/
2MARKHAIMANonaringedspaceXandsomeoftheirabeliansubcategoriessuchasthec 2MARKHAIMANonaringedspaceXandsomeoftheirabeliansubcategoriessuchasthec

2MARKHAIMANonaringedspaceXandsomeoftheirabeliansubcategoriessuchasthec - PDF document

isabella2
isabella2 . @isabella2
Follow
342 views
Uploaded On 2021-09-23

2MARKHAIMANonaringedspaceXandsomeoftheirabeliansubcategoriessuchasthec - PPT Presentation

4MARKHAIMANcomplexesandfisaboundaryf2imd01ifandonlyiffisnullhomotopicThusHomKAA15B1524H0Hom15A15B15Proposition18ThefollowingpropertiesofahomomorphismfABinCAareequivalentaf240bffactorsthroughthecanoni ID: 884130

iii proof hom lim proof iii lim hom ind isomorphism corollary3 homd isaquasi qisa0 by1 qisna by3 ned r0f

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "2MARKHAIMANonaringedspaceXandsomeoftheir..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 2MARKHAIMANonaringedspaceX,andsomeofthei
2MARKHAIMANonaringedspaceX,andsomeoftheirabeliansubcategories,suchasthecategoryofquasi-coherentOX-modules.Inthese`concrete'abeliancategories,theobjectsaresetsanditisconvenienttoformulateargumentsintermsoftheirelements(sectionsonopensetsandgermsinstalks,inthecaseofsheaves).Argumentsintermsofelementscanalsobejusti edinabstractabeliancategoriesbyassociatingtoanobjectAtheabeliangroupsHom(T;A)forvariousobjectsT.OnethinksofarrowsT!Aas`T-valuedelements'ofA,justasinthecategoryofschemeswethinkofmorphismsT!XasT-valuedpointsofX.De nition1.2.AcomplexinanabeliancategoryAisasequenceAofobjectsandmaps(calleddi erentials)d�1!A0d0!A1d1!A2d2!suchthatdi+1di=0foralli.Ahomomorphismf:A!Bofcomplexesconsistsofmapsfi:Ai!Bicommutingwiththedi erentials.ThecomplexesinAformanabeliancategoryC(A).TheobjectHi(A)=ker(di)=im(di�1)isthei-thcohomologyofA.I'llsticktocohomologyindexing.Itisalsoconventiona

2 lsometimestouse\homology"indexingde
lsometimestouse\homology"indexingde nedbyAi=A�i,Hi(A)=H�i(A).TheshiftA[n]ofAisthecomplexwithtermsA[n]i=Ai+nanddi erentialsdiA[n]=(�1)ndi+nA.Iff:A!Bisahomomorphismofcomplexes,wede nef[n]:A[n]!B[n]byf[n]i=fi+n.ThismakestheshiftafunctorfromC(A)toitself.Thegeneralprinciplegoverningsignrulesisthatallconstructionsinvolvingcomplexesshouldbe`graded-commutative,'meaningthathomogeneousoperatorss,tofdegreesp,qshouldsatisfyts=(�1)pqst.Inthepresentcase,theshifthasdegreenandthedi erentialshavedegree1,soshiftanddi erentialsshouldcommuteuptoasign(�1)n,whichexplainsthede nitiondiA[n]=(�1)ndi+nA.Ahomomorphismf,bycontrast,hasdegreezero,sonosignappearsinthede nitionf[n]i=fi+n.AnobjectAofAcanbeidenti edwiththecomplexwhichisAindegree0andzeroinallotherdegrees.ThismakesAafullsubcategoryofC(A).TheshiftA[n]isthenthecomplexwhichisAindegree�n.De nition1.3.Ahomomorphismofcom

3 plexesf:A!Bisaquasi-isomorphis
plexesf:A!Bisaquasi-isomorphism(\qis"forshort)iffinducesisomorphismsHi(A)'!Hi(B)foralli.Acomplexisquasi-isomorphictozeroifandonlyifHi(A)=0foralli,thatis,ifAisacyclic.De nition1.4.Themappingconeofahomomorphismf:A!BisthecomplexC(f)withtermsC(f)n=An+1Bn(thesameasA[1]B),anddi erentialsdn(a;b)=(�dn+1A(a);fn+1(a)+dnB(b)). 4MARKHAIMANcomplexes,andfisaboundary(f2im(d�1))ifandonlyiffisnull-homotopic.ThusHomK(A)(A;B)=H0(Hom(A;B)).Proposition1.8.Thefollowingpropertiesofahomomorphismf:A!BinC(A)areequivalent:(a)f0.(b)ffactorsthroughthecanonicalmapi:A!C(1A)givenby1.5(ii)for1A.(c)ffactorsthroughthecanonicalmapp[�1]:C(1B)[�1]!Bgivenby1.5(ii)for1B.(d)Theexactsequence1.5(ii)forfsplits.Proof.Exercise.Corollary1.9.Homotopicmapsfginducethesamemapsoncohomology.Inparticular,thecohomologyfunctorsK(A)!A,A7!Hi(A)arewell-de ned.Proof.Anull-homotopicmapf:

4 A!Binducesthezeromaponcohomologybecausei
A!BinducesthezeromaponcohomologybecauseitfactorsthroughC(1A),whichisacyclicby1.5(vi).Corollary1.10.Everyhomotopyequivalence(i.e.,everyhomomorphisminvertibleinK(A))isaquasi-isomorphism.Remark1.11.Proposition1.5(vi)canbestrengthened(exercise)tosaythatiffisbijective,thenC(f)ishomotopy-equivalenttozero.However,itisnottruethateveryacycliccomplexishomotopy-equivalenttozero,nordo1.5(iv,v)holdforhomotopy-equivalence.2.TrianglesThehomotopycategoryK(A)andthederivedcategoryD(A),tobeintroducedinx3,areadditivebutnotabeliancategories.Instead,theyshareanextrastructuredescribedbyadistinguishedcollectionofexacttriangles.Althoughwearemainlyinterestedinthederivedcategory,we rstconsidertrianglesinthehomotopycategory.Itwillbeeasiertodeducethemainpropertiesofthederivedcategoryafterthisintermediatestep.Lemma2.1.Givenahomomorphismofcomplexesf:A!B,eachcompositeoftwosuc-cessivemapsinthesequence!Af!Bi!C(f)p!A[1]f[1]�!B[1]!inducedby1.

5 5(ii)iszeroinK(A).Proof.ThecompositeB!C(
5(ii)iszeroinK(A).Proof.ThecompositeB!C(f)!A[1]isalreadyzeroinC(A).ForAf!Bi!C(f),thediagramA1A���!A1A??yf??yAf���!B 6MARKHAIMAN(iii)GivenexacttrianglesAf!B!C!A[1]andA0g!B0!C0!A0[1],everycommutativediagraminK(A)Af���!Bh??yh0??yA0g���!B0extendstoamorphismoftrianglesAf���!B���!C���!A[1]??y??y??y??yA0g���!B0���!C0���!A0[1]:(iv)Adirectsumofexacttrianglesisexact.Proof.Axioms(o),(iv)andthe rstpartof(i)areobvious.Forthesecondpartof(i),wehaveC(1A)=0inK(A)byRemark1.11.For(ii),usingshiftinvariance(seeremarkbelow),itsucestoverifythe rstrotation.Wecanassumethegiventriangleisstandard,Af!Bi!C(f)p!A[1].ThenwemustshowthatA[1]=C(i)inK(A),viaanisomorphismsuchthatthecompositeA[1]!C(i)p(i)!B[1]is�f[1]andC(f)i(i)!C(i)!A[1]isp.Now,C(i)isidenticaltothemappingconeofthemaph:A!C(1B)obtainedbycomposingi(1B):B!C(1B)withf.Thisgivesacanonicalmap=p(h):C(

6 i)!A[1],by1.5(ii).ButC(i)isalsoidentical
i)!A[1],by1.5(ii).ButC(i)isalsoidenticaltothemappingconeof(f;1B):AB!B,whosekernelisisomorphictoA.Thisgivesamap=k[1]:A[1]!C(i),by1.5(iii).Onechecksthat=1A[1],p(i)=�f[1],i(i)=p,and1C(i).For(iii),wecanassumebothtrianglesarestandard.Ifthegivendiagramcommutesuptoahomotopys:ghh0f,youcancheckthat(ai+1;bi)7!(h(ai+1);h0(bi)+s(ai+1))isahomomorphismC(f)!C(g)thatyieldsthedesiredmorphismoftrianglesinK(A).Remarks2.4.(a)Warning:Themorphismoftrianglesin(iii)isnotcanonical,butdependsonthechoiceofanisomorphismbetweeneachofthegiventrianglesandastandardtriangle.Thuswedonothaveafunctorial\mapping-cone"constructionassigningtoeacharrowf:A!BinK(A)anexacttrianglewithfasitsbase.(b)TrianglesAf!Bg!Ch!A[1]andA�f!B�g!Ch!A[1]areisomorphicvia�1B,andlikewiseifwechangeanytwosigns.IfAf!Bg!Ch!A[1]isexact,atrianglesuchasA�f!B�g!C�h!A[1]withoneorthreesignschangedisanti-exact.NotethatC(f

7 )[1]=C(�f[1]),sotheshiftA[1]f[1]�!
)[1]=C(�f[1]),sotheshiftA[1]f[1]�!B[1]g[1]�!C[1]h[1]�!A[1]isanti-exact,whileA[1]�f[1]�!B[1]�g[1]�!C[1]�h[1]�!A[1],gottenbyrotatingouroriginaltrianglethreetimes,isexact. 8MARKHAIMANInanyevent,thegenuinemathematicalissuesinvolveddonotconcernset-theoretictech-nicalities,butratherconcretequestionsofhowtodescribeanarrowinD(A),andhowtorecognizewhentwoarrowsareequal.Bythede nitionofquasi-isomorphism,thecohomologyfunctorsHi:C(A)!AfactorthroughuniquefunctorsHi:D(A)!A.IfAisanobjectofA,letA[0]denotethecomplexwhichisAindegreezero,and0inotherdegrees.ThenH0(A[0])=A,soA7!A[0]isafullyfaithfulembeddingofAintoD(A),withleftinversegivenbythefunctorH0.UsuallywejustidentifyAwithA[0]andregardAasafullsubcategoryofD(A).Proposition3.3.ThecanonicalfunctorC(A)!D(A)factors(uniquely)throughK(A).Proof.Itsucestoprovethatf0impliesf=0inD(A).Thisisimmediatefrom1.8(b),sinceC(1A)=0inD(A),by1.5(vi).Corollary3.4.Thederivedcateg

8 oryD(A)canalsobeidenti edwithK(A)[Q&
oryD(A)canalsobeidenti edwithK(A)[Q�1].Remarks3.5.(a)Traditionally,D(A)isoftende nedasK(A)[Q�1].Thistendstooverem-phasizetheroleofthehomotopycategory,whichisnotessentialtothede nition,althoughitisausefulauxiliarydeviceforunderstandingmanypropertiesofD(A).(b)EqualityinD(A)ofhomomorphismsf;g2HomC(A)(A;B)doesnotimplythatfandgarehomotopic.Acriterionforequalityofarrowsinthederivedcategoryisgivenby3.22(ii),below.De nition3.6.AnexacttriangleinD(A)isatriangleisomorphicinD(A)toastandardtriangle,asin2.2.Equivalently(by1.10),atriangleinD(A)isexacti itisisomorphicinD(A)toanexacttriangleofK(A).AnadvantageofthederivedcategoryisthateveryexactsequenceinC(A)givesrisetoanexacttriangleinD(A),whichisnotthecaseinK(A).Proposition3.7.Let0!Af!Bg!C!0beanexactsequenceinC(A).ThenthediagramC(f)'!qisq(f)Cp(f)??yi(g)??yA[1]'!qisk(g)[1]C(g)anti-commutesinK(A),andhenceinD(A).Proof.Theformulafork(g)[1]p(f)is(ai+1;bi)7!(f(ai+1);0),andfori(g)

9 4;q(f)itis(ai+1;bi)7!(0;g(bi)).Thensi(ai
4;q(f)itis(ai+1;bi)7!(0;g(bi)).Thensi(ai+1;bi)=(bi;0)isahomotopybetweenk(g)[1]p(f)and�i(g)q(f).De nition3.8.Themaph:C!A[1]inD(A),givenintermsofthediagramin3.7byh=p(f)q(f)�1=�k(g)[1]�1i(g),istheconnectinghomomorphismoftheexactsequence0!Af!Bg!C!0. 10MARKHAIMANProof.Weprovethesecondsequence;asimilarargumentappliestothe rst.Supposef:B!Xsatis esfu0.From2.3(i,iii)wegetamorphismoftrianglesAu���!Bv���!Cw���!A[1]??yf??yg??y??y0���!X1X���!X���!0;whichshowsfgvforsomeg:C!X.Inotherwords,HomK(A)(A;X) HomK(A)(B;X) HomK(A)(C;X)isexact,andtherestfollowsbytherotationaxiom,2.3(ii).Corollary3.15.Corollary3.12alsoholdsinK(A),andindeedinany\weakly"triangulatedcategory,satisfyingaxioms2.3(o-iv).Proof.Intheproofof3.12wecanuseeitherlongexactsequencein3.14inplaceoftheonein3.11,togetherwiththefactthatthefunctorHom(�;C)(resp.Hom(C;�))determinesCupto

10 canonicalisomorphism.Remark3.16.Thep
canonicalisomorphism.Remark3.16.Theproofsshowthat3.12and3.14holdinanyweaklytriangulatedcategory.OurnextgoalistodescribethearrowsinD(A).De nition3.17.AclassofQofarrowsinacategoryCisa(left)Oresystemifitsatis esthefollowingconditions:(a)Qismultiplicative,i.e.QQQand1X2QforeveryobjectXofC.(b)EverypairofarrowsA0q Af!Bwithq2QcanbecompletedtoacommutativediagramAf���!Bq??yr??yA0g���!B0withr2Q.(c)Iffq=0withq2Q,thereexistsr2Qsuchthatrf=0.ArightOresystemisde neddually.Remark3.18.Acategoryis lteredifeverypairf:A!B,f0:A!B0ofmorphismsfromthesameobjectAcanbecompletedtoacommutativesquare.Aninductivesystemofsets(Xi)i2Iindexedbya lteredcategoryIisalsosaidtobe ltered.A lteredinductivesystemhasthepropertythatelementsx2Xi,x02Xi0representthesameelementofthedirectlimitlim�!(Xi)ifandonlyifthereexistarrows :Xi!Xj, 0:Xi0!XjinIsuchthat (x)= 0(x0).Toseethis,onechecksthatina lter

11 edinductivesystem,theprecedingconditiond
edinductivesystem,theprecedingconditionde nesanequivalencerelationxx0,andthenlim�!(Xi)=(Fi2IXi)=. 12MARKHAIMANCorollary3.22.(i)EveryarrowinD(A)factorsasq�1fandasgr�1,wheref,g,q,rarehomomorphismsinC(A),withq,rquasi-isomorphisms.(ii)Ahomomorphismf:A!BinC(A)iszeroinD(A)ifandonlyiftheequivalentconditionshold:(a)thereexistsaquasi-isomorphismq:B!B0suchthatqf0;(b)thereexistsaquasi-isomorphismr:A0!Asuchthatfr0.Corollary3.23.TheexacttrianglesinD(A)satisfyaxioms2.3(o{iv).Proof.Axiom(o)holdsbyde nition,(iv)isclear,andwehavealreadyseen(ii).Axioms(i)and(iii)followeasilyfromthecorrespondingaxiomsinK(A),using3.22(i).Corollary3.24.Proposition3.14alsoholdsinD(A).Proof.See3.16.Corollary3.25.Theexacttrianglebasedonanarrowf:A!BinD(A)isuniqueupto(non-canonical)isomorphism.Proof.Followsfromaxiom(iii)and3.12.Remarks3.26.(a)Theoctahedralaxiomfollowssimilarly,soD(A)isatriangulatedcat-egoryinthesenseofVerdier.(b)Therea

12 soningemployedaboveappliesmoregenerally.
soningemployedaboveappliesmoregenerally.LetKbeatriangulatedcategoryandNKafulltriangulatedsubcategory,closedunderisomorphismsinK.LetQconsistofthearrowsinKsuchthatthethirdvertexofanyexacttrianglebasedonq2QisanobjectofN.ThenQisaleftandrightOresysteminK,andD=K[Q�1]isatriangulatedcategory,alsodenotedD=K=N.Inourcase,K=K(A),withNconsistingoftheacycliccomplexes.By3.13,thisisequivalenttoQconsistingofthequasi-isomorphisms.4.DerivedFunctorsWewilluseDeligne'smethod[5]ofde ningandconstructingderivedfunctors.De nition4.1.GivenacomplexA,letqisnAbethecategoryofquasi-isomorphismsA'!qisA0inK(A),withmorphismsthecommutativetrianglesasin3.18.By3.18,qisnAisa lteredcategory.GivenafunctorF:K(A)!CandanobjectYofC,wehavea lteredinductivelimitofsets,functorialinY,lim�!A'!qisA0�HomC(Y;F(A0)):Proposition4.2.LetF:K(A)!Cbeanyfunctor.Toeacharrowf:A!BinK(A)thereiscanonicallyassociatedanaturaltransformation(1)rF(f):lim�!A'!qisA0�HomC(&#

13 0;;F(A0))!lim�!B'!qisB0�HomC(&
0;;F(A0))!lim�!B'!qisB0�HomC(�;F(B0))betweenfunctorsfromCoptoSets .ThisgivesafunctorrF:K(A)!Fun(Cop;Sets ). 14MARKHAIMANfunctorF:A!BinducesanexactfunctorF:K(A)!K(B)(alsodenotedFbyabuseofnotation).Inpractice,weonlydealwithfunctorsofthislastform.ComposingthecanonicalfunctorjB:K(B)!D(B)withF,andapplying4.2{4.5(withC=D(B)),wede neafunctorRF=rjBF:D(A)!Ind(D(B)).De nition4.6.TherightderivedfunctorofFisde nedatAinD(A),withvalueXinD(B),ifRF(A)=XbelongstoD(B)Ind(D(B)).Itisanexerciseforthereadertoworkoutthedualde nitionofleftderivedfunctorLF.4.7.Tobemoreprecise,thede nitionmeansthatRF(A)andX2D(B)representisomor-phicfunctors(3)HomD(B)(�;X)=lim�!A'!qisA0�HomD(B)(�;F(A0))fromD(B)optoSets .ThenXisuniqueuptocanonicalisomorphism,whichjusti eswritingRF(A)=X.Letusmakethisexplicit.ForeachAq!A0inqisnA,wegetanarrowA0:F(A0)!XinD(B),correspondingvia(3)tothetheelementrepresentedby1F(A0)ontherig

14 ht-handside.ThesystemofarrowsA0isco
ht-handside.ThesystemofarrowsA0iscompatiblewithF(qisnA),i.e.,foreachA0r!A00inqisnA,wehaveA0=A00F(r).Bynaturality,thearrowsA0inducethemaplimA'!qisA0�HomD(B)(�;F(A0))!HomD(B)(�;X).Intheoppositedirection,totheelement1Xontheleft-handsideof(3)therecorre-spondsanequivalenceclassofarrowsA0:X!F(A0),forsomeA02qisnA.AnytworepresentativesA0factorintoathird,andbynaturality,themapHomD(B)(�;X)!limA'!qisA0�HomD(B)(�;F(A0))isinducedbyanyrepresentativeA0.Thetwomapsbeinginversemeansthat(i)anyrepresentativeA0isasectionofA0,(ii)themapsA0:F(A0)!XmakeXtheinductivelimitX=lim�!F(qisnA)inD(B),and(iii)foranyrepresentativeA0,thearrowX!Ycorrespondingtoanysystemofmaps A0:F(A0)!Y,A02qisnAbytheuniversalpropertyoflim�!F(qisnA)isgivenby A0A0.Inthiscase,thesystemF(qisnA)issaidtobeessentiallyconstant.Thepracticalmeaningof4.6willbecomeclearerinx5,wherewewillgivecriteriathatone

15 usesinpracticetoshowthatRF(A)isde ne
usesinpracticetoshowthatRF(A)isde ned.Thecriteriaalsohavethee ectofmakingRF(A)concretelycomputable,ofteninmorethanoneway.But rstweneedtoremainalittlelongerintheabstractcontextinordertoestablishthebasicpropertiesofRF.De nition4.8.ThecohomologyobjectsHi(RF)aredenotedRiFandcalledtheclassicalrightderivedfunctorsofF.Corollary4.9.LetDF(A)bethefullsubcategoryofD(A)whoseobjectsarethoseAsuchthatRF(A)isde ned.ThenRFisafunctorfromDF(A)toD(B). 16MARKHAIMANC00!A0[1],whosecomponentarrowsareallquasi-isomorphisms,by3.12.ThisshowsthattheverticesB0in(4)areco nalinqisnB.Thecorrespondingstatementholdsfortheotherverticesby2.3(ii).ProofofTheorem4.14.LetRF(A)=X,RF(B)=Y.CompletethearrowX!YtoanexacttriangleX!Y!Z!X[1]inD(B).Asin4.7,wecan ndsectionsA0:X!F(A0),B0:Y!F(B0).ChangingA0,B0ifneeded,wecan ttheseintoacommutativediagraminD(B)X���!YA0??yB0??yF(A0)F(u)���!F(B0);andwecanfurtherassumethatu:A0

16 !B0ispartofanexacttriangleinthebottomrow
!B0ispartofanexacttriangleinthebottomrowof(4).SinceFisexact,thisextendstoamorphismofexacttriangles(5)X���!Y���!Z���!X[1]??y??y??y??yF(A0)���!F(B0)���!F(C0)���!F(A0)[1]:Now,4.15and3.24implythatthesequence(6)!lim�!A0HomD(B)(T;F(A0))!lim�!B0HomD(B)(T;F(B0))!lim�!C0HomD(B)(T;F(C0))!lim�!A0HomD(B)(T;F(A0)[1])!isexactforeveryobjectTofD(B).Byde nition,thisisjustthesequence!RF(A)!RF(B)!RF(C)!RF(A)[1]!jjjjjjHom(�;X)Hom(�;Y)Hom(�X[1])inInd(D(B)),evaluatedatT.Themorphismin(5)providesacommutativediagram!Hom(�;X)!Hom(�;Y)!Hom(�;Z)!Hom(�;X[1])!jjjj#jj!RF(A)!RF(B)!RF(C)!RF(A)[1]!:EvaluatedatanyTinD(B),wehavejustseenthatthebottomrowisexact,andthetoprowisexactby3.24.Hencetheverticalarrowisanisomorphism.Corollary4.16.ForanytriangleA!B!C!A[1]inD(A),andinparticular,foranyex

17 actsequence0!A!B!C!0inC(A),ifRF(A),RF(B)
actsequence0!A!B!C!0inC(A),ifRF(A),RF(B),RF(C)arede ned(e.g.,ifanytwoofthemare),thereisalongexactsequenceofclassicalderivedfunctors!R0F(A)!R0F(B)!R0F(C)!R1F(A)!R1F(B)!: 18MARKHAIMANdualtruncationfunctorwhichkillsthecohomologyHn(A).InD(A),thisbecomesatriangle(A)!A!n(A)!(A)[1]=(n�1)(A[1]):IfAisalreadyboundedbelowatn0,thenA!n0(A)isaquasi-isomorphism.ItfollowsimmediatelythatD+(A)isequivalenttoitsfullsubcategoryofstrictlybounded-belowobjectsA,satisfyingAi=0forallilessthansomen0.Moreover,ifA!X' qisBisamorphismbetweenobjectsA;B2D+(A),thennecessarilyX2D+(A).Truncatingallthreeobjects,wecanreplaceXbyastrictlybounded-belowcomplextoo.HenceD+(A)canbeidenti edwiththelocalizationC+(A)[Q�1]ofthecategoryC+(A)ofstrictlybounded-belowcomplexesbythequasi-isomorphismsinC+(A).Proposition5.6.AssumeF:A!Bisleftexact.LetAbeaclassofobjectsinAsuchthat(i)ForeveryAinAthereisaninjectionA!Iwi

18 thI2A;(ii)Aisclosedunder nitedirects
thI2A;(ii)Aisclosedunder nitedirectsums,andif0!I!J!N!0isanexactsequencewithI;J2A,thenN2A;(iii)If0!I!A!B!0isanexactsequencewithI2A,then0!F(I)!F(A)!F(B)!0isexact.TheneveryAinD+(A)hasaresolutionA!I,whereIisastrictlybounded-belowcomplexofobjectsinA,andanysuchIcomputesRF,i.e.,theresolutioninducesF(A)!RF(A)=F(I).Proof.WecanassumethatAisstrictlybounded-below,sayAi=0fori0.Supposebyinductiononkthatwehaveconstructedahomomorphismr:A!I(k)asfollows:0���!A0���!A1���!���!Ak���!Ak+1���!??y??y??y??y??y0���!I0���!I1���!���!Ik���!0���!;wherethebottomrowisacomplexofobjectsinA,andrinducesanisomorphismHi(A)!Hi(I)forikandaninjectionHk(A)!coker(dk�1I)(initially,wehavethiswithk=�1).By3.11,themappingconeC(r)hasHi(C(r))=0forik.ThenC(r)!J=k(C(r))isaquasi-isomorphism,soA!I(k)!J

19 !A[1]isanexacttriangle.NowJisstrictlybou
!A[1]isanexacttriangle.NowJisstrictlyboundedbelowatk,hencethemappingconeB=C(I(k)!J)[�1]lookslike0!I0!I1!!Ik!Jk!Jk+1!;andthereisaquasi-isomorphismA!B,i.e.,BisaresolutionofA.Chooseaninjectioni:Jk,!Ik+1withIk+12A.ConsiderthehomomorphismB!I(k+1)givenby(7)0���!I0���!I1���!���!Ikdk���!Jk���!Jk+1���!1??y1??y1??y1??yi??y??y0���!I0���!I1���!���!Ikd0k=idk����!Ik+1���!0���!; 20MARKHAIMANThesheafbFisclearly asque,so asquesheavessatify(i)(onecanalsoverify(i)byprovingthatinjectivesheavesare asque).Then5.6impliesthat asquesheavesareacyclicforf,andthatforanybounded-belowcomplexofsheavesAonX,wehaveRf(A)=f(J),whereJisastrictlybounded-below asqueresolution.Proposition5.10.Givenmorphismsofringedspacesf:X!Y,g:Y!Z,thereisanaturalisomorphismoffunctors(

20 8)RgRf=R(gf)fromD+
8)RgRf=R(gf)fromD+(A)toD+(C),whereA(resp.C)isthecateogoryofsheavesofOXmodules(resp.OZmodules).Proof.Itisimmediatefromthede nitionthatanydirectimagefFofa asquesheafFis asque(apropertynotsharedbyinjectivesheaves).GivenacomplexAofsheavesonX,theinstanceof(8)atAfollowsbytakinga asqueresolutionA!Jandobservingthat,sincefJisthena asqueresolutionofRfA,thecomplex(gf)J=gfJrepresentsbothR(gf)AandRgRfA.IfgisthetautologicalmorphismfromYtothespaceZwithonepointandOZtheconstantsheafZ,thenthefunctorsgand�Yareessentiallythesame,andsimilarlyfor(gf)and�X.Thefollowingcorollaryisthereforeaspecialcaseof5.10.Corollary5.11.Givenamorphismofringedspacesf:X!Y,thereisanaturalisomor-phismoffunctors(9)R�YRf=R�XfromthederivedcategoryD+(A),whereAisthecategoryofsheavesofOXmodules,tothederivedcategoryofsheavesofabeliangroups(or,moregenerally,ofRmodules,iffisamorphismofringedspac

21 esovertheone-pointringedspaceZwithOZ(Z)=
esovertheone-pointringedspaceZwithOZ(Z)=R).Theanalogof(8)forclassicalderivedfunctorsisaspectralsequencerelatingthefunctorsRpfRqgandRn(gf).TheidentityRgRf=R(gf)isnotonlysimplerthantheold-fashionedspectralsequence,itisastrongerresult.Spaltenstein[8]gaveade nitionofK- asquecomplexofsheaves.Usingthis,heprovedthat5.10and5.11alsoholdforunboundedcomplexes.Proposition5.12.Letf:X!Ybeamorphismofringedspaces.LetBbeabaseofthetopologyonYintheweaksense,thatis,BisasetofopensubsetsVYsuchthateveryopenUYisaunionofmembersofB,butwedonotrequirethatBbeclosedunder niteintersections.ForasheafMofOXmodulestobeacyclicforthedirectimagefunctorf,itsucesthatMbeacylicforR�f�1(V)forallV2B.Proof.LetAbetheclassofsheavesAonXsatisfyingtheacyclicityconditionwerequireofM.Explicitly,AbelongstoAifforallV2B,thecanonicalmap�(f�1(V);A)!R�(f�1(V);A)isaquasi-isomorphism,orequivalently,Ri�(f�1(V);A)

Related Contents


Next Show more