1975.[Bi]G.Birkho ,Latticetheory(3rded.),Amer.Math.Soc.ColloquiumPublications,Amer.Math.Soc.,Providence,1967.[BFG]X.Bressaud,R.FernandezandA.Galves,DecayofcorrelationsfornonHolderiandy-namicsAcouplingapproach,,preprint.[CF1]P.ColletandP.Ferrero,Absolutelycontinuousinvariantmeasureforexpandingpickmapsoftheintervalexpectatamarginal xedpoint,Instabilitiesandnonequilibriumstructures,E.TirapehuiandD.VillaroelEds.,KluwerAcademicPublishers,NewYork,1989,pp.27-36.[CF2]P.ColletandP.Ferrero,Somelimitratiotheoremrelatedtoarealendomorphismincaseofneutral xedpoint,Ann.Inst.HenriPoicare52(1990),283-301. 40HUYIHU[DS]N.DunfordandJ.Schwartz,LinearOperatorPartI,IntersciencePublishers,NewYork,1958.[FL]A.FisherandA.Lopes,Polynomialdecayofcorrelationsandthecentrallimittheoremfortheequilibriumstatesofanon-Holderpotential,preprint.[FS]P.FerreroandB.Schmitt,Produitsaleatoiresd'operateursmatricesdetransfert,Probab.TheoryRelatedFields79(1988),227-248.[H]H.Hu,Decayofcorrelationsforpiecewisesmoothmapswithindi erent xedpoints,preprint.[LaSV]A.Lambert,S.SiboniandS.Vaienti,Statisticalpropertiesofanonuniformlyhyperbolicmapoftheinterval,J.Statist.Phys.72(1993),1305{1330.[Li1]C.Liverani,Decayofcorrelations,Ann.Math.142(1995),239-301.[Li2]C.Liverani,Centrallimittheoremfordeterministicsystems,Internatio

40 nalconferenceondynamicalsystems(Montevid
nalconferenceondynamicalsystems(Montevideo1995),PitmanresearchnotesinMath,Longman,Harlow,1996,pp.56-75.[LiSV]C.Liverani,B.SaussolandS.Vaienti,Aprobabilisticapproachtointermittency,preprint.[M]M.Mori,Ontheintermittencyofapiecewiselinearmap,TokyoJ.Math.16(1993),411-428.[P]M.Pollicott,Ratesofmixingforpotentialsofsummablevariation,preprint.[PY1]M.PollicottandM.Yuri,StatisticalPropertiesofmapswithindi erentperiodicpoints,preprint.[PY2]M.PollicottandM.Yuri,DynamicalSystemsandErgodicTheory(1998),CambridgeUniv.Press,Cambridge.[Pi]G.Pianigiani,Firstreturnmapandinvariantmeasures,IsraelJ.Math.35(1980),32-48.[R]V.Rohlin,ExactendomorphismsofaLebesguespace,Amer.Math.Soc.Transl.(2)39(1964),1-36.[T]M.Thaler,Estimatesoftheinvariantdensitiesofendomorphismswithindi erentperiodicpoints,IsraelJ.Math.37(1980),303-314.[U]M.Urbanski,ParabolicCantorsets,FundamentaMathematicae151(1996),241-277.[W1]P.Walters,Invariantmeasureandequilibriumstatesforsomemappingswhichexpanddistances,Trans.Amer.Math.Soc.236(1978),121-153.[W2]P.Walters,Anintroductiontoergodictheory,Springer-Verlag,NewYork,1981.[Y]L.-S.Young,Recurrencetimeandrateofmixing,preprint.[Yu1]M.Yuri,WeakGibbsmeasureforcertainnonhyperbolicsystems,preprint.[Yu2]M.Yuri,ThermodynamicFormalismforcertainnonhyperbolicmaps,Ergod.Th.&Dy-nam.Sys.(toappear).DepartmentofMathematics,PennsylvaniaStateUniversity,UniversityPark,PA16802,USAE-maila

Related Contents


Next Show more