/
ISOLATED MF DCDC CONVERTER FOR TRACTION BATTERY APPLICATIONTiago Nabai ISOLATED MF DCDC CONVERTER FOR TRACTION BATTERY APPLICATIONTiago Nabai

ISOLATED MF DCDC CONVERTER FOR TRACTION BATTERY APPLICATIONTiago Nabai - PDF document

genevieve
genevieve . @genevieve
Follow
374 views
Uploaded On 2021-08-26

ISOLATED MF DCDC CONVERTER FOR TRACTION BATTERY APPLICATIONTiago Nabai - PPT Presentation

Agendax0000x00002xBBoxx 3x123x 441x765x2 28x609x78 4x667x672 xSuxbtypxe Fxootexr Txype xPagxinatxion xBBoxx 3x123x 441x765x2 28x609x78 4x667x672 xSuxbtypxe Fxootexr Txype xPagxinatxion 149Bo ID: 872409

bbo x0000 441 xype x0000 bbo xype 441 765 x66 x672 xbtyp xoote pag xinat xion x78 xpe 149

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "ISOLATED MF DCDC CONVERTER FOR TRACTION ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 ISOLATED MF DCDC CONVERTER FOR TRACTION
ISOLATED MF DCDC CONVERTER FOR TRACTION BATTERY APPLICATIONTiago Nabais, Bombardier Transportation, SwitzerlandMiloStojadinoviürgenBielaLaboratory for High Power Electronic Systems, ETH Zürich Agenda��2&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 28;.09;x 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 28;.09;x 4;f.7;ٲ ;&

2 #x]/Su; typ; /F;&#xoote;&#xr /T;&
#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;•Bombardier Transportation&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 28;.09;x 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 28;.09;x 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;•Catenary free operation (CFO)&#x/BBo;&#

3 xx [3;.23;&#x 441;&#x.765; 28;&#
xx [3;.23;&#x 441;&#x.765; 28;.09;x 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 28;.09;x 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;•Energy solutions&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 28;.09;x 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag

4 ;&#xinat;&#xion ;&#x/BBo;&#xx [3;.23
;&#xinat;&#xion ;&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 28;.09;x 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;•MF DC/DC Building block&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 28;.09;x 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 28;.09;x 4;f.7;ٲ ;&#x]/Su; typ;

5 /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xin
/F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;•Transformer Modeling&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 28;.09;x 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 28;.09;x 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;•Optimization and Design&#x/BBo;&#xx [3;.23;&#x 441;&#x.765;&

6 #x2 28;.09;x 4;f.7;ٲ ;&
#x2 28;.09;x 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 28;.09;x 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;•System Control design&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 28;.09;x 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;&#x/BBo;&

7 #xx [3;.23;&#x 441;&#x.765; 28;&
#xx [3;.23;&#x 441;&#x.765; 28;.09;x 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;•Simulation & measurement results&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 28;.09;x 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 28;.09;x 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /

8 T;&#xype ;&#x/Pag;&#xinat;&#xion ;•
T;&#xype ;&#x/Pag;&#xinat;&#xion ;•Standardization & modularity&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 28;.09;x 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 28;.09;x 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;•Talent 3 BEMU DC/DC BOMBARDIER TRANSPORTATION A global player with a Euro

9 pean base Revenues 2017(1)$8.5 billion U
pean base Revenues 2017(1)$8.5 billion US Employees(2)39,850 ��Global Headquarters��Production Sites Mobility solutions Vehicle speed��LocomotivesTRAXX Monorails, people moversMetrosMOVIALight rail vehiclesFLEXITYCommute regional trains(Very) highpeed trainsIntercity trains Vehicle capacityINNOVIAmonorailINNOVIAAVENTRATALENT TWINDEXXOMNEOBiLevelMultilevel, AVENTRATALENT 3, TWINDEXXOMNEO ZEFIRO CATENARY FRE

10 E OPERATION (CFO) Benefits and Customer
E OPERATION (CFO) Benefits and Customer value “Beautiful place” Spaceconstraints Difficultcatenary setup Safetyconcerns Points of touristic interestUnobstructed urban skyline Low bridgesObstructing road sign bridgesVery narrow roads Crossing intersections of wide roadsDifficult access to power feeders Rationale Examples Commercial Value Added Touristic valueRaising urban quality & valueWinning arguments to obtain public approvals Less co

11 stly civil worksFootprint width of 2 tra
stly civil worksFootprint width of 2 tracks reduces from 7.6 m to 7.05 m.No or simplified mesh wiring underneath tracks CFO as cost efficient alternative Risk of contacting wires (by overloaded trucks)Clearing the road in case of power outageElectromagnetic interference (e.g. near hospitals affecting medical devices )Fire dep’t: No obstacles for fire truck ladder use Hazard and damage avoidance Modes of Operation LRV Mass Transit(Metros) Main

12 Line(Commuter,Regional, …) Locomot
Line(Commuter,Regional, …) Locomotives Scheduled CatenaryFree Operation��Catenary free route sections (e.g. historic districts)Static, dynamic and PRIMOVE charging schemesNetwork extensions covering remote stops via unelectrifiedroutesEmission free oneseat rideLast mile Diesel and battery to access sidings and unelectrifiedroutesBatteryonly shunting Rescue Cases(e.g. power outages)Movement to next trams top or safe

13 place for passengers to exitMovement to
place for passengers to exitMovement to next metro stop for passengers to exitMovement to next station to clear the tracks and let passengers exitClear the tracksAssistance service to remove other locos & trains Other Modes of OperationBoosting: Accelerated starting w. limited powerEMI reduction with CFOEnergy efficiency increaseIncreased network stabilityBoosting: Energy efficiency increaseIncreased network stabilitySleep mode while parking or st

14 anding (See Sleep mode while parking or
anding (See Sleep mode while parking or standing (See Catenary free route sections (e.g. historic districts)Static, dynamic and PRIMOVE charging schemesBoosting: Energy efficiency increaseIncreased network stability ENERGY SOLUTIONS State of the art Diesel Fuel Cell Battery Supercaps Characteristics State of the art VS applications LRV Mass Transit(Metros) Main Line(Commuter,Regional, …) Locomotives Diesel Fuel Cell Battery Supercaps Characte

15 ristics��1500V-1800V&#x
ristics��1500V-1800V&#x/BBo;&#xx [2; .7;Ѩ ;͘.;嚄&#x 349;&#x.474; 37;.62;E ];&#x/Sub;&#xtype;&#x /Fo;&#xoter;&#x /Ty;&#xpe /;&#xPagi;&#xnati;&#xon 0;&#x/BBo;&#xx [2; .7;Ѩ ;͘.;嚄&#x 349;&#x.474; 37;.62;E ];&#x/Sub;&#xtype;&#x /Fo;&#xoter;&#x /Ty;&#xpe /;&#xPagi;&#xnati;&#xon 0;10’000kWh (1000litres)600kW530kWh (1000litres)400kW24.5kWh75kWh200kW2kWh600kW Requireme

16 nts100kW750V Line200kW750V Line200kW200k
nts100kW750V Line200kW750V Line200kW200kW3kV Line State of the art VS applications LRV Mass Transit(Metros) Main Line(Commuter,Regional, …) Locomotives Diesel Fuel Cell Battery Supercaps Characteristics��1500V-1800V&#x/BBo;&#xx [2; .7;Ѩ ;͘.;嚄&#x 349;&#x.474; 37;.62;E ];&#x/Sub;&#xtype;&#x /Fo;&#xoter;&#x /Ty;&#xpe /;&#xPagi;&#xnati;&#xon 0;&#x/BBo;&#xx [2; .7;Ѩ ;͘.;嚄&#x 349;&#x.474;

17  37;.62;E ];&#x/Sub;&#xtype;
 37;.62;E ];&#x/Sub;&#xtype;&#x /Fo;&#xoter;&#x /Ty;&#xpe /;&#xPagi;&#xnati;&#xon 0;10’000kWh (1000litres)600kW530kWh (1000litres)400kW24.5kWh75kWh200kW2kWh600kW Requirements100kW750V Line200kW750V Line200kW200kW3kV Line StandardizationModularity State of the art VS applications��13&#x/BBo;&#xx [3;.81;e 4;D.1;Գ ;ј.;剅&#x 460;&#x.843;&#x ]/S;&#xubty;&#xpe /;oot;r /;&#xType;&#

18 x /Pa;&#xgina;&#xtion;&#x 000;&#x/BBo;&#
x /Pa;&#xgina;&#xtion;&#x 000;&#x/BBo;&#xx [3;.81;e 4;D.1;Գ ;ј.;剅&#x 460;&#x.843;&#x ]/S;&#xubty;&#xpe /;oot;r /;&#xType;&#x /Pa;&#xgina;&#xtion;&#x 000;Scalable solution: 1 or more energy storage systems per MITRAC propulsion systemStandardized hardware independent interfaces to MITRAC propulsion system Applicable for all vehicle families from LRV’s to locomotives‘Plug and pl

19 ay’ solution modular and scalable T
ay’ solution modular and scalable TractionConverterMotors EnergyStorage 1 EnergyStorage 2 EnergyStorage n Any viable technologies (supercaps, batteries, etc.) and chemistries. Mixed (= hybrid) solutions are possible.The protection concept is specific to the energy storage units.High reuse on homologation and safety approvals NERGYTORAGE Standardize power and communication protocol interfaces between traction converter and energy storage.Stand

20 ardized application interface towards tr
ardized application interface towards traction converter Software as ‘adon package’ to minimize application specific adaptations. DEFINEDNTERFACES MF DC/DC BUILDING BLOCK Project requirements Battery Voltage Range518..835VNominal DC Link VoltageRegulated DC Link Voltage (peak)Unregulated DC Link Voltage (peak)System Power183kWSystem Power (peak) for 300s�234kWCurrent per Battery(continuous)Current per Battery (peak) for 300s Work

21 ing Insulation Voltage4.2kVImpulseWithst
ing Insulation Voltage4.2kVImpulseWithstand Voltage P18kVEfficiency� 95%AmbientTemperatureCooling Medium TemperatureMaximum Dimensions750x360x200 mmMaximum Weight Chosen topology and optimization procedure��16&#x/BBo;&#xx [4;.86;A 4;A.0;I ;Έ.;㐃&#x 465;&#x.088; ]/;&#xSubt;&#xype ;&#x/Foo;&#xter ;&#x/Typ; /P; gin; tio;&#xn 00;&#x/BBo;&#xx [4;.86;A 4;A.0;I ;Έ.;㐃&#x 465

22 ;&#x.088; ]/;&#xSubt;&#xype ;&#x/Foo
;&#x.088; ]/;&#xSubt;&#xype ;&#x/Foo;&#xter ;&#x/Typ; /P; gin; tio;&#xn 00;Modular Dual Active Bridge (DAB) converterSimplified flow chart of theoptimization procedurePreselected technologiesTransformer with integrated coolingFoil windingsFerrite coreWater coolingSemiconductorsSiCMOSFETs TRANSFORMER MODELING Transformer lossesWinding lossesHigh frequency effectsSkin effect lossesProximity effect lossesOptimum foil thicknessAnalytical

23 model available in literatureCore losse
model available in literatureCore lossesSteinmetz equationSteinmetz parameters andExtracted from data sheetValid only in a limited , andTemp. RangeCan be used for sinusoidal flux waveformsDC bias/offset is not consideredImproved Generalized Steinmetz Equation (iGSECan be used for arbitrary flux waveformsRelaxation losses missingDC bias/offset is not considered��18&#x/BBo;&#xx [4;.3;ڙ ;t.4;Ѥ ;ڇ.;㉗&#x 115;&#x

24 .617; ]/;&#xSubt;&#xype ;&#x/Foo;&#x
.617; ]/;&#xSubt;&#xype ;&#x/Foo;&#xter ;&#x/Typ; /P; gin; tio;&#xn 00;&#x/BBo;&#xx [4;.3;ڙ ;t.4;Ѥ ;ڇ.;㉗&#x 115;&#x.617; ]/;&#xSubt;&#xype ;&#x/Foo;&#xter ;&#x/Typ; /P; gin; tio;&#xn 00;[1]W.G.HurleyOptimizingtheACResistanceMultilayerTransformerWindingswithArbitraryCurrentWaveformsIEEETransonPowerElectronics,Assumption:1D field Transformer leakage inductance calculationWinding height smaller th

25 an window height = �&
an window height = ���� = +3+ ���� 2 ++4++3 =2 + + Rogowskicorrection factor 1 ++ Different primary and secondary winding heights = ���� 19 ��(width of the reducedleakage channel)(equivalent inner diameterof t

26 he internal winding)(mean diameter of th
he internal winding)(mean diameter of thereduced leakage channel))2]V.V.Kantor,MethodsCalculatingLeakageInductanceTransformerWindingsElektrotehnika Transformer thermal modeling��20&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 24; .16; 46;.76;r ];&#x/Sub;&#xtype;&#x /Fo;&#xoter;&#x /Ty;&#xpe /;&#xPagi;&#xnati;&#xon 0;&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 24; .16; 46;.76;r ];&#x/Sub;&#xtype;&#x /Fo;&

27 #xoter;&#x /Ty;&#xpe /;&#xPagi;&#xnati;&
#xoter;&#x /Ty;&#xpe /;&#xPagi;&#xnati;&#xon 0;•Types of heat transferConductionUsually independent of temperatureImportant: Precise material thermal dataDifficulty: Interfaces between materialsConvectionConduction + fluid flowDependent on temperatureAbundance of analytical and empiricalformulas available in literatureRadiationUsually negligible compared toconduction/convectionDifficult to model nonlinear / line of sight = = = = = = Transform

28 er thermal modelingChannel thermal model
er thermal modelingChannel thermal model ,= ,= ℎ� with = ���� heattransfercoefficientNusseltnumberthermal conductivityheatsink material 2 channelhydraulicdiametercrosssectionalareaNusseltnumber is a function ofAverage ducted fluid velocityDuct geometryFluid Prandtlnumber (Analytical models available in literature��21&#x/BBo;&#xx [4;.

29 3;ڙ ;t.4;Ѥ ;چ.;陖&#x
3;ڙ ;t.4;Ѥ ;چ.;陖&#x 115;&#x.617; ]/;&#xSubt;&#xype ;&#x/Foo;&#xter ;&#x/Typ; /P; gin; tio;&#xn 00;&#x/BBo;&#xx [4;.3;ڙ ;t.4;Ѥ ;چ.;陖&#x 115;&#x.617; ]/;&#xSubt;&#xype ;&#x/Foo;&#xter ;&#x/Typ; /P; gin; tio;&#xn 00;[3]Y.S.MuzychkaGeneralizedmodelsforlaminardevelopingflowsheatsinksheatexchangersHeatTransferEngineering, Transformer thermal modelingChannel thermal model ,= ,= â„

30 Ž� with = �
Ž� with = ���� heattransfercoefficientNusseltnumberthermal conductivityheatsink material 2 channelhydraulicdiametercrosssectionalareaNusseltnumber is a function ofAverage ducted fluid velocityDuct geometryFluid Prandtlnumber (Analytical models available in literature��22&#x/BBo;&#xx [4;.3;ڙ ;t.4;Ѥ ;چ.;陖&#x 115;&#x.

31 617; ]/;&#xSubt;&#xype ;&#x/Foo;&#xt
617; ]/;&#xSubt;&#xype ;&#x/Foo;&#xter ;&#x/Typ; /P; gin; tio;&#xn 00;&#x/BBo;&#xx [4;.3;ڙ ;t.4;Ѥ ;چ.;陖&#x 115;&#x.617; ]/;&#xSubt;&#xype ;&#x/Foo;&#xter ;&#x/Typ; /P; gin; tio;&#xn 00;[3]Y.S.MuzychkaGeneralizedmodelsforlaminardevelopingflowsheatsinksheatexchangersHeatTransferEngineering, Transformer thermal modelingWater flow in structures with multiple parallel channels�&#x

32 D835DC61D835DC61;� pr
D835DC61D835DC61;� pressureloss =+++ flowrates DarcyWeisbachequation for pressure loss in parallel channels = ; = fluid velocitychannelfrictionfactor fluid densityChannel friction factorDifferent formulas for laminar and turbulent flowFunctions of Reynolds numberIn turbulent flow channel roughness plays a roleReynolds number is a function of fluid velocityIterative solving necessaryFew iterations sufficient Transformer the

33 rmal modelingThermal model of the chosen
rmal modelingThermal model of the chosen transformer structure OPTIMIZATION AND DESIGN Chosen topology and optimization results ��Custom cores (Ferrite N97)Standard cores (Ferrite N97)Modular Dual Active Bridge (DAB) converterSimplified flow chart of theoptimization procedure System layout and specifications��28&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 29;.53; 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoot

34 e;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion
e;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 29;.53; 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;•Single module specificationsNominal battery side voltage: Nominal DC link side voltage: Nominal power: 38.5 kWPeak continuous power: 50 kWSwitching frequency: 35 kHzEfficiency: 98.5%Dimensions: 360x195x118 mmPower density: 6 kW/dmWeight: 18 kgMechanic

35 al layout of the system SYSTEM CONTROL D
al layout of the system SYSTEM CONTROL DESIGN System control design��30&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 31; .45; 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 31; .45; 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;•Control parameter optimization System control design�

36 000;�31&#x/BBo;&#xx [3;.23;&#
000;�31&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 26;.84;Y 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 26;.84;Y 4;f.7;ٲ ;&#x]/Su; typ; /F;&#xoote;&#xr /T;&#xype ;&#x/Pag;&#xinat;&#xion ;•Module control overview System control design��32&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 52;.16;&#x 466;

37 &#x.767; ]/;&#xSubt;&#xype ;&#x/Foo;
&#x.767; ]/;&#xSubt;&#xype ;&#x/Foo;&#xter ;&#x/Typ; /P; gin; tio;&#xn 00;&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 52;.16;&#x 466;&#x.767; ]/;&#xSubt;&#xype ;&#x/Foo;&#xter ;&#x/Typ; /P; gin; tio;&#xn 00;•Generalized PWM generator with voltage second balancing , 2� 1 , 2� 1+ , 2� + 2 , 2� + 2+ , 2� + , 2�

38 5D835DC65; 1+ 2 , 2�
5D835DC65; 1+ 2 , 2� 1+ 2 , 2� + 4]M.StojadinoviGeneralizedPWMgeneratorwithtransformerfluxbalancingforDualActiveBridgeconverterEPEECCEEurope Generalized PWM generator with voltage second balancing��33&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 41;.21; 46;.76;r ];&#x/Sub;&#xtype;&#x /Fo;&#xoter;&#x /Ty;&#xpe /;&#xPagi;&#xnati;&#xon 0;&#x/BBo;&#xx [3;.23;&#x 441;&#x.765; 41

39 ;.21; 46;.76;r ];&#x/Sub
;.21; 46;.76;r ];&#x/Sub;&#xtype;&#x /Fo;&#xoter;&#x /Ty;&#xpe /;&#xPagi;&#xnati;&#xon 0;•PropertiestheproposedPWMgeneratorSeamlesstransitionbetweendifferentmodulationschemesAllowsforfluxbalancingovershootinthetransformercurrent SIMULATION & MEASUREMENT RESULTS Temperature distribution in transformerand cooling structureSame material parameters inFEM and analyticalSame losses used Water temperature – Input flow l &#

40 21; Velocity profile o
21; Velocity profile of the cooling structureFEM simulation results ��������FEM2978Analytical2868℃83 FEMAnalyticalFluid velocity115116��Fluid velocity in transformer channels FEM simulation resultsEddy current distribution in the bottom part of the cooling structur

41 eAluminium bar has better thermal behavi
eAluminium bar has better thermal behaviour(part of the structure)Thickness not limitedCan be placed only on lower sidefor easy manufacturabilityInfluence on the field (nonsymmetrical)Can lead to even higher losses in windingsCalculated induced losses (FEM)Whole transformer structure taken intoaccount ��with Al barPeak current density 10 ith AlNi barPeak current density 10 Al barAlNibarInduced losses Measurement resultsTransformer le

42 akage inductance testTransformer in shor
akage inductance testTransformer in short circuit connectionPower choke test at 400VCurrent ramped up to 65A 3D FEMAnalyticalLeakage inductance2626��Measurement setup Measurement resultsHydraulic measurementsSimplified pressure drop relation = 2 coefficientfluid resistancedensitythefluidfluid flowwaterchannelcrosssection 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 220 50 100 150 200 250 300 350 400 450 500 550 600 650 700

43 750 800 measured points 25 interpolated
750 800 measured points 25 interpolated curve 25 measured points 60 interpolated curve 60Characteristic curve for 25C & 60flow [dm3/min]pressure drop [mbar] ��Measurement setup Measurement resultsDielectric withstand test:Partial discharge measurement betweentransformer primary and secondaryHigh voltage 50Hzsource in a Faraday cage ��PD measurement resultsMeasurement block diagram Single Active Bridge (start) mode of t

44 he converterDC link side switches are bl
he converterDC link side switches are blockedDual active bridge mode in open loopOpen loop tests��40&#x/BBo;&#xx [3;.13;y 2;D.2; 1;h.5;ĥ ;ɢ.;颖&#x ]/S;&#xubty;&#xpe /;oot;r /;&#xType;&#x /Pa;&#xgina;&#xtion;&#x 000;&#x/BBo;&#xx [3;.13;y 2;D.2; 1;h.5;ĥ ;ɢ.;颖&#x ]/S;&#xubty;&#xpe /;oot;r /;&#xType;&#x /Pa;&#xgina;&#xtion;&#x 000;Measurement setup Voltage s

45 econd balancing Closed loop testsCurrent
econd balancing Closed loop testsCurrent controlFull power reversal 700V / 60A��41&#x/BBo;&#xx [3;.13;y 2;D.2; 1;h.5;ĥ ;ɢ.;颖&#x ]/S;&#xubty;&#xpe /;oot;r /;&#xType;&#x /Pa;&#xgina;&#xtion;&#x 000;&#x/BBo;&#xx [3;.13;y 2;D.2; 1;h.5;ĥ ;ɢ.;颖&#x ]/S;&#xubty;&#xpe /;oot;r /;&#xType;&#x /Pa;&#xgina;&#xtion;&#x 000;Measurement setup Dual active bridge thermal

46 test (700V / 60A@ 90mins, water flow cha
test (700V / 60A@ 90mins, water flow changed from 8 l/min to 15 l/minInternal temperature on the outer surface of the secondary winding:C @ 8 l/minC @ 15 l/min �����FEMAnalyticalMeasurement��Comparison of calculated andmeasured temperaturesInlet flow min STANDARDIZATION & MODULARITYBuilding block State of the art VS

47 applications LRV Mass Transit(Metros) Ma
applications LRV Mass Transit(Metros) Main Line(Commuter,Regional, …) Locomotives Diesel Fuel Cell Battery Supercaps Characteristics��1500V-1800V&#x/BBo;&#xx [2; .7;Ѩ ;͘.;嚄&#x 349;&#x.474; 37;.62;E ];&#x/Sub;&#xtype;&#x /Fo;&#xoter;&#x /Ty;&#xpe /;&#xPagi;&#xnati;&#xon 0;&#x/BBo;&#xx [2; .7;Ѩ ;͘.;嚄&#x 349;&#x.474; 37;.62;E ];&#x/Sub;&#xtype;&#x /Fo;&#xoter;&#x /Ty;&#xpe

48 /;&#xPagi;&#xnati;&#xon 0;10’000
/;&#xPagi;&#xnati;&#xon 0;10’000kWh (1000litres)600kW530kWh (1000litres)400kW24.5kWh75kWh200kW2kWh600kW Requirements100kW750V Line200kW750V Line200kW200kW3kV Line Building block Electricaland Performance dataPower FlowBidirectionalIsolationGalvanicisolationPower50kWVoltageMax. CurrentContCurrentEfficiency� 98% MechanicaldataDimensions360x195x118 mmWeightMain coolingmediumWaterGlycolSecondary coolingmediumForcedairMax. Tempe

49 raturewaterglycolcoolingMax temperaturec
raturewaterglycolcoolingMax temperaturecoolingair VinIp Vout Vp VsIsMF Transformer1122 Building block Metro Application example TractionConverter��Motors EnergyStorage 1 EnergyStorage 2 EnergyStorage n Mass Transit(Metros) 200kW750V Line VinIp Vout Vp VsIsMF Transformer1122 Building block Main Line Application example TractionConverter��Motors EnergySto

50 rage 1 EnergyStorage 2 EnergyStorage n M
rage 1 EnergyStorage 2 EnergyStorage n Main Line(Commuter,Regional, …) 200kW VinIp Vout Vp VsIsMF Transformer1122 Building block Locomotive Application example TractionConverter��Motors EnergyStorage 1 EnergyStorage 2 EnergyStorage n Locomotives 200kW3kV Line VinIp Vout Vp VsIsMF Transformer1122 Building block TALENT 3 BEMU DC/DC Summary��50&#x/BBo

51 ;&#xx [2;.90; 4;.5;࠶
;&#xx [2;.90; 4;.5;࠶ ;ȥ.;瘉&#x 442;&#x.117; ]/;&#xSubt;&#xype ;&#x/Foo;&#xter ;&#x/Typ; /P; gin; tio;&#xn 00;&#x/BBo;&#xx [2;.90; 4;.5;࠶ ;ȥ.;瘉&#x 442;&#x.117; ]/;&#xSubt;&#xype ;&#x/Foo;&#xter ;&#x/Typ; /P; gin; tio;&#xn 00;50 % of German railway network is not electrified53 % shorter than 40 kmReplace diesel trains by BEMUs on nonor partlyelectrifi

52 ed regional railway linesOperat
ed regional railway linesOperating with battery power and recharge under catenary Market Product & TechnologyTalent 3 as base productPRIMOVE battery technology to be adapted to mainline applicationMITRAC Solutionsbattery operation of up to 40 km120 km/h (same as DMU) on nonel. lines EMUBEMUDieselDiesel HybridFuel CellEnergy cons.Energy PriceEnergy costs15,2 %17,3 %39,4 %33,3 %CO2 equivalent8,6 %9,7 %85,2 %31,4 % Performance requirements D