/
Progress In Electromagnetics Research PIER    FAST SDM FOR SHAPED REFLECTOR ANTENNA SYNTHESIS Progress In Electromagnetics Research PIER    FAST SDM FOR SHAPED REFLECTOR ANTENNA SYNTHESIS

Progress In Electromagnetics Research PIER FAST SDM FOR SHAPED REFLECTOR ANTENNA SYNTHESIS - PDF document

jane-oiler
jane-oiler . @jane-oiler
Follow
473 views
Uploaded On 2014-12-21

Progress In Electromagnetics Research PIER FAST SDM FOR SHAPED REFLECTOR ANTENNA SYNTHESIS - PPT Presentation

H Chou Department of Engineering Cambridge University Cambridge CB3 0FA UK HT Chou Department of Communications Engineering Yuan Ze University ChungLi 320 Taiwan Abstract This paper presents an approach of a shaped re64258ector antenna synthesis usin ID: 27252

Chou Department Engineering

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Progress In Electromagnetics Research PI..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

ProgressInElectromagneticsResearch,PIER92,361–375,2009FASTSDMFORSHAPEDREFLECTORANTENNASYNTHESISVIAPATCHDECOMPOSITIONSINPOINTEGRALSH.-H.ChouDepartmentofEngineeringCambridgeUniversityCambridgeCB30FA,U.K.H.-T.ChouDepartmentofCommunicationsEngineeringYuanZeUniversityChung-Li320,Taiwan„Thispaperpresentsanapproachofashapedre”ectorantennasynthesisusingasteepestdecentmethod(SDM).It“rstdiscretizesthere”ectorsurfaceintosmallpatchesandthenusesgridnodesasvariablesinthesynthesisprocedure.Eventhoughthenumberofvariablescanbeverylargeforalargere”ectorantenna,theadvantageofprovidingclosed-formsolutionsforthederivativesofacostfunctionpotentiallymakesthisapproachveryecient.ThelargenumberofvariablesalsoassiststhisproceduretoreachamoreglobaloptimumasusuallymetinordinarySDM.Numericalexamplesarepresentedtovalidatethisapproach.1.INTRODUCTIONFastdesignoflargeshapedre”ectorantennasremainschallengingduetotheirincreasingsizesneededintheapplicationsofsatelliteandwirelesscommunications[1…12].Suchchallengesarisefromthecomputationalineciencyinnumericalradiationanalysisthatbecomesdramaticallycumbersomeasthere”ectorsizeoroperationalfrequencyincreaseandneedstoberepeatedlyperformedateveryloopofaniterativesynthesisprocedure.Inthepast,eortshavebeen Correspondingauthor:H.-H.Chou(hsihsirchou@gmail.com). 362ChouandChoufocusedondevelopingfastradiationanalysisorconvergentsynthesistechniquesinarelativelyindependentfashion.Typicalworksforthefastanalysistechniquesarepresentedin[13,14],mostlyusingtheapproximationsofphysicaloptics(PO)orapertureintegration(AI)bynumericallyintegratingradiationintegrals.Thesetechniquesaremostwidelyemployedinthere”ectorantennaanalysisforpracticalapplications.EitherFastFourierTransform(FFT)orexpansionsovertheintegrandsusingproperlyselectedbases,suchasGaussianbeams(GB)[4,5,15],areperformedwithendurablesacri“ceofaccuracy.Previously,successfullyemployedsynthesistechniquesarereferencedin[3,8…12,16…18]includinggeneticalgorithm(GA)[11],steepestdecentmethod(SDM)[3,5,8,9],successiveprojectionmethod(SPM)[10…12,17]andparticleswarmoptimization(PSO)[18].Accelerationeortswereattemptedintwocategories.The“rsttriestousefewervariablesbyrepresentingre”ectorsurfacesintermsofbasisfunctions[7,19,20]andusestheassociatedcoecientsasvariablesforoptimization.Itmayhoweverlossfreedomsforglobaloptimization.Morereductioninthenumberofvariablescausesmorefreedomloss,andtradeosbetweeneciencyandoptimummustbemade.Thesecondattemptstodevelopanalyticformulationsforuseintheoptimizationprocedure[8…12].In[8,9],directsurfacevariationsareconsidered,andanalyticalformulationsforsurfacedeviationsbasedonthegradientsofthecostfunctionde“nedinaframeworkofSDMweredeveloped.Itavoidsnumericalcomputationsonthederivativesofacostfunction,butstillresultsinintegralsthatneedtobenumericallyintegratedusingFFT.In[10…12]there”ectorsurfacewasdiscretizedintopatches.Theradiationsofeachpatchserveasbasisfunctionstosynthesizethedesiredcontouredpatterns,andSPMwasemployedto“ndcoecientsofthebasisfunctionsusinglinearprojectionsintothecommonintersectionofavailablesolutionsets.Thecoecientsaretransformedintothesurfacedeviationsbyconstraininganequalamplitudeofthecoecients.Itprovidesanalyticalandclosedsolutionsforthesurfacevariation.However,SPMdoesnotguaranteetheexistenceofthecommonintersectedsolutions,andthecoecientsmaybequiterandomlydistributed.Inmostcases,notonlysurfacesmoothtechniquesneedtobeperformedinordertoobtaincontinuoussurface,butalsorapidsurfacevariationmayoccur.Thispaperpresentsanusefultechniqueofsynthesisprocedure.Analogoustothatdescribedin[8…12],itprovidesanalyticalformulations.Moreover,itsformulationshaveadvantagesofbeinginclosedformsandcontinuousforthere”ectorsurfacedeviation.Itcompletelyavoidsthenumericalintegrationsandsurfacesmoothing ProgressInElectromagneticsResearch,PIER92,2009363requiredin[3,8…12].It“rstdiscretizesthere”ectorsurfaceintosmallpatcheswhosesizesareselectedsucientlysmalltoaccuratelyapproximatethere”ectorsradiationbyasuperpositionofeachpatchscomponentinthePOradiationintegral.Iftheoptimizedsurfaceisslowlyvarying,thentheradiationanalysiswillretaintheaccuracyasusuallyprovidedbyPO,whichisfoundtobetrueinnumericalexperiences.The-componentsofgridnodescoordinatesareusedasvariablesinconjunctionwithaSDMsynthesistechniquetodeterminetheshapedre”ectorsurface.Itlooks,ata“rstglance,tocomplicatethesynthesisproceduresincethenumberofvariableshasnowbeenincreaseddramaticallytocausecumbersomenumericalcomputationsforthederivativesofacostfunctioninSDM.However,theproposedworkusingpatchdecompositionsfortheradiationintegralexhibitsadvantagesofprovidingapproximatebutinclosed-formsolutionsforthederivatives.Theoverallcomputationaleciencyisfoundtobeimproved.Theorganizationofthispaperisasfollows.Section2.1describestheformulationsofpatchdecompositiontoevaluatethePOradiationintegralofare”ectorantenna,whichreducestheoverallradiationintermsofasuperpositionof“eldsradiatedfromasetofequivalentcurrentmomentslocatedatgridnodes.Section2.2summarizesSDMandpresentstheclosed-formformulationsforthederivativesofacostfunction.Section3analyzesthecomputationalcomplexityofthiswork,andpresentsnumericalexamplestovalidatetheproposedworkinthesynthesisofashapedre”ectorantenna.FinallysomeshortdiscussionsarepresentedinSection4toconcludethiswork.Atimeconvention,jt,isusedthroughoutthispaper.2.THEORETICALDEVELOPMENTS2.1.PatchesDecompositionofPhysicalOpticsRadiationIntegralTheradiationofare”ectorantenna,whenitisfedby()asillustratedinFigure1,canbefoundby[9] jkR where)=2)isde“nedat¯withbeingitsanoutwardunitvectornormaltothesurface.with¯beinga“eldlocation.Equation(1)canbenumericallycomputedby 364ChouandChou Figure1.Geometryfortheshapedre”ectorantennaproblemincontouredbeamapplication.Thefeedradiations().Thesurfaceisdecomposedintosmallplanarpatheswithgridsalsoshowninthis“gure.decomposingintosmallpatchesandgivenby)(2)withjkZ jkR wherewithbeingtheareaofthpatch,and¯with¯beingthephasecenterofpatch.isselectedthat(2)willreachanacceptableaccuracyasprovidedbyPO.Ingeneral4patchwidthissucientinapracticalcase.Asissucientlysmallandbecomesapproximatelyplanar,(3)canbeapproximatedbyaveragingtheirvaluesatpatchcornersbyjkZ jkR RmSmRm×Rm×1 where¯indicates¯thcornerofthpatch,andisthenumberofcornersforthpatch.Thusinthefarzone,(1)canbe ProgressInElectromagneticsResearch,PIER92,2009365re-expressedasasuperpositionofthecontributionsfromcornersbyjkZ jkr r×r×Ncqr·¯rqNqmSm jkZ jkr eq,q)(5)whereisthenumberofcornersformedbythepatchesandthenumberofpatchesassociatedwiththcornerat¯.Theequivalentcurrentmoment,eq,q),in(5)isde“nedbyeq,q eq,qeq,qwitheq,qeq,q whichisanequivalentsurfacevectorassociatedwiththcorner.In(6)and(7))=2)withbeingthpatch.Equation(5)isdependentonthecornersparameters,andallowsonetoemploythecornerlocationsastheoptimizationvariables.Apracticalimplementationselectsthelocationsofcorners“rst,whichgloballydistributeoverthere”ectingsurface,anddeterminethepatches.2.2.EcientSynthesisProcedureviaSteepestDecentMethodSDMgivesgradualparameterschangesinre”ectorsurfacevariations,andresultsinasmoothre”ectorsurface.It“rstde“nesacostfunctionintermsofsampledradiationspatternsas[3]whereisanumberofsamplesandisthenormalizedgainat“eldpointwithbeingitsdesiredvalue.Itwillbeminimizedtooptimizethere”ectorsurface.Bothsidelobeandcross-polarizationlevelsarecontrolledbyspecifyinginthesampledpoints,andareconsideredasdierentsampledgains.isintroducedin(8)to 366ChouandChouemphasizesomedesiredgains,whichisusefulforside-lobeandcross-polarizationsuppressionsincetheirvaluesareverysmall.InSDMthevariables,)withbeingthenumberofvariablestode“nethere”ectorsurface,isoptimallychangedinaniterativefashionusing(9),thatis,at(+1)thiterationisfoundby[6]+1)+1)+1) 1=1(i) 2=2(i)... whereisascalefactortoproperminimize(8).TheimplementationprocedureisdemonstratedinFigure2.Numericalcomputationsofthederivativesin(9)arecumbersomebecauseaschanges,indicatinganewsurfaceshapeofre”ector,(1)needstobere-calculated,whichincreasesdramaticallyasincreases.Inthepast,thevalueofneedstobe“rstminimizedbyexpandingthesurfaceusingeitherglobalorlocalbasisfunctionssuchasJacobi-Fourierseries[7]andspline[14],respectively.Twodisadvantagesarefound.First,repeatedlycomputationsof(1)areextremelycumbersomesincechangesfrequentlyduringSDM.Secondly,asmalllimitsthefreedomofsurfacevariation.Thiswork,employingconers Figure2.SDMsynthesisprocedure. ProgressInElectromagneticsResearch,PIER92,2009367ofthepatchedasoptimizationvariables,allowsamaximumfreedominvaryingthesurfaceforaglobaloptimization.Thesurfaceshapeisdeterminedbycornerlocations.Inparticular,ofthethcornerscoordinate,¯),areusedasvariables(i.e.,)while“xing()toretaintheprojectedapertureofthere”ector.Ata“rstglance,thisworkincreaseuptoseveralordersandmayworsentheoptimization.Ithoweverexhibitsadvantagesofprovidingclosed-formsolutionsforthederivativesin(9)becauseeachcorner,(),isassociatedwithveryfewpatchesasillustratedinFigure1.Thederivativein(9)canbefoundbydierentiating(8) sf where =8 Z0Pr¯E)·v¯E) andusing(5)gives =k2Z0(b3Ša3) jkr eq,qIn(11),istheradiationpower,)and )with¯beingthefeedslocation.istheunitvectorindicatingthepolarizationofinterest,andmaybeusedtospecifyco-orcross-polarizations.Notethat(10)isaclosed-formsolution,andiscontinuousoverthesurface.Notonlythederivativesof(8)canbeecientlycomputed,butalsothesynthesizedsurfaceretainssmoothalongtheiterativeprocedure.Oncethecornerlocationsaredeterminedand“xed,thesurfacesbetweenthesecornerscanbeinterpolatedandsmoothusinglocalbasisfunctionssuchasthesedescribedin[19,20]withoutlosingtheaccuracyoftheradiationpatterns.Asaresult,ifthedistributionsofthecornersareshowntobecontinuousandsmooth,thenthesmoothnessoftheoverallsurfacecanbeassured.2.3.AUsefulCriteriontoChooseSDMuses(9)toupdateiteratively.Thechangesof,ineachiterationarecontrolledbyaproperselectionof,andresultinphasechangesfortheequivalentmomentsin(6)inawaythatthesuperpositionoftheirradiationswillapproachthedesiredcontoured 368ChouandChoupatterns.Itcanbeachievedbyallowingvaryingwithinahalfwavelength.Thevalueofisselectedsuchthatmaximumeachiterationislessthanahalfwavelength.Agoodvalueislessthan0.25wavelengththatrepresentsamaximumphasechangeof180degrees(causesamaximumphasechangeof180degrees)sothattheoverallmaximumafterthecompletionofsynthesismayretainlessthanahalfwavelength.Inpractice,shouldbecontinuouslydecreasesasthesynthesisproceedssinceSDMconvergesveryfastinthe“rstfewroundsofiterationandwillbecomegraduallysmaller.Onemaysimplydecreasetoaquarteror0.1ofitsvalueinthepreviousiterationwhenthevalueofcostfunctionin(8)isfoundtoincrease,andretainthisvalueforthenextiteration.2.4.AdvantagesandLimitationsoftheProposedWorkIncomparisonwithpreviousSDMworks[3,5,8,9],thecurrentapproachexhibitsadvantages.In[3],thegridsoftheequivalentaperturebasedonAIareusedasoptimizationvariables.Itrequiresperformingray-tracingtodeterminethere”ectorssurfacewhichneedstobesmoothedtoretainacontinuessurface.Theproposedworkcompletingavoidsthese.In[5],are”ectorsurfaceisrepresentedbyasetofglobalbasisfunctionstoreducethenumberofoptimizationvariablesandcomputationaltime.Theproposedworkusessurfacegridsasoptimizationvariables.Ithasamuchlargernumberofoptimizationvariables,butresultsinlesscomputationaltimeastobeshowninSection3.Incomparisonwith[8,9],whichalsoprovidesclosedformsolutions,theproposedworkdoesntrequireperformingFFTincomputingthesolution.Thelimitationsoftheproposedworkcanbeobserved.First,thenumberofoptimizationvariablesincreasesinanorderofre”ectorssurfacesize.Second,theincreasewillfurtherincreasethesizeofcomputersmemory.Theselimitationdonotcauseanyinconvenienceinpracticalapplicationswithtodayscomputertechnologiesinhand.3.NUMERICALVALIDATIONANDDISCUSSION3.1.AnalysisofComputationalComplexityThecomputationalcomplexity,justi“edbycountingthenumberoftermstheoperationofsummationsineachiterationofnumericalevaluation,isexamined.One“rstexaminesthecomputationcomplexityinatraditionalSDM[5].Assumingthatbasisfunctionsareusedtorepresentthere”ectorsurfaceinaconventionalSDM,thenumberoftermsiscountedinthefollowing.Using(5)to“ndthe ProgressInElectromagneticsResearch,PIER92,2009369electromagnetic“eldsatpointsfor(8)requiresterms.Ineachiterationoneneedsto“ndin(9))derivativesnumericallyfor(9),anditrequiresterms.Similarlythenumberoftermsintheproposedworkiscountedinthefollowing.Using(5)to“ndthetheelectromagnetic“eldatpointsfor(8)needsterms.Using(9)to“ndderivatives(for(9)needstocomputeterms.Thereforeifthenumberofiterationsisnotconsidered,theproposedworkapparentlyhasabettereciencybycuttingthecomputationalcomplexityinanorderof3.2.NumericalExamplesTheexampleshownin[3]isre-examinedtoproduceaCONUSbeamwithpowerconstraintswithin3dB.Theinitialsurfaceisparabolicwithafocallength25.Theradiusofaprojectedcircularapertureontheplaneis12,withanosetdistance3toavoidafeedblockage.Theoperationalfrequencyis11.811GHz.Thefeedhasacosradiationpatternwitharighthandcircularpolarization.Thisinitialre”ectorsurfacewillradiatefar“eldswithadirectivityof38.0dBwithroughly5squaredegreesbeamarea.ToachievethebeamconstraintsshowninFigure3,themaximumdirectivityisroughly30dB.Thusthedesiredgoalofdirectivityinthespeci“edareaofFigure3willbelargerthan28dB,wherein(8)issettooneforsimpli“cation.Themaximumdeviation,,isinitiallysettobe0.2wavelength,whichisgraduallydecreasedbyafactorof0.25whenthecostfunctionisfoundtoincreaseintheiterativeprocedure.Inapracticalimplementation,thesurfacechangeat“rstiterationrepresentsthesteepestsurfacevariationstominimizethecostfunctionbydefocusingthefocused“eldsradiatedfromaparabolicre”ector.Thisrapidsurfacechangeforenergydefocusingmayeventuallyresults Figure3.DesiredCONUScontouredpattern. 370ChouandChouinarapidsurfacevariationthatisnotconsideredtobesucientsmoothfromapointofviewinarealisticmanufacture.Figure4(a)showsthederivativesofthecostfunctionusing(11),whichisnormalizedinawaythatthevectorformedbythesederivativeshasaunitnormandrepresentsthechangingrateof.AlsoFigure5(a)showsthecontouredradiationpatternsafterthissurfacechange.Notethatthemaximumchangelengthofisrestrictedto0inthiscaseasmentionedinthepreviousparagraph.Inparticular,Figure4(a)showsthatthesurfacedistortswithavariationsimilartoasinefunction.IttendstospreadtheenergyoutinupwardanddownwarddirectionsasshowninFigure5(a),wheretwobeamswereformedinthe Figure4.ComparisonofinitialderivativesofthecostfunctionusedinSDM. (a) Using (11)(b) Using (13)Figure5.Contouredradiationpatternsat“rstiteration. ProgressInElectromagneticsResearch,PIER92,2009371coveragearea.Toavoidthisphenomenon,analternativeformulationisusedat“rstiteration.Theideaistoconsiderthebehaviorofthepowerderivativesusedin(11),wherearealpartisusedandexhibitsasinefunctionbehavior.Thusitcanbeconjecturedthatitsimaginarypartwillhaveacosinefunctionbehavior.Figure4(b)showsthesurfacechangingratecorrespondingtoFigure4(a)exceptnow(11)isreplaced =Š8 Z0Pr¯E)·v¯E) where-Žsignisemployedtoassurepositivesurfacevariationsforconvenience.Thecorrespondingradiationpatternat“rstiterationisshowninFigure5(b).Itisobservedthattheenergyspreadsoutconcentrically.Thisgradualenergydistributionallowsthesynthesistoreachabettersmoothnessforitsuseinmanufacture.Afterward,(11)isemployedtosynthesizethesurface.Tofurtherexaminethesmoothnessofthere”ector,changingratesat2nd,7thand21thiterationsareshowninFigures6(a)(c),respectively.First,Figure6(a)showsthatthebehaviorofchangingrateissimilartothatinFigure4(b).itindicatesthatSDMcontinuestodefocustheradiatingenergyafteritsinitialiteration.Oncetheenergydefocusinghassucientlycoverthedesiredarea,SDMstartstomodifythesurfacesuchthattheradiationwillformtheshapedpatternasshowninFigures6(b)and(c).Notethatthemaximumofchanginglengthdecreasesalongthesynthesisprocedure.Figure7(a)showsthechangesofmaximumduringthesynthesisprocedure,whichmakesthecostfunctioncontinuouslydecreases.Thedecreasesonisnecessaryinordertoavoidwastingtimeincomputingthevaluesofcostfunctionwhichtendstoincreasealongthesynthesisprocedureifthemaximumisretainedsameineachiteration.AlsoFigure7(b)showstheconvergenceofthecostfunctionalongthesynthesis.Thecostfunctionconvergesveryfastinthe“rstfewroundsofiterationandtherateslowsdownafter50iterations.Thusafter50iterations,theslowconvergenceratewillresultinsmallerchangesinthecostfunctionandsurfacevariationsofthere”ectoraswell,whichjusti“estheneedtouseasmaller.Thisisadvantageousoverothertechniqueswhereglobalorlocalbasisfunctionsareusedtorepresentthere”ectorsurfacesincenopriorknowledgeontheselectionofappears.Inthecurrentexample,only60iterationsareperformedtoachievethecontouredpatternsshowninFigure8(a),where73sampled“eldpointsareconsidered.Themaximumdirectivityis30.5dBinthiscase.Thecomputationof(5)usestriangularpatcheswitha0.25wavelengthsamplinglength,whichissucienttocomputethe“eldslocatedintheangularareaofinterest(),andresultsin8154corners(also8154variables)in 372ChouandChouthesynthesisprocedure.Thisnumberofvariablesisfarlargerthanthenumberof“eldpointstobesynthesized.Thusitreducesthepossibilityofcostfunctionsconvergencesstuckinalocalminimumbeforeareasonableresultisachieved. (a) 2nd iteration (b) 7th iteration (c) 21th iteration Figure6.Derivativesofthecostfunctionwithrespecttotheoptimizationvariablesusing(11).Thecomputationaleciencycanbefurtherimproved.Notethat(5)issimplyusedtocomputetheradiation“elds,whichcanbefurtheracceleratedifotherecienttechniquesareavailablesuchastheanalysistechniquesbasedonaGaussianbeamexpansion[4,5,10].Thedeviationoftheshapedsurfacefromtheoriginal(initial)parabolicre”ectorisalsoshowninFigure8(b)forcomparison.Asdescribedearlierthatthederivativesofthecostfunctionwithrespecttoarecontinuous,whichassuresthecontinuityandsmoothnessofthesynthesizedsurfaceasdemonstratedinFigure8(b)wheresmoothsurfacedeviationisobserved.FinallytheCPUtime,runningonanAcerNotebookwithIntel2.2GHzCore2DuoProcessorT7500,is0.28secondsforthecomputationinaniterationwithtotaltimelessthan20secondto ProgressInElectromagneticsResearch,PIER92,2009373 (a) Variation of maximum z q (b) Convergence curve Figure7.Changesofmaximumandtheconvergencecurvealongthesynthesisprocedure. Figure8.Theachievedcontouredpatternandthesurfacedeviation(unit:wavelength)afterthecompleteofsynthesis.complete60iterationsofsynthesisandachievetheresultsshowninFigure8(a).4.CONCLUSIONThisproposedworkisveryeectiveinthefastsynthesisofshapedre”ectorantennastoradiatecontouredbeams.Thismethodexhibitslargestfreedomsbyusingalargenumberofvariablesinthesynthesis,wherethesurfacegridnodesareused.Closedformandcontinuoussolutionsofcostfunctionsderivativesaredeveloped,whichallowsthesurfacevaryingsmoothlywhile,inthemeantime,retainingthecomputationaleciency.Numericalexamplesshowthatthe 374ChouandChoucomputationalcomplexityinthisworkcanbereducedbyanorder(thenumberofvariablesinthetraditionalSDMusingnumericalcomputationsto“ndthederivativesofacostfunction).ACKNOWLEDGMENTFinancialsupportforthisworkfromtheNationalScienceCouncil,Taiwan,isacknowledged.REFERENCES1.Rudge,A.W.,K.Milne,A.D.Olver,andP.Knight,HandbookofAntennaDesign,Vol.1,PeterPeregrinus,London,2.Rusch,W.V.T.,Thecurrentstateofthere”ectorantennaart,ŽIEEETrans.AntennasPropagat.,Vol.32,313…329,1984.3.Cherrette,A.R.,S.W.Lee,andR.J.Acosta,Amethodforproducingashapedcontourradiationpatternusingasinglere”ectorandasinglefeed,ŽIEEETrans.AntennasPropagat.Vol.37,No.6,698…702,Jun.1989.4.Chou,H.T.,P.H.Pathak,andR.J.Burkholder,NovelGaussianbeammethodfortherapidanalysisoflargere”ectorantennas,ŽIEEETrans.AntennasPropagat.,Vol.49,880…893,Jun.2001.5.Chou,H.-T.andP.H.Pathak,Fastgaussianbeambasedsynthe-sisofshapedre”ectorantennasforcontouredbeamapplications,ŽIETProceeding-Microwave,AntennaandPropagations,Vol.151,No.1,13…20,Feb.2004.6.Theunissen,W.,Recon“gurablecontouredbeamsynthesisusingamechanicalfemsurfacedescriptionofdualosetre”ectorantennasurfaces,ŽPh.D.dissertation,UniversityofPretoria,SouthAfrica,1999.7.Duan,D.andY.R.-Samii,Ageneralizeddiractionsynthesistechniqueforhighperformancere”ectorantennas,ŽIEEETrans.AntennasPropagat.,Vol.43,27…40,Jan.1995.8.Westcott,B.S.andA.A.Zaporozhets,Singlere”ectorsynthesisusingananalyticalgradientapproach,ŽElectronicsLettersVol.30,No.18,1462…1463,Sep.1,1994.9.Westcott,B.S.andA.A.Zaporozhets,Dual-re”ectorsynthesisbasedonanalyticalgradient-iterationprocedures,ŽIETProceeding-Microwave,AntennaandPropagations,Vol.142,No.2,129…135,Apr.1995. ProgressInElectromagneticsResearch,PIER92,200937510.Poulton,G.T.andS.G.Hay,Ecientdesignofshapedre”ectorsusingsuccessiveprojections,ŽElectronicsLetters,Vol.27,2156…2158,1991.11.Hay,S.G.,Dual-shaped-re”ectordirectivitypatternsynthesisusingthesuccessiveprojectionsmethod,ŽIETProceeding-Microwave,AntennaandPropagations,Vol.146,No.2,119…124,Apr.1999.12.Stirland,S.J.,Fastsynthesisofshapedre”ectorantennasforcontouredbeams,ŽProceedingsoftheICAP,18…21,Edinburgh,UK,1993.13.Bucci,O.M.,A.Capozzoli,andG.DElia,Aneectivepowersynthesistechniqueforshaped,double-re”ectormultifeedantennas,ŽProgressInElectromagneticsResearch,PIER39,93…123,2003.14.Pathak,P.H.,Techniquesforhigh-frequencyproblems,ŽAntennaHandbook—Theory,ApplicationandDesign,(byY.T.LoandS.W.Lee),Chapter4,VanNostrandReinholdCompany,NewYork,1988.15.Chou,H.T.andP.H.Pathak,Uniformasymptoticsolutionfortheemre”ectionanddiractionofanarbitrarygaussianbeambyasmoothsurfacewithanedge,ŽRadioScience,1319…1336,Jul.…Aug.,199716.Agastra,E.,G.Bellaveglia,L.Lucci,R.Nesti,G.Pelosi,G.Ruggerini,andS.Selleri,Geneticalgorithmoptimizationofhigh-eciencywide-bandmultimodalsquarehornsfordiscretelenses,ŽProgressInElectromagneticsResearch,PIER83,335…352,2008.17.Poulton,G.T.,Powerpatternsynthesisusingthemethodofsuccessiveprojections,ŽIEEEAntennaandPorpagationSocietyInternationalSymposium,Vol.2,667…670,1986.18.Mikki,S.M.andA.A.Kishk,Physicaltheoryforparticleswarmoptimization,ŽProgressInElectromagneticsResearch,PIER75,171…207,2007.19.Pereira,L.andF.Hasselmann,Approximationofshapedre”ectorsurfacesbypseudo-splines,ŽIEEEAntennasandPropagationSocietyInternationalSymposium,Vol.22,327…329,Jun.1984.20.Teixeira,F.L.,J.R.Bergmann,andC.Rego,Acomparisonbetweentechniquesforglobalsurfaceinterpolationinshapedre”ectoranalysis,ŽIEEETrans.onAntennasPropagat.,Vol.42,No.1,47…53,Jan.1994.