/
Do remember the  Helio  Decadal Do remember the  Helio  Decadal

Do remember the Helio Decadal - PowerPoint Presentation

isabella2
isabella2 . @isabella2
Follow
342 views
Uploaded On 2022-07-15

Do remember the Helio Decadal - PPT Presentation

18 October 2019 2nd Interstellar Probe Exploration Workshop NYC 1 The interstellar probe would make comprehensive stateoftheart in situ measurements of plasma and energeticparticle composition magnetic fields plasma waves ionic charge states energetic neutrals and dust that are req ID: 929139

solar space science interstellar space solar interstellar science mission instrument probe composition cassini spectrometer mass particle energy rev sci

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Do remember the Helio Decadal" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Do remember the Helio Decadal

18 October 2019

2nd Interstellar Probe Exploration Workshop, NYC

1

“The interstellar probe would make comprehensive, state-of-the-art, in situ measurements of plasma and energetic-particle composition, magnetic fields, plasma waves, ionic charge states, energetic neutrals, and dust that are required for understanding the nature of the outer heliosphere and exploring our local galactic environment.”

“Advanced scientific instrumentation for an interstellar probe does not require new technology. The main technical hurdle is propulsion. Also required are electric power from a low-specific-mass radioactive power source and reliable, sensitive, deep-space Ka-band communications.”

No longer true

Solar and Space Physics Decadal Survey, 2013-2022

Slide2

The Pragmatic Interstellar Probe

Quick Facts/Bounding Box

(See Jim’s talk later)APL Engineering Trade Study Stage IIUp to

1000 AUWithin probabilistic lifetime in terms of reliability (~50 years)Use of available/near-term technologiesTechnologies “Launch Ready” by 2030Up to 8 AU/year alreadyJupiter Gravity Assist powered/passive

Solar Oberth Maneuver…maybeJupiter orbital position dictates fly-out directionSeeking community engagement and input for Trade Study, Decadal Surveys, Voyage 2050 and more

18 October 2019EPSC-DPS, Geneva, Switzerland2

Why?

Further and faster

Our Habitable Astrosphere

The Unknown LISM

Planetary System Evolution

Galactic Formation

Heliophysics

mission with

opportunities for Planetary Sciences and Astrophysics (and Earth Science?)

Astrophysics

Planetary

Heliophysics

Slide3

17 October 2019

2nd Interstellar Probe Exploration Workshop, NYC

3

Our Habitable Astrosphere

The Interstellar Medium

The chemical evolution of the galaxy: Elemental, isotopical

composition of gas and dustOur place among the galactic Interstellar Clouds: Ionization state, temperature, density of gas

The Global Nature

The force balance

The global shape and the first “picture” from outside

The particle acceleration at astrophysical shocks

Propagation of solar disturbances in to the LISM

A solar-like magnetic field in the LISM

A fuzzy heliopause

The Hydrogen-Wall

Evolution of Planetary Systems

Galaxy Formation

KBOs and Dwarf Planets

Dust Disk

Diffuse Galactic LightExtragalactic Background Light

Slide4

The Science Traceability Matrix

Please provide input to master version!

18 October 2019

2nd Interstellar Probe Exploration Workshop, NYC

4

Goals

Questions

Specific Questions

Measurements

The Heliosphere as a Habitable Astrosphere

What is the Global Nature of the Heliosphere?

Structure of Heliopause, Bowshock, H-Wall

Probe boundaries in-situ and image structure in ENAs and UV, radio

Nature of heliosheath, Energy partitioning

Particle distributions

Acceleration at astrophysical shocks

How do the Sun and the Galaxy Affect the Dynamics of the Heliosphere?

Shock and HP response

In-situ, ENA, UV, radio

Extent of influence in to ISM

ISM properties

Effects on inner heliosphere

In-situ

What is the Nature of the Interstellar Medium?

ISM vs solar system composition

Isotopic composition

Recent nucleosynthesis in the ISM

Interstellar Dust

Dust composition

Origin and Evolution of Planetary Systems

How did Matter in the Solar System Originate and Evolve?

Circum-Solar Debris Disk

In-situ dust, IR 10-100 µm

Current state of evolution, collisional processes of KBO and dwarf planets

VISNIR imaging

Dynamical and compositional state of the Kuiper Belt

Sub-surface oceans and atmospheres of KBOs and dwarf planets

VISNIR, UV, magnetic field, plasma/particles

The Universe Beyond the Circum-Solar Dust Cloud

How did Galaxies Form and Evolve in the Universe?

Diffuse Galactic and Extragalactic Background Light

Diffuse DGL and EBL IR spectral measurements 0.5-15 µm + 100 µm (or greater?)

Slide5

16 October 2019

5

Instrument Resources and Optimization

Pontus C. Brandt and Kathy

Mandt

The Johns Hopkins University Applied Physics Laboratory

Artwork by M. M. Yakovlev, BCFD, APL

2nd Interstellar Probe Exploration Workshop, NYC

Slide6

Understanding the Allocation

A successful mission defines the box early and sticks to it!”The Box” is mass, power, data volume, FOV,

etc, but also TRL maturation path, which has to be very strictParker Solar Probe, New Horizons and others followed this apprachThis is the job after an Science Definition Team

Or, get a small backpack, leave the rest at home. You’ll be fine…Today, we are identifying possible instruments that could address the science (“The Menu”) – There is not Allocation, yet…

17 October 2019

2nd Interstellar Probe Exploration Workshop, NYC6

Slide7

Understanding the Allocation

Mass, Power and Data Volume Propagate to S/C Level

17 October 2019

2nd Interstellar Probe Exploration Workshop, NYC

7

7.4% - 28.4%

Cassini 12.7%

ACE 28.4%

Galileo 8.6%

Voyager 14.5%

New Horizons 7.4%

Slide8

The Instrument List and Ranges

17 October 2019

2nd Interstellar Probe Exploration Workshop, NYC

8

Instrument

Mass (kg)

Power (W)

Data rate (bps)

TRL

Reference/Heritage

Vector Helium Magnetometer

1.1-3

3.4-10

2-6

5 (TBC)-9

Szabo Personal Comm., Cassini/MAG

Fluxgate Magnetometer

1-5.6

2-2.21200

9PSP, MESSENGER, Voyager

Plasma Wave Instrument1.4-15.5

1.3-14.2

32-806400

9

Galileo/PWS, PSP, VAP, Voyager

Solar Wind and PUI

6.1-8

 10-10.8

 1500-2500

6-9

PSP, IMAP

Suprathermals and Energetic Ions

8

5

500

9

Solar Orbiter

Cosmic-ray spectrometer

3.6-14.6

6-14.7

200

9

Solar Orbiter, Ulysses

Dust Detector

1.9-17.2

5-11

579

9

NH, LADEE, Cassini,

Europa Clipper

Neutral Ion Mass Spectrometer

3.5-10.3

5-23.3

1-1495

7-9

Luna-

Resurs

, JUICE, Cassini

Low-Energy ENA

11.5

3.5

100

9

IBEX-Lo

Medium-Energy ENA

7.37

0.65

99

9

IBEX-Hi

High-Energy ENA

7.2

6.5

500

>7

JUICE

Ly-alpha Spectrograph

4.4-13.3

4.4-11

200

9

NH, SOHO/SWAN

UV (50-180 nm)

4.5

4.4

9

NH/Alice

VisNIR

Imager

8.6

15

16

9

NH/LORRI

VISNIR/FIR Mapper

4

3

10

5-9

Voyager, Galileo, Cassini, Rosetta, NH

Range

74-139 kg

75-135 W

Slide9

The “Master” Instrument List

Please provide input on existing and in-development instrumentation!

18 October 2019

2nd Interstellar Probe Exploration Workshop, NYC

9

Mission

Instrument Type

Instrument

Mass (kg)

Power (W)

Bitrate (bps)

Capabilities

Spacecraft Requirements

TRL and Heritage

References/NotesACE

Charged Particle

Solar Wind Electron Proton Alpha Monitor (SWEPAM)6.8Nominal: 5.8, Peak: 6.1

1000  9

Russell, C.T., et al. The Advanced Composition Explorer Mission. Springer Science+Business Media, 1998ACE

Charged ParticleSolar Wind Ion Composition spectrometer (SWICS)

6Nominal: 5, Peak: 6.1504 

 

9

Russell, C.T., et al. The Advanced Composition Explorer Mission. Springer Science+Business Media, 1999

ACE

Charged Particle

Solar Energetic Particle Ionic Charge Analyzer (SEPICA)

38.3

Nominal: 16.5, Peak: 17.5

608

 

 

9

Russell, C.T., et al. The Advanced Composition Explorer Mission. Springer Science+Business Media, 2000

IMAP

Charged Particle

CODICE

6.1

10.8

2500

 

 

6

 

IMAP

Charged Particle

SPICES

12.55

30.5

10500

 

 

 

 

JUICE

Charged Particle

JENI

7.4 (sensor), 7.0 (shielding)

7.6

 

~1 - 300 keV/nuc (ENA)

 

 

Brandt et al., in press, 2019

JUICE

Charged Particle

JoEE

1.3 (sensor), 1.9 (shielding)

1.2

 

 

 

 

 

New Horizons

Charged Particle

PEPSSI

1.5

2.5

     New HorizonsCharged ParticleSWAP3.32.5     PSPCharged ParticleSolar Wind and PUI (combined with entry below)81015000.5 - 80 keV/q∆E/E~0.3Interstellar PUI: 3He+, 4He+, N+, O+, 20Ne+, 22Ne+, Ar+Inner Source PUI: C+, O+, Mg+, Si+Mass and Charge State of H-Fe ions1.4x10-3 cm2 sr eV/eV6˚x360˚Spinning perferredPerpendicular to spacecraft spin axisOn-board processing to obtain PADsTRL=9Heritage: PSP/SWEAP, ACE/SWICSKasper, J.C., Abiad, R., Austin, G. et al. Space Sci Rev (2016) 204: 131. https://doi.org/10.1007/s11214-015-0206-3Gloeckler G. et al. (1998) Investigation of the Composition of Solar and Interstellar Matter Using Solar Wind and Pickup Ion Measurements with SWICS and SWIMS on the Ace Spacecraft. In: Russell C.T., Mewaldt R.A., Von Rosenvinge T.T. (eds) The Advanced Composition Explorer Mission. Springer, DordrechtPSPCharged ParticleSuprathermals and Energetic Ions855000.03 - 5 MeV/nuc1 - >60 amu12x10˚x7˚ over 360˚0.2 cm2 srSpinning perferredPerpendicular to spacecraft spin axisOn-board processing to obtain PADsTRL>8Heritage: PSP, ACE, Juno, MMS, VAP, Solar OrbiterClark, G., F. Allegrini, D. J. McComas, and P. Louarn (2016), Modeling the response of a top hat electrostatic analyzer in an external magnetic field: Experimental validation with the Juno JADE-E sensor, J. Geophys. Res. Space Physics, 121, 5121–5136, doi:10.1002/2016JA022583. McComas, D.J., Alexander, N., Angold, N. et al. Space Sci Rev (2016) 204: 187. https://doi.org/10.1007/s11214-014-0059-1Rodríguez-Pacheo, J., et al., The Energetic Particle Detector (EPD) Energetic particle instrument suite for the Solar Orbiter mission, Astronomy & Astrophysics, accepted, 2019RosettaCharged ParticleRosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)34.84920000  7Balsiger, H., et al. "Rosina - Rosetta Orbiter Spectrometer for Ion and Neutral Analysis." Space Science Reviews, vol. 128, no. 1-4, pp. 745-801ACECosmic RayCosmic-Ray Isotope Spectrometer (CRIS)31.6Nominal: 12.2, High: 16.6464  9Russell, C.T., et al. The Advanced Composition Explorer Mission. Springer Science+Business Media, 2002PSPCosmic RayCosmic-ray spectrometer: anomalous and galactic cosmic rays3.66200H~50 keV - 200 MeV (stopped in detector)H 0.2-2 GeV (penetrating)He ~200 keV - 1 GeVC, N, O, Ne 1 - 200 MeV/nuce- ~50 keV - 30 MeV TRL>8Heritage: ACE, PSP, Solar OrbiterStone E.C. et al. (1998) The Solar Isotope Spectrometer for the Advanced Composition Explorer. In: Russell C.T., Mewaldt R.A., Von Rosenvinge T.T. (eds) The Advanced Composition Explorer Mission. Springer, DordrechtMcComas, D.J., Alexander, N., Angold, N. et al. Space Sci Rev (2016) 204: 187. https://doi.org/10.1007/s11214-014-0059-1Rodríguez-Pacheo, J., et al., The Energetic Particle Detector (EPD) Energetic particle instrument suite for the Solar Orbiter mission, Astronomy & Astrophysics, accepted, 2019UlyssesCosmic RayCosmic Rays and Solar Particles (COSPIN)HET+HFT+AT+LET+KETSimpson+199214.614.7160  9Bergman, Jennifer. "COSPIN Instrument Page." Windows to the Universe, 7 Mar. 2001, www.windows2universe.org/space_missions/cospininst.htmlCassiniDust DetectorCosmic Dust Analyzer (CDA) 17.15112524M/∆M>50 9Srama, R., et al. "The Cassini Cosmic Dust Analyzer." Space Science Reviews, vol. 114, no. 1-4, 2004, pp. 465-518LADEEDust DetectorDust Detector3.65579M/∆M>200<1˚ 1-70 km/s>0.3 µmDeployable cover (TBD)Ram pointingTRL=9Cassini/CDA, LADEE/LDEXHorányi, M., Sternovsky, Z., Lankton, M. et al. Space Sci Rev (2014) 185: 93. https://doi.org/10.1007/s11214-014-0118-7Europa ClipperDust DetectorSUDA6 (TBC)13 (TBC)579    New HorizonsDust DetectorSDC1.95     CassiniENA DetectorHigh-Energy ENA7.26.5500≥1.5˚ (electron optics limit)90˚x120˚~1 – 300keV/nuc (ENA)H, He, O, SGF: ≤1.8 cm2 srEfficiency: 0.2 (H)Spinning TRL=9Heritage: Cassini/INCA, IMAGE/HENAKrimigis, S. M., et al. "Magnetosphere imaging instrument (MIMI) on the Cassini mission to Saturn/Titan." The Cassini-Huygens Mission. Springer, Dordrecht, 2004. 233-329.Mitchell, D. G., et al. "High energy neutral atom (HENA) imager for the IMAGE mission." The IMAGE Mission. Springer, Dordrecht, 2000. 67-112.Chandrayaan-1ENA DetectorCENA1.98102000ENA 10 eV - 3.2 keV   IBEXENA DetectorLow-Energy ENA11.53.4610010-2000 eV (32 energy channels)H, He, O, Ne45x2˚ pixels using scanning platformScanning PlatformTRL=9IBEX-Lo comparison: 11.5 kg, 3.46 W, 122 bpsFuselier, S.A., Bochsler, P., Chornay, D. et al. Space Sci Rev (2009) 146: 117. https://doi.org/10.1007/s11214-009-9495-8McComas, D.J., Allegrini, F., Baldonado, J. et al. Space Sci Rev (2009) 142: 157. https://doi.org/10.1007/s11214-008-9467-4IBEXENA DetectorMedium-Energy ENA7.370.65990.38 – 6.0 keV6.5˚3x10-3 cm2 sr eV/eV at 2.2 keV (double coincidence, incl. eff.)SpinningTRL=9Heritage: IBEX-HiFunsten, H.O., Allegrini, F., Bochsler, P. et al. Space Sci Rev (2009) 146: 75. https://doi.org/10.1007/s11214-009-9504-yMcComas, D.J., Allegrini, F., Baldonado, J. et al. Space Sci Rev (2009) 142: 157. https://doi.org/10.1007/s11214-008-9467-4IBEXENA DetectorIBEX-Lo12.093.5122.8  9McComas, D. J., et al. "IBEX-Interstellar Boundary Explorer." Space Science Reviews, vol. 146, no. 1-4, pp. 11-33IBEXENA DetectorIBEX-Hi7.70.7102.6  9McComas, D. J., et al. "IBEX-Interstellar Boundary Explorer." Space Science Reviews, vol. 146, no. 1-4, pp. 11-34IMAGEENA DetectorMedium-Energy Neutral Atom Imager (MENA)13.922.54300  9Burch, James L., et al. The Image Mission.Springer Science+Business Media, 2012IMAGEENA DetectorLow-Energy Neutral Atom Imager (LENA)20.7513.1500ENA 10 - 750 eV   LADEEENA Detector, Charged ParticleNIMS3.551Isotope Ratios: D/H, 3He/4He, 13C/12C, 18O/16O, 22Ne/20Ne, 38Ar/36ArLi abundancem/∆m > 100 at 1σSensitivity: 0.1 cm3Ram directionTRL=9CASSINI, LADEE, RosettaMahaffy, P.R., Benna, M., King, T. et al. Space Sci Rev (2015) 195: 49. https://doi.org/10.1007/s11214-014-0091-1Balsiger, H., Altwegg, K., Bochsler, P. et al. Space Sci Rev (2007) 128: 745. https://doi.org/10.1007/s11214-006-8335-3Waite J.H. et al. (2004) The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation. In: Russell C.T. (eds) The Cassini-Huygens Mission. Springer, DordrechtLuna-ResursGas SpectrometerNGMS3.5  Mass Range: 1 - 1000  Luna-Resurs (TBC)MAVENGas Spectrometer, Ion SpectrometerNGIMS   Mass Range: 2 - 150   CassiniGas Spectrometer, Isotope SpectrometerIon Neutral Mass Spectrometer (INMS)10.323.31495    ACEIsotope SpectrometerSolar Isotope Spectrometer (SIS)22.4Nominal: 17.5, Peak: 22.41992  9Russell, C.T., et al. The Advanced Composition Explorer Mission. Springer Science+Business Media, 2001Solar OrbiterIsotope SpectrometerSIS6.83.8     CassiniMagnetometerVector Helium Magnetometer31063 axesDual configuration0.01 - 10 nT, 10-60 sPower includes 1-W heaterBoom >10m, Fiber optics integrated with sensor, SpinningTRL=9Heritage: CassiniDougherty, M. K., et al. (2004), The Cassini magnetic field investigation, Space Sci. Rev., 114, 331–383, doi:10.1007/s11214‐004‐1432‐2.MESSENGERMagnetometerMagnetometer with 3.6m boom (MAG)4.095.131130  9Anderson, Brian J., et al. "The Magnetometer Instrument on MESSENGER." Space Science Reviews, vol. 131, no. 1-4, 2007, pp. 417-450MESSENGERMagnetometerFluxgate Magnetometer (MAG)1212003 axesBoom >10m, SpinningTRL=9Heritage: PSP/FIELD, MESSENGER/MAGBale, S.D., Goetz, K., Harvey, P.R. et al. Space Sci Rev (2016) 204: 49. https://doi.org/10.1007/s11214-016-0244-5Anderson, Brian J., et al. "The Magnetometer instrument on MESSENGER." The MESSENGER mission to Mercury. Springer, New York, NY, 2007. 417-450.Voyager MagnetometerFluxgate Magnetometer5.62.21200  9https://nssdc.gsfc.nasa.gov/nmc/experiment/display.action?id=1977-076A-05 MagnetometerHelium MagSensor: 1.1 kg, electronics: 0.8 kg3.4 W2 bps0.01 nT accuracy 5 (TBC)Szabo, Personal Comm. DARTMulti-Spectral ImagerDRACO   High resolution, high SNR panchromatic imaging   New HorizonsMulti-Spectral ImagerLong Range Reconnaissance Imager (LORRI)8.615 (10 for heater alone)  High resolution, high SNR, panchromatic imaging 9Cheng, A. F., et al. "Long-Range Reconnaissance Imager on New Horizons." Space Science Reviews, vol. 140, no. 1-4, pp. 189-215New HorizonsMulti-Spectral ImagerVisNIR Imager8.615?Panchromatic (~0.3-0.8 µm) and multispectral (~0.3-2 µm)100 m/px at 10,000 km: <5µrad (baselined ~LORRI optics)Framing (panchromatic) and pushbroom (multispectral) modes ( baselined ~EIS electronics)Single-pass pushbroom stereo capabilityMillisecond to multiple second exposuresTolerance needed to observer planet-Sun transits beyond 30 AU as exoplanet analog. Also could observe moons crossing planets' disks. Staring and Pushbroom operationsTRL=9Heritage: LORRI, MIDISConard, S. J., et al. "Design and fabrication of the new horizons long-range reconnaissance imager." Astrobiology and Planetary Missions. Vol. 5906. International Society for Optics and Photonics, 2005.Hawkins, S. Edward, et al. "The Mercury dual imaging system on the MESSENGER spacecraft." Space Science Reviews 131.1-4 (2007): 247-338.New HorizonsMulti-Spectral ImagerMVIC10.57.1 (Max)Variable: 1000-3000Medium resolution, high SNR multispectral imaging   In DevelopmentMulti-Spectral ImagerVISNIR/FIR Mapper4310 bps0.5-15.0 µm, R ~100 1-D imaging spectrometer 10 µrad x 10 urad + 50 to 100 µm single element 10'x10' photometerScan mirror with Slowly Spinning Spacecraft (~ 0.001 Hz, or 1 rev/10 min) or Fixed Instrument w/ Pointed S/CTRL = 9 for VISNIR flight instrument: Voyager/IRIS, Galileo/NIMS, Cassini/VIMS, ROSETTA/VIRTIS, NH RALPH/LEISA Using H2RG Detector: Deep Impact HRI/IR, OREX/OVIRS, JWST/NIRSPEC TRL = 5 Using "Speckle" Low Mass/Power Design: CIBER 2Deep Impact HRI/IR: D.L. Hampton et al. Space Science Reviews 2005, 117:43 New Horizons/RALPH-LEISA: D.C. Reuter et al. 2008, Space Science Reviews 140:129 OSIRIS-REX/OVIRS: D.C. Reuter et al. 2018, Space Sci Rev 2018, 214:54Zemcov, Personal Communication and 1st Interstellar Probe Exploration WorkshopGalileoPlasma WavePlasma Wave Spectrometer (PWS)7.146.8Low: 240, High: 806400  9Gurnett, D.A., et al. "The Galileo Plasma wave investigation." Space Science Reviews, vol. 60, no. 1-4, 1992, pp. 341-355PSPPlasma WavePlasma Wave Instrument61.5100Includes sensor, wire antennas, shielding, harness>10 m stacer antennas to support slow spin modesSpinningTRL=9Heritage: VAP, PSPBale, S.D., Goetz, K., Harvey, P.R. et al. Space Sci Rev (2016) 204: 49. https://doi.org/10.1007/s11214-016-0244-5Kletzing, C. A., et al. "The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP." Space Science Reviews 179.1-4 (2013): 127-181.Voyager Plasma WavePWS1.41.316 bps for typical survey, 115 kbps for burstE-field spectra to 56 kHz, waveform burst mode 9https://nssdc.gsfc.nasa.gov/nmc/experiment/display.action?id=1977-084A-13Van Allen ProbesPlasma Wave, Radio WaveWave instrument (part of EMFISIS suite)15.5 (main electronics including MAG electronics and radiation shielding)14.2 (entire suite)7.5 kbps survey (full suite), burst modes ranging to 1.3 Mbps3-channel E, 3-channel B to 12 kHz, 1 channel E to 500 kHz   Van Allen ProbesRadio Wave InstrumentWFR channel   E-field spectra to 12 kHz, waveform burst mode   RosettaSpectrometerROSINA/DFMS 19 Mass Range: 12 - 150   RosettaSpectrometerROSINA/RTOF 24 Mass Range: 1 - 500   DMSPUV ImagerLy-alpha Spectrograph12.511.8624115 to 180 nm in 165 binsScanning PlatformTRL=9Heritage: DMSP SSUSI; NASA TIMED/GUVI; SSUSI-LitePaxton, Larry J., et al. "Global ultraviolet imager (GUVI): Measuring composition and energy inputs for the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission." Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III. Vol. 3756. International Society for Optics and Photonics, 1999.Paxton, Larry J., et al. "SSUSI: Horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters." Ultraviolet Technology IV. Vol. 1764. International Society for Optics and Photonics, 1993.New HorizonsUV ImagerAlice4.54.4 Wavelengths: 0.36 nm   SOHOUV ImagerSolar Wind Anisotropies (SWAN)6.655.1200  9Bertaux, J. L., et al. "SWAN: A study of Solar Wind Anisotropies on SOHO with Lyman alpha sky mapping." Solar Physics, vol. 162, no. 1-2, pp. 403-439Voyager UV ImagerUVS4.53.5 Wavelengths: 3.3 nm 9https://nssdc.gsfc.nasa.gov/nmc/experiment/display.action?id=1977-084A-04MMS Wire Booms4.3 (for 2)  57 m per element   MMS Rigid Boom7.24  30 m tip-tip   Van Allen Probes Wire Booms4.08 (for 2)  50 m per element   Van Allen Probes Rigid Stacers6.24 (for 2)  ~7.5 m per element   

We need stable resource numbers by Fall AGU, please.

Slide10

The Instrument List

Any other instruments/measurements that need to be considered on the payload?

18 October 2019

2nd Interstellar Probe Exploration Workshop, NYC

10

Slide11

Instrument Synergies

17 October 2019

2nd Interstellar Probe Exploration Workshop, NYC

11

Instrument

Mass (kg)

Power (W)

Data rate (bps)

TRL

Reference/Heritage

Vector Helium Magnetometer

1.1-3

3.4-10

2-6

5 (TBC)-9

Szabo Personal Comm., Cassini/MAG

Fluxgate Magnetometer

1-5.62-2.2

1200

9PSP, MESSENGER, Voyager

Plasma Wave Instrument1.4-15.5

1.3-14.2

32-806400

9

Galileo/PWS, PSP, VAP, Voyager

Solar Wind and PUI

6.1-8

 10-10.8

 1500-2500

6-9

PSP, IMAP

Suprathermals and Energetic Ions

8

5

500

9

Solar Orbiter

Cosmic-ray spectrometer

3.6-14.6

6-14.7

200

9

Solar Orbiter, Ulysses

Dust Detector

1.9-17.2

5-11

579

9

NH, LADEE, Cassini,

Europa Clipper

Neutral Ion Mass Spectrometer

3.5-10.3

5-23.3

1-1495

7-9

Luna-

Resurs

, JUICE, Cassini

Low-Energy ENA

11.5

3.5

100

9

IBEX-Lo

Medium-Energy ENA

7.37

0.65

99

9

IBEX-Hi

High-Energy ENA

7.2

6.5

500

>7

JUICE

Ly-alpha Spectrograph

4.4-13.3

4.4-11

2009NH, SOHO/SWANUV (50-180 nm)4.54.49NH/AliceVisNIR Imager8.615169NH/LORRIVISNIR/FIR Mapper43105-9Voyager, Galileo, Cassini, Rosetta, NHRange74-139 kg75-135 W

Slide12

NASA Technology Development Program

NASA should invest in a Technology Development Program with the goals of……maximizing the science return from a future Interstellar Probe

Improve measurement capabilities of existing technologiesIdentify and develop new measurement techniquesIdentify and develop multi-purpose instrumentation

that reduces resources, but maintains or improves science performanceDevelop on-board smart processing system to optimize data volumeTRL=5 by 2025 to be “launch ready” in 2030.This should come out also as a recommendation from the Solar and Space Physics Decadal Survey

18 October 2019

2nd Interstellar Probe Exploration Workshop, NYC12

2020

2030

White Papers

Decadal Released

2021

2022

2023

2024

2025

2026

2027

2028

2029

Development Program

Technologies “Launch Ready”

Slide13

18 October 2019

2nd Interstellar Probe Exploration Workshop, NYC

13

Our Habitable Astrosphere

The Interstellar Medium

The chemical evolution of the galaxy: Elemental, isotopical

composition of gas and dustOur place among the galactic Interstellar Clouds: Ionization state, temperature, density of gas

The Global Nature

The force balance

The global shape and the first “picture” from outside

The particle acceleration at astrophysical shocks

Propagation of solar disturbances in to the LISM

A solar-like magnetic field in the LISM

A fuzzy heliopause

The Hydrogen-Wall

Evolution of Planetary Systems

Galaxy Formation

KBOs and Dwarf PlanetsComposition and Landforms

AtmospheresInterior propertiesSize-Frequency distribution

Dust DiskLarge-scale distributionComposition and origin

Diffuse Galactic LightFaint Stars, Diffuse Galactic ISM (Z ~ 0)Extragalactic Background LightFaint Distant Redshifted Galaxies (Z ~ 2 – 10)