/
Wave Equation Dispersion Inversion of Guided P-Waves (WDG) Wave Equation Dispersion Inversion of Guided P-Waves (WDG)

Wave Equation Dispersion Inversion of Guided P-Waves (WDG) - PowerPoint Presentation

hondasnoopy
hondasnoopy . @hondasnoopy
Follow
345 views
Uploaded On 2020-06-17

Wave Equation Dispersion Inversion of Guided P-Waves (WDG) - PPT Presentation

Jing Li 12 Sherif Hanafy 1 and Gerard Schuster 1 1 King Abdullah University of Science and Technology KAUST Saudi Arabia 2 Department of Geophysics Jilin University China ID: 779871

velocity wdg dispersion tomogram wdg velocity tomogram dispersion data wave guided field inversion waves model 120 gather 1000 offset

Share:

Link:

Embed:

Download Presentation from below link

Download The PPT/PDF document "Wave Equation Dispersion Inversion of Gu..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Wave Equation Dispersion Inversion of Guided P-Waves (WDG)

Jing Li1,2, Sherif Hanafy1 and Gerard Schuster1

1

King

Abdullah

University

of Science and Technology

(

KAUST), Saudi Arabia

2 Department of Geophysics, Jilin University, China

Slide2

MotivationGuided-wave Inversion TheoryResults

Synthetic and Field DataConclusions and Limitation Outline

WDG Tomogram

WDG P-velocity Tomogram

GW

Shot Gather

Slide3

Challenge: 1) Inverted accurate velocity model and 2) Statics correctionSolution: W

ave-equation dispersion inversion for Guided-waves (WDG) Motivation

Stack

with static from high resolution velocity

Stack

with static from inaccurate velocity

(Florian

Duret

, et al, 2016, TLE}

Problem:

Traveltime

velocity tomogram has low

resolution and inaccurate

.

Slide4

P-wave reverberations

Snapshots of

wavefield

(

Mi

, et al, 2018; LVL

: low velocity layer)

If there is great velocity difference, P-wave will be trapped

in the low velocity

layer (

Grant and

West, 1965)

Shot Gather

Guided-waves

Background for Guided Waves

No Guided waves

Slide5

Different kinds of Guided-waves (Boiero, TLE, 2013).

Ocean Bottom Cable (OBC) dataTowed-streamer

Land Seismic data

f

(Hz)

k

(1/m)

f

(Hz)

k

(1/m)

Background for Guided Waves

f

(Hz)

k

(1/m)

Slide6

MotivationsGuided-wave Inversion TheoryResults

Synthetic and Field DataConclusions and LimitationOutline

Predicted

Observed

Frequency (Hz)

Dispersion Curves

v (m/s)

Slide7

1)

Misfit Function Source field

Backpropagated

field

2) Gradient

3) Velocity Update

Guided-wave Inversion Theory

(WDG)

Dispersion Curves

f (Hz)

c (m/s)

Slide8

Wave-equation Traveltime Inversion (WT) vs Wave-equation Dispersion Inversion for

Guided-waves (WDG)Wave-equation traveltime tomography (Luo and Schuster, 1991)Wave-equation dispersion tomography (Li and Schuster

,

2018

)

Properties:

 

Misfit function:

Gradient:

Predicted

Observed

Frequency (Hz)

Wavenumber (m-1)

Frechet

derivative

Slide9

Steepest descentInverted Vp

0 x (m) 120 0 10z (m)

WDG

Workflow

True

Vp

Model

0 x (m) 120

0

10z (m)Initial Vp Model

0 x (m) 120

0

10

z (m)

Obs. Dispersion

f (Hz)

v (m/s)

Pred. Dispersion

f (Hz)

v (m/s)

Radon Transform

Residual Dispersion

f (Hz)

k (m-1)

Backpropagated

Data

0 x (m) 120 0 0.5 t (s)WeightedUpdate

0 x (m) 120 0 10z (m)GradientRTMds=ds-alpha*(de\ds)

Slide10

MotivationGuided-wave Inversion TheoryResults

Synthetic and Field DataConclusions and LimitationOutline

WDG Tomogram

WDG P-velocity Tomogram

Slide11

True P-velocity Model

0

5

10

15

20

0 x (m) 120

z (m)

2500

2000

1500

1000

m/s

WT vs WDG

WT Tomogram

WDG Tomogram

Parameter:

V1=1000 m/s V2=2500 m/s.

f=40 Hz,

λ=25

m

Sr

=30,

Re=60;

Initial P-velocity

Model

λ/2=12.5m

Slide12

Synthetic Model TestParameter:  V1=1000 m/s V2=2500 m/s.

 f=40 Hz,  λ=25 m  Sr=60, Re=120; 0 10

20

True

P-velocity Model

z (m)

WDG P-velocity

Tomogram

0

10

20

0 60 120 180 240

z (m)

Initial P-velocity

Model

λ/2=12.5m

2500

2000

1500

1000

0

10

20

z (m)

m/s

Slide13

Seismic - Parameter

Equipment: Geometrics No of Profiles: 2No. of shots: 120Shot Interval: 5 mNo. of Receivers: 240Receiver Interval: 2.5 mProfile Length: 600

m

Qademah

Field Data Test

(

Sherif

, et al, 2012)

Slide14

Radon Transform

Raw Shot Gather

t (s)

x (m)

Adaptive window mute

Dispersion Curves

V (m/s)

f (Hz)

Qademah

Field Data Test

Window

Guided-waves

t (s)

x (m)

Slide15

Qademah

Data P-velocity Tomogram 0 40

WT Tomogram

z (m)

3.0

2.2

1.6

1.0

km/s

0

40

z (m)

WDG Tomogram

3.0

2.2

1.6

1.0

km/s

0 600

x (m)

Slide16

WDG and WT Common Offset Gather (Offset=40 m)

T (s)

Raw Data COG

0

0.4

WDG Inverted Data COG

0

600

0

0.4

T (s)

Slide17

WDG and WT Common Offset Gather (Offset=40 m)

T (s)

Raw Data COG

0

0.4

WT Inverted Data COG

0

600

0

0.4

T (s)

Slide18

0 0.250 200t (s)

Offset (m)

Raw Data

WT Data

Qademah

Field

CSG Trace

Comparison

Slide19

0 0.25

0 200

t (s)

Offset (m)

Raw Data

WDG Data

Qademah

Field

CSG Trace

Comparison

Slide20

MotivationGuided-wave Inversion TheoryResults

Synthetic and Field DataConclusions and LimitationOutline

Slide21

Conclusions1. Guided-waves dispersion inversion (WDG) can accurately reconstruct the

P-velocity in near surface structure. WT

WT Tomogram

Z (m)

x (m)

Dispersion Curve

V (m/s)

f

(Hz)

Radon

Transform

Traveltime

map

Rec.

Source

Pick

WDG

WDG Tomogram

Z (m)

x (m)

Shot Gather

t (s)

x (m)

Shot Gather

t (s)

x (m)

GW

Slide22

Conclusions2. WDG tomogram has higher (?) resolution than WT.

WT Tomogram

WDG Tomogram

True P-velocity Model

0

20

0

120

z (m)

x

(m)

2500

2000

1500

1000

m/s

Slide23

Limitation

Shot Gather

z (m)

z (m

)

z (m)

V1=1000 m/s

V2=1400 m/s

True

Vp

Model

WDG Tomogram

V1=1000 m/s

V2=2500

m/s

1. WDG not always visible

2. Poor quality dispersion curves

3. Multiscale strategy

Slide24

AcknowledgementsSponsors of the CSIM (csim.kaust.edu.sa) consortium.KAUST Supercomputing Laboratory (KSL) and IT research computing group.

Slide25

Thank you