/
TECHNIQUESFORMOLECULARANALYSISPracticalapproachestoplantvolatileanalys TECHNIQUESFORMOLECULARANALYSISPracticalapproachestoplantvolatileanalys

TECHNIQUESFORMOLECULARANALYSISPracticalapproachestoplantvolatileanalys - PDF document

jane-oiler
jane-oiler . @jane-oiler
Follow
368 views
Uploaded On 2016-08-22

TECHNIQUESFORMOLECULARANALYSISPracticalapproachestoplantvolatileanalys - PPT Presentation

emissionofVOCsincludingCgreenleafvolatileseghexenaland3hexenylacetatemethylsalicylatemethyljasmonateindoleterpenesandothersThesevolatilescanactasdirectdefensecompoundsAndersenetal199 ID: 454138

emissionofVOCsincludingCgreen-leafvolatiles(e.g.(hexenaland()-3-hexenylacetate) methylsalicylate methyljasmonate indole terpenesandothers.Thesevolatilescanactasdirectdefensecompounds(Andersenetal. 199

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "TECHNIQUESFORMOLECULARANALYSISPracticala..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

TECHNIQUESFORMOLECULARANALYSISPracticalapproachestoplantvolatileanalysisDorotheaTholl,WilhelmBoland,ArminHansel,FrancescoLoreto,UrsulaS.R.Ro¨seandJo¨rg-PeterSchnitzler emissionofVOCsincludingCgreen-leafvolatiles(e.g.(hexenaland()-3-hexenylacetate),methylsalicylate,methyljasmonate,indole,terpenesandothers.Thesevolatilescanactasdirectdefensecompounds(Andersenetal.,1994;DeMoraesetal.,2001)orplayaroleinindirectdefensebyattractingnaturalenemiespreyinguponorparasitizingherbivores(Dickeetal.,2003;KesslerandBaldwin,2001;etal.,2005;Turlingsetal.,1995).Finally,chemicalvolatilesignalsreleasedfrominjuredplantsnotonlyaffectherbivoresorpathogensbutmayalsosignalalarmtoneighboringplantsbytriggeringdefenseresponses(Arim-etal.,2000;Engelberthetal.,2004).Independentoftissuedamagebyotherorganisms,numerousplantsemitVOCsinresponsetolightandtemperaturechangesorotherabioticstresseslikeßoodingordrought(Ebeletal.,1995;Holzingeretal.,2000;Kreuzwie-etal.,2000).Low-molecular-weightterpenessuchasisoprene(C),monoterpenes(C)andsesquiterpenes(Carereleasedinsubstantialamountsfromwoodyplants.TheyhavesigniÞcantimpactonatmosphericchemistrysincetheycontributetotheformationofozoneandsecondaryorganicaerosolsinthepresenceofanthropogenicpollutants(Atkin-son,2000;Hoffmannetal.,1997;KesselmeierandStaudt,1999;SharkeyandYeh,2001).Furthermore,isoprenoidemissionsinßuencelevelsofatmospherichydroxylradicalsOH)andtheatmosphericresidencetimeofmethane,animportantgreenhousegas(Thompson,1992).Thephysiolo-gicalroleofsuchterpeneemissionsisstillnotcompletelyunderstood.Volatileterpenesarebelievedtoimprovethethermotoleranceofphotosynthetictissuessincetheyarelikelytointercalateintothylakoidmembranesandmaystabilizethemathightemperatures(Loretoetal.,1998;etal.,2001).Thereisincreasingevidencetoshowthatterpenevolatilesexhibitantioxidantactivitiesinplantabyquenchingreactiveoxygenspecies(LoretoandVelikova,2001;Loretoetal.,2001b).Moreover,terpenevolatileemis-sionsarethoughttoactasametabolicsafetyvalvetoavoidtheunduesequestrationofphosphates(Rosenstieletal.TheincreasingscientiÞcinterestinthebiochemistry,physiology,ecologyandatmosphericchemistryofplantVOCshasledtothedevelopmentofavarietyofsystemsforthecollectionandanalysisofvolatiles(LinskensandJack-son,1997;MillarandSims,1998).Inthepastdecadeinparticular,volatileanalysishasimprovedbythedesignofrelativelyinexpensivebutsensitivebench-topinstrumentsforgaschromatographyÐmassspectrometry(GC-MS).ThedevelopedheadspaceanalysistechniquesprovideamorerepresentativevolatileproÞleoflivingplantsthantraditionalmethodsofsolventextractionorsteamdistillation.Besidesmanuallyoperatedheadspacesamplingmethods,automa-tedVOCanalysissystemswithhightimeresolutionandon-linecapabilityhavebecomeindispensableformonitoringfastchangesofvolatileproÞlesduringplantdevelopmentorunderstressconditions.Theneedforreal-timemeasure-mentshasledtoconsiderableinterestinnon-chromato-graphicmethods,mostofteninvolvingchemiluminescenceorinfraredphotoacoustic(PA)spectroscopy,ormassspectr-ometry[e.g.protontransferreaction(PTR)-MS].Suchsys-temscanbecombinedwithadditionalequipmentforparallelmeasurementsofotherstress-sensitivephysiologicalparameterssuchasphotosyntheticactivity.VOCanalysissystemsthataresensitive,fastandfullyautomatedarealsoofincreasingimportancetoelucidatethebiosynthesisofplantVOCs.Inaddition,functionalgenomicsapproachesfordissectingthemetabolicpathwaysofplantVOCsdemandtime-efÞcienttechniquesforvolatileproductanalysisofrecombinantenzymesorhigh-throughputproÞlingofvola-tilemetabolitesofmutantandtransgenicplantlines.InthispaperwewilldescribetheprincipalmethodsandlatesttechnologiesusedintheanalysisofplantVOCsindifferentareasofresearch.Theadvantagesanddisadvantagesassociatedwitheachmethodwillbepoin-tedouttofacilitatethechoiceofthemostappropriatemethodandequipmentrequiredforaparticularresearchSamplingandanalyzingplantvolatiles–whichmethodtoAllmethodsfortheanalysisofplantvolatilesattempttoidentifytheauthenticproÞleofvolatileblendsemittedbyaplant.However,thechoiceofwhichsystemtouseinaparticularexperimentforcollectionandanalysisofplantvolatilesusuallydependsonthebiologicalproblemandplantmaterialbeinginvestigated(Figure1).First,itneedstobedecidedwhethervolatilesshouldbeanalyzedfromplantsgrownunderlaboratoryconditionsorintheirnaturalhab-itat.Toaddressecologicallyorphysiologicallyrelevantfunctionsofvolatilesinnaturalpopulations,ÞeldcollectionsofVOCsrequireportable,robustandoftensimpliÞedequipment.Incomparison,systemset-upsinthelaboratorycanincludecomputer-assistedsamplecollectionandaddi-tionaldevicestoreducecontaminationandtopreciselycontroltemperature,lightintensity,photoperiodandrelat-ivehumidity.StandardizedconditionsallowthemonitoringofVOCemissionsinresponsetochangesofasinglevariablesuchasherbivoredamage.Volatilesaremostconvenientlycollectedinsituwholeplants.However,itisoftenrequiredtosampleVOCsfromplantpartsororgans,forexampletodistinguishthevolatilesofreproductiveandvegetativetissues,todeter-minestress-inducedVOCemissionsaslocalorsystemicresponsesortocorrelateVOCemissionswithtissue-speciÞcenzymeactivities.Inthiscase,VOCsaresampledeitherfromdetachedplantpartsorpreferablyinsitufromenclosedplantorganstoavoidadditionalemissionofVOCsduetowoundingeffects.Plantvolatileanalysis2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560 Dependentontheplantspeciesinvestigated,VOCemis-sionratesmayvarysigniÞcantlyandhencedeterminewhichinstrumentationisrequiredforadequatecollectionefÞciencyandanalysissensitivity.WhiletraceamountsoftrappedvolatilesmaybesufÞcientforanalyticalpurposes,largerquantitiesarenecessaryforNMRanalysisorbioassays.Inaddition,theresearcherhastodecidewhethertotakeamorequalitativeÔsnap-shotÕofvolatilesreleasedataparticulartimepointortomeasurequantitative,developmentalorstress-relatedchangesinVOCemissionswithappropriatetimeresolution.Finally,specializedequipmentallowingon-lineorhigh-throughputanalysishastobeconsideredforstudiesofplantvolatilemetabolismormutantscreenings.ToguidetheinexperiencedresearcherinthechoiceofappropriateVOCanalysisprotocols,themostimportantmethodsusedtoinvestigatethebiologicalrolesofplantvolatilesandtheirmetabolismarepresentedinmoredetailinthefollowingsections.Samplingvolatilesintheheadspaceofwholeplantsandplantorgans–practicalaspectsandapplicationsVolatileshavebeeninvestigatedmostextensivelyintheairspace(headspace)surroundingabove-groundplantparts.MajorÞeldsofstudyincludeanalysesofßoralvola-tilesinrelationtopollinationbiology,measurementsofvolatilessuchasisoprenereleasedfromphotosynthetictissuesinresponsetochangesinlightandtemperature,andvolatileemissionsinducedbyherbivoredamage.Inmostcases,theemittedvolatileshavetobesampledandconcentratedpriortosubsequentanalysis.Headspacesamplingisanon-destructivemethodforcollectingvola-tiles.Comparedwithsolventextractionsofvolatilesfromplanttissues,headspaceanalysisgivesamorerealisticpictureofthevolatileproÞleemittedbyplantsanddetectedbyinsectsthatrespondtoplantvolatiles,makingthismethodmostsuitableformanyecologicallyrelevantappli-cations.Ingeneral,devicesusedforheadspacecollectionsshouldbefreeofmaterialsthatretainvolatilesorcausebleedingofcompoundsthatmaycontaminatethesystemandinterferewithvolatileanalysis.Commonlyusedmate-rialsthatdonotshowbleedingincludeglass,metalandspecialplasticssuchasTeßon,althougheventhismaterialmaynotbecompletelyinert.DetailsofmaterialssuitablefortheconstructionofheadspacecollectionchamberscanbefoundinMillarandSims(1998).SamplingvolatileorganiccompoundsinstaticheadspaceForstaticheadspaceanalysis,theplantoritspartsareenclosedinacontainerandtheemittedvolatilesaretrappedontoanadsorbent.TheairsurroundingtheplantremainsÔstaticÕ,whichmeansitisnotcirculatedinthechamber.Volatilesareenrichedontheadsorbingmatrixwithoutsamplingimpuritiesofacontinuousairstreamthatmayobscurethedetectionoflow-abundantVOCs.Thus,this LaboratoryMethod requirementsSimplicityPortabilitySensitivityQualitative/quantitativeTime resolution Plant organs– in situ GC supported methods:Static headspace samplingDynamic headspace samplingFast, GC-independent analysis(e.g. PTR-MS) Light and temperature dependent tissues; e.g. isoprene andmonoterpenes (b) Figure1.Strategiesforplantvolatileanalysis.(a)TypicalsourcesofplantVOCemissions.(b)ConsiderationsforplanningVOCanalysisexperiments.DorotheaTholletal.2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560 methodisadvantageousforsamplingVOCsfromlow-emittingplants.Animportantadvanceinstaticheadspaceanalysiswasthedevelopmentofsolidphasemicroextraction(SPME)whichisafastandsimplemethodforcollectingvolatilesatdetectionlimitsintheppbv(partsperbillionbyvolume)range.Solidphasemicroextractionisbasedonad/absorp-tionanddesorptionofvolatilesfromaninertÞbercoatedwithdifferenttypesofad/absorbents.TheÞberisattachedwithintheneedleofamodiÞedsyringeandvolatilescanbesampledbyinsertingtheneedlethroughaseptumofaheadspacecollectioncontainerandpushingtheplungertoexposetheÞber(Figure2).FollowingequilibrationbetweentheÞberandthevolatilesample(afewminutestohalfanhour),theÞberisretractedintotheneedleandcanbetransferredtoagaschromatographfordirectthermaldesorption.SolidphasemicroextractionÞberscanbereusedapproximately100times.ThermaldesorptionofVOCsfromtheÞbereliminatestheneedforsolventsthatmaycontainimpuritieswhichwillinterferewithsampleanalysis.However,bydesorbingtheentiresampleintotheinjector,norepeatedinjectionsofthesamplearepossible.BycarefullyselectingthepolarityandthicknessoftheÞbercoating,compoundsofdifferentpolarityandvolatilityrangingfromhigh-boilingorsemivolatiletovolatilecom-poundscanbesampled(TableS1).Whilethincoatingsensureafastdiffusionandreleaseofsemivolatilecom-pounds,thickercoatingsmaybetterretainhighlyvolatilecompoundsuntilthermaldesorption.Theamountofcom-poundadsorbedbytheSPMEÞberdependsnotonlyonthethicknessoftheÞbercoatingbutalsoonthedistributionconstantoftheanalyte,whichgenerallyincreaseswithitsmolecularweightandboilingpoint.Solidphasemicro-extractionwillnotallowtrappingofsufÞcientamountsofvolatilesforstructureelucidationofunknowncompounds.LargeramountsofVOCscanbesampledonironstirbars,whicharecoatedwiththesamesorbentsasSPMEÞbersandwereoriginallydevelopedtoextractorganiccompoundsfromaqueoussamples(Bicchietal.,2000).ThebarisplacedintheheadspaceoftheplantsampleandtrappedvolatilesarereleasedbythermaldesorptionaftertransferofthebarintotheGCinjectorliner.QuantiÞcationofvolatilesbySPMEisgenerallypossiblebytheapplicationofinternalorexternalcalibration.Toobtainreproduciblequantitativeresults,theÞberandsampleshouldreachequilibrium,atwhichtheamountofanalyteremovedfromtheÞberisproportionaltotheconcentrationofthecompoundinthesample.Equilibra-tiontimeisdependentonthevolatilityandpolarityoftheanalyteandthepropertiesoftheadsorbent.Carefulcontrolofsamplingparameters(samplevolume,tempera-ture,time)andtheuseofappropriatestandardmixturesforcalibrationarecrucialforquantitativeanalysis.How-ever,quantiÞcationbySPMEmaystillbedifÞcultorimpracticalwhendealingwithawiderangeofcompoundswithdifferentdistributionconstants.TheSPMEdeviceandfurtherdetailedinformationonthetheory,optimizationanddifferenttypesofÞberadsorbentsareavailablefromSupelco(Bellefonte,PA,USA).PortableÞeldsamplersarealsoavailablethathaveasealingmech-anismtoallowstorageofsamplesforlateranalysisinthelaboratory.SeveralcompaniesofferGCautosamplerswithaSPMEoptionforrapidprocessingofmultiplevials.How-ever,thesizeandshapeofvialsinthesesamplersareÞxedandoftenimpracticalforsamplingfromplants.Forrapidscreeningofmultiplesamplesinvariabletypesofcontain-ers,anautomatedadjustableroboticarmhasbeendevel-oped(Pham-Tuanetal.,2001).AutomatedSPME-GCallowshigh-throughputanalysisofvolatileproÞlesemittedfromplantpartssuchasßowersorleavesofnaturalvariants,mutantortransgeniclinesasshownbyAharonietal.ArabidopsisthalianaNumerousstudieshaveusedSPMEextractionfortheanalysisofabroadrangeofvolatilecompoundsinfood,air,soilandwatersamples.BiologicalapplicationsincludeSPMEanalysesofVOCsfromwholeplantsorßowerandbarktissues(e.g.Flaminietal.,2002;RohloffandBones,2005;Shaetal.,2004)andessentialoils(e.g.Tomovaetal.,2005).AsanalternativetotrappingVOCsonadsorbents,directheadspacesamplingispossiblebyremovinganaliquotoftheheadspacewithagas-tightsyringeandinjectingitdirectlyintothegaschromatograph(seealsosectionon Fiber holder Plant sample coated fibe r Container seal Figure2.Staticheadspacesamplingwithasolidphasemicroextraction(SPME)device.ForvolatileextractionbySPME,theplantsampleisenclosedinaglasscontainerwithabroadopeningforeasyremovaloftheplant.Theadsorbent-coatedÞberismountedonaSPMEÞberholder,similartoamodiÞedsyringethatisinjectedthroughtheseptumofthesamplecontainer.BypushingtheplungeroftheSPMEÞberholder,theÞberisextendedfromtheneedleandexposedtovolatiles.Aftercollection,theÞberisretractedintotheneedleandtheSPMEdevicecanberemovedfromthecontainerforGCanalysis.Plantvolatileanalysis2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560 VOCanalysistechniquesforstudyingthebiosynthesisofplantvolatilesandtheirroleinstressphysiology).Theprocesscanbeautomatedwithcommercialheadspaceautosamplers.However,directheadspacesamplingre-quiresasufÞcientlyhighconcentrationofVOCsintheheadspacetoprovideatleastnanogramquantitiesinthesampletakenforGCanalysis.Thus,themethodislimitedbytheneedforsatisfactorysensitivity.DespitethelatestadvancesinSPMEtechnology,staticheadspacecollectionhassomecleardisadvantages.Thestaticairspaceaccumulateshumidityaswellasheat,especiallywhensamplesarecollectedunderillumination,andtheseconditionsmayinterferewithnormalphysiologi-calprocessesandaffecttheemissionofvolatiles.Becausenotalloftheemittedvolatilesareremovedduringonesamplingtime,changesinemissionovertimewillbedifÞculttodetermine.Inconclusion,staticheadspacesamplingissuitedforqualitativeanalysesofVOCsandsurveysofVOCproÞlesofdifferentplantspeciesorcultivarsatasingletimepointratherthanforquantitativemeasure-mentsofchangingVOCemissions.DynamicheadspacesamplingtechniquesDynamicheadspacesamplingrepresentsthemostfre-quentlyusedtechniqueinallareasofplantvolatileanalysis.Inthissamplingmethod,acontinuousairstreamßowsthroughthesamplecontainerasacarriergas,whichincreasestheheadspacesamplesize.Whiletheanalytesaretrappedonadsorbents,thecarriergasiscirculatedthroughorpurgedoutofthecontainer,allowingforthecollectionofamountsofvolatilessufÞcientfordetectionandevenstructureelucidation.Inopendynamicheadspacesystemsinparticular,someoftheproblemsrelatedtoastatichead-spacesuchasincreasesintemperatureandhumidityoranaccumulationofdeleteriousvolatilesintheheadspaceareeliminatedbyaconstantairstream.However,careneedstobetakentoprovidecleanincomingairthatisÞltered,forexamplethroughactivatedcharcoal,toavoidinterferenceofimpuritieswithheadspacevolatilecompoundsintheensu-inganalyticalsteps.Inmostcasesofdynamicheadspaceanalysis,volatilesaretrappedandenrichedonanadsorbingmatrixpriortotheiranalysisbyGC.Alargenumberofdifferentadsorb-entmaterialsareavailableandseveralreviewshaveprovidedexcellentinformationregardingtheirchoiceandapplications(DettmerandEngewald,2002;LinskensandJackson,1997;MillarandSims,1998;RagusoandPellmyr,1998).TableS1givesanoverviewofthemostcommonmatricesincludingcarbon-basedadsorbentsandorganicpolymers,withinformationontheirthermalstability,bindingafÞnitiesandartifactscausedbyreac-tionsoftheadsorbingmaterialitselfortheadsorbedVOCsonthematrixsurface.Theadsorbentmaterialisusuallypackedinsidenarrowglassormetaltubesinbedsofapproximately2Ð50mmbetweenglasswoolplugsormetalgrids.Theaircontain-ingtheVOCsispassedthroughtheadsorbentbedataparticularßowrateduringthesamplingprocess.Trappedvolatilescanbeelutedfromtheadsorbingmatrixintoglassvialswithpuresolventsormixturesoflow-boiling-pointorganicsolvents.ThesolventshouldcontainadeÞnedamountofoneortwostandardcompounds(e.g.1--octane)forsemiquantitativeanalysis.AdsorbentmaterialswithhighthermalstabilitysuchasTenax,carbonmolecularsievesandgraphitizedcarbonblackscanbeemployedinthermaldesorptionofVOCsasanalternativetosolventextraction.Inthermaldesorption,VOCsaredirectlyreleasedfromtheadsorbentunderhightemperaturesandareusuallyconcentratedbycryofocusingpriortoseparationbyGC(seebelow).Comparedwithsolventextraction,thermaldesorptionprovidesincreaseddesorptionefÞcienciesandpreventssampledilution,lead-ingtoincreasedanalyticalsensitivity.Otheradvantagesarereducedmanualsamplepreparationtimesandtheavoid-anceofimpuritiesintheorganicsolventinterferingwithGCanalysis.However,thermaldesorptionisnotfreeoflimitations,whichincludethelackofrepeatedsampleinjectionsandtheoccurrenceofartifactsduetothedegradationofthermallyunstablecompoundsorreactionsofthetrappingmedia(TableS1).AmajorproblemwithalltrappingmaterialsistheirincompleteadsorptionofVOCs.Forexamplecarbon-basedmatriceshaveveryspeciÞcafÞnitiesforVOCs.ThosematerialsthateffectivelytrapVOCsoflowpolarityandlowmolecularweightareinefÞcientforadsorbingVOCswithoppositecharacteristics.Therefore,whencollectingcom-plexmixturesofVOCscaremustbetaken,andeventuallymorethanoneadsorbentmayberequiredtotrapablendthatisqualitativelyandquantitativelyrepresentative.Thisisespeciallycriticalwhenthemixtureisusedforsubsequentbioassayssuchasinsectattractionexperiments.Thisprob-lemcanbesolvedbyÔmultiplelayeradsorptionÕwherecarbonmatriceswithdifferentretentioncharacteristicsareplacedinserieswithairßowingÞrstintothematrixadsorbingveryvolatileVOCs(e.g.CarbographandCarbo-trapC).ThetheoryandpracticeofVOCsamplingwithmulti-bedtubesgobeyondthescopeofthisreportandhasbeenextensivelydetailedelsewhere(Cicciolietal.,2002).Multi-bedtubesarecommerciallyavailable(e.g.Carbotrap/CarbosieveSIIIbeds,MarkesInternational,Pontyclun,UK)orcanbeself-made(Schnitzleretal.,2004b).Closed-loopstripping.Closed-loopstrippingsystemshavebroadutilityforthecollectionofherbivore-inducedvolatiles,asshownforinducedVOCemissionsfromlimabean,aswellasfortrappingvolatilesfromdetachedßowers(Dudarevaetal.,2005;Kochetal.,1999;Tholletal.,2005).IntheseDorotheaTholletal.2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560 systems,volatilesarecollectedduringcontinuouscircula-tionofheadspaceairinsideclosedchambers.Asimpleclosed-loopstrippingsystemdevelopedbyBolandetal.(1984)andDonathandBoland(1995)consistsofsmall1-or3-lglassdesiccatorstowhichaircirculationpumpsareat-tached(Figure3).Plantsorplantpartsareplacedinsidetheglasschambersandheadspaceairiscontinuouslycirculatedthroughavolatiletrapplacedinastainlesssteelhousing,allowingquantitativetrappingoftheemittedVOCs(DonathandBoland,1995).Sincethecirculationofairinaclosedsystemminimizestrappingofaircontaminantsascomparedwiththeairßowinanopensystem(seebelow),closed-loopstrippingisapplicabletoVOCanalysesofplantswithlowvolatileemissions.Forexample,thesmallßowersofthemodelplantA.thalianashowasigniÞcantlyreducedemis-sionrateofvolatilescomparedwithßowersofhighlyscentedplants(Chenetal.,2003)makingitvirtuallyimpossibletocollectvolatilesfromasingleßower.ForadetailedanalysisofArabidopsisßoralterpenevolatileproÞles,70Ð120detachedinßorescenceswereplacedinsmall,water-containing,glassbeakersinsideasealed1-ldesiccator,andtheclosed-loopstrippingprocedureaccordingtoDonathandBoland(1995)wasapplied.Followingthecollectionofvola-tileson1.5mgcharcoalor25mgSuperQtrapsfor8h,compoundswereextractedfromthetrapswith40Ð100dichloromethaneandanalyzedbyGC-MS.Forcomparativeanalysisofvolatilesfromundetachedßowers,ßoralvolatilesweresampledbysemi-opendynamicheadspacevolatiletrapping(seebelow)forasimilarlengthoftimefromwholeßoweringplantswithanequivalentnumberofinßores-cences.ProÞlesandcompositionsofßoralvolatilesobtainedbybothmethodswerehighlycomparable.However,volatileproÞlesobtainedwiththeclosed-loopstrippingmethodshowedasigniÞcantlyhighersignaltonoiseratioduetothetrappingoffeweraircontaminants.Inthisway,minorcom-poundsofthecomplexßoralterpenevolatilemixturecouldbeanalyzed(Chenetal.,2003;Tholletal.,2005).SignaltonoiseratiosmaybeimprovedevenfurtherbysamplingVOCsfromalargernumberofinßorescences.Otheradvantagesofclosed-loopstrippingsystemsarethattheyareeasytosetupincontrolledclimatechambersanditispossibletocollectVOCsfromseveralindividualplantsatthesametime,whichmakesthismethodsuitableforscreeningpurposes.However,resultsfromclosed-loopstrippingsamplingshouldalwaysbecomparedwiththoseobtainedbyopenheadspacetrappingtoexcludeartifactsduetoeffectsontheenclosedplantcausedbychangesintheatmosphereofthechamberintheabsenceofairexchangewiththeoutsideofthechamber.Inaddition,volatilessuchasethylenethatarenottrappedontheadsorbingmaterialmayaccumulateinthechamber,andrelativehumiditymightincreasewithoutoccasionalventingofthesystembetweentrappingcycles.‘Pull’and‘push–pull’systems.Incontrasttoclosed-loopstrippingdevices,pullorpushÐpullsystemsoperatewithaconstantßowofairwhichistakenupfromtheoutsideandleavesthesystemwiththevolatilesemittedbytheplant.Inapullsystem,airispulledovertheplantsamplethroughanadsorbenttrapthatisconnectedtoavacuumpump.Asimpleformofapullsystemisanadsorbenttrapthatisdirectlypositionednexttoaplantoraplantorganwithoutanyfurtherenclosureoftheplant(Burgeretal.,1988).Inopen-topchambers,theplantoritspartsareplacedinacontainerthatallowstheßowofambientairwithoutpriorcleaning(Figure4a,b).Halitschkeetal.(2000)haveusedsuchsystemtoinvestigateherbivore-inducedvolatileemissionsofhydroponicallygrownNicotianaattenuataplantsorleavesofsoil-grownplants,andKaiser(1991)hasappliedsimilardevicesforsamplingofßoralvolatiles.Theset-upisrelativelysimple,inexpensiveandhighlyportablemakingitsuitableforsimultaneouscollectionsfrommanychambersandforsamplingintheÞeldasshownbyKesslerandBaldwin(2001).Thissystemworkswellforplantsthatemithighamountsofvolatiles;however,theriskishighoftrappingimpuritiesfromtheambientairunrelatedtotheinvestigatedVOCblendthatwillobscurethedetectionofminorsamplecompoundsduringGCanalysis.Byenclosingplants,leavesorßowersentirelyinaglasscontainerorapolyacetatecookingbagthatreleasesveryfewvolatiles(Dobson,1991),theamountofimpuritiesfromambientairmaybereduced.AirentersthecollectionchamberthroughapurifyingÞlterandisdrawnfromthechamberbypullinga TDFS Figure3.Volatilecollectionbytheclosed-loopstrippingprocedure.Thephotographshowscollectionofvolatilesfromdetachedsnapdragonßowersduringfeedingwithisotope-labeledprecursors(Dudarevaetal.2005).Airiscontinuouslycirculatedthroughtheglasscontaineratßowratesof2Ð3lmin.P,circulationpump;T,steelhousingcontainingthevolatiletrap;S,Teßonstopperwithholesforpumpadaptors;D,1-ldesiccator;F,detachedsnapdragonßowersinaglassbeakerwiththefeedingsolution.Plantvolatileanalysis2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560 deÞnedvolumethroughtheadsorbenttrapthatisextractedforfurtheranalysis.Suchdeviceshavebeendescribedbyetal.(2003)andRagusoandPellmyr(1998)forheadspaceanalysisofvolatilesfromsnapdragonandßowers.Caremustbetakentoachievehomogen-eousairßowovertheplantandasufÞcientßowratemustbesettopreventincreasesintemperatureandhumiditywhenthesystemisexposedtodirectsunlight.Ifaßexiblecookingbagisused,itmaycollapseanddamagetheplant,whichmayaltervolatileemission.InpushÐpullsystems(Figure4c),airispushedintotheheadspacesamplingcontaineratarateregulatedbyaßowmeter.Priortoenteringthechamber,theairiscleanedbyßowingthroughapurifyingÞltermaterialsuchascharcoalthatadsorbsimpuritiesandmaybehumidiÞedatadesiredratebymixingitwithasecondairstreamwithsaturatinghumidity.Insidethecontainer,auniformairßowovertheplantshouldbecreated.Aportionoftheairispulledoutofthechamberthroughanadsorbenttrapconnectedtoavacuumpump.Theßowrateoftheoutgoingairstreamisregulatedbyasecondßowmeter,allowingthecollectionofadeÞnedpercentageofthevolatilesemittedbytheplant.Theremainingairßowescapesthecollectionchamberthroughaventpreventingoverpressure.Comparedwithpullcollectiondevices,thissystemoffersmoreßexibilityinregulatingin-andoutgoingairßowdependentontheemissionratesofVOCsintheinvestigatedplant.Wehaveemployedthissystemtocollectvolatilesfromaphid-infes-tedplantsoverseveraldays(Kunertetal.,2005)andtrapVOCsfromßoweringArabidopsisplantsover8h(Chenetal.,2003).Insomeapplicationsitisdesirabletocollectvolatilesfromonlycertainpartsoftheplant,suchasthosereleasedfromundamagedleavesafterlocalizedherbivoredamage(Figure4d).Whileleavingtheherbivore-damagedleavesoutsidethecollectionsystem,headspacefromupperundamagedleavescanbecollectedforseveraldaysasdemonstratedforVOCemissionsfromGossypiumhirsutumetal.,1996).Suchmeasurementsweremadepossiblebyusingopen-bottomedglasscollectionchamberssetontopofamultiportguillotinebase.Theguillotinebasecontainsconcentricgas-samplingportsandtwoTeßon-coatedremovablebladesthatclosethebottomofthechamberaroundthestemoftheplant,leavinganopeningforthestemwherethebladesÞttogether(Figure4d).Thepositive-pressureventingaroundthestempreventsambientairfromenteringthecollectionchamber.Thissystemallowsforthecollectionofvolatilesfrompartsofintactgrowingplantswhilecompletelyisolatingthelowersectionoftheplantincludingsoilandpots(HeathandManukian,1994;etal.,1996).ThetechniquewasdescribedindetailbyHeathandManukian(1992)andhasbeenautomatedto Vent Ambient airin (a) airin Vacuum Vacuum Air in Volatile Vacuumpump Figure4.Examplesofdynamicheadspacecollectionsystems.(a)InasimpleÔpullÕheadspacecollectionchambertheplantisenclosedinanopen-topcontainer.Anairstream,regulatedbyaßowmeter,ispulledovertheplantandthroughaVOCcollectingadsorbenttrap.(b)AÔpullÕheadspacecollectiondevicewithanopen-topchamberforcollectingVOCsfromasingleleaf.(c)InaÔpushÐpullÕheadspacecollectionsystem,pressurizedairentersthetopofthecollectionchamberregulatedbyaßowmeter.IncomingairispuriÞedbypassingthroughacharcoalÞlterplacedbehindorinfrontoftheßowmeter.Alternatively,high-puritysyntheticairmaybeused.Afterpassingovertheplantsample,theairispulledthroughanadsorbentvolatiletrapatthelowersideofthechamberatadeÞnedratecontrolledbyasecondßowmeter.Excessaircanescapethroughtheventonthelowersideofthechamber.(d)ExampleofamodiÞedÔpushÐpullÕheadspacecollectionchamberforcollectingVOCsfrompartsofaplant.Teßon-coatedguillotine-likebladesclosethebaseofthechamberaroundthestemoftheplantallowingtrappingofVOCsfromtheupperpartoftheplant.DorotheaTholletal.2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560 monitortime-dependentchangesinVOCemissionsbyswitchingtrapsfordrawingsamplesatdeÞnedtimeinter-valsoverseveraldays(HeathandManukian,1994;Manu-kianandHeath,1993).Forexample,rhythmicvolatileemissionsfromßoweringMirabilisjalapaweremeasuredwiththissystemoveratimecourseof48h(Effmertetal.2005),anditwasalsosuccessfullyappliedfortime-courseanalysesofherbivore-inducedVOCemissionsfrommaize(DegenhardtandGershenzon,2000).Theentirecollectionchambercanbeinstalledinagreenhouseorinaclimatechambertocontrolenvironmentalparameters.BesidespushÐpullsystems,otherlaboratorieshavedesignedcollectionchambersinwhichpressurizedairenteringthecontainerispushedthroughtheadsorbenttrapwithoutapplyingadditionalvacuum(ÔpushÕsystems,Dickeetal.,1999;Kunertetal.,2002).InthesesystemscontainersmustbesealedwelltopreventleakageoftheaircontainingVOCs,andnewuncloggedvolatiletrapsshouldbeusedtopreventoverpressureandensureefÞcientairßow.InmostofthesystemspresentedaboveenvironmentalparametersaresimplyregulatedbytheconditionsoftheclimatechamberandmanualadjustmentoftherateofairßowandairhumidiÞcationinsidethecollectiondevice.SystemswithimprovedautomatedparametercontrolshavebeendescribedbyJakobsen(1997),forexample,whichcontainelectronichumiditysensorsinsidetheheadspacechamberandtemperaturecontrolbycontinuouscirculationofwaterbetweendoublewallsoftheglasscontainer.Smallersystemsusingcuvetteswithcomparableparametercontrolhavebeendeveloped(foradetaileddescriptionseethesectiononVOCanalysistechniquesforstudyingthebiosynthesisofplantvolatilesandtheirroleinstressphysiology)formeasurementsofVOCsfromleavesorGaschromatographicseparationanddetectionofplantPlantVOCstrappedonadsorbingmatricesareroutinelyanalyzedbythestandardtechniqueofGC.Awealthoflit-eratureisavailabledescribingGCanalysisprotocolsandrecentadvancesinGCanalysistechnology,ofwhichonlyasmallportionwillbecoveredinthispaper(e.g.DewulfandVanLangenhove,2002;HandleyandAdlard,2005;Lock-wood,2001;Marriottetal.,2001;Merfort,2002;Ragunathanetal.,1999).ForGCanalysisofVOCs,samplesareeitherinjectedassolventextractsintotheheatedinjectorinasplitorsplitlessmodeordesorbedfromtheadsorbentbyplacingitdirectlyinathermaldesorptiontube,heatedto250Ð300C.Inatwo-stagethermaldesorber,thethermallyreleasedvolatilesareconcentratedbyacoldtrap(orcryotrap)priortotheirinjectionintotheGCcolumn.Recenttechnologyhasledtothedevelopmentofon-linesystemswhichcombinevolatilesamplingwithautomatedthermaldesorption(seebelow).Furthermore,aninterestingmethodhasbeendescribedfordirectthermaldesorptionofvolatilesfromßoralorgansbyplacingtheminquartzmicrovialsthatareinsertedintoamodiÞedGCinjector(JurgensandDotterl,2004).CaremustbetakentopreventdecompositionofcompoundsathighForanalyticalpurposes,volatilesarecommonlysepar-atedonfusedsilicacapillarycolumnswithdifferentstation-aryphases,suchasthenon-polardimethylpolysiloxanes(e.g.DB-1,DB-5,CPSil5),andthemorepolarpolyethyleneglycolpolymers,includingCarbowax20M,DB-Wax,andHP-20M.Morein-depthguidanceoncolumnselectioncanbeobtainedfromcolumnvendors.FollowingseparationonaGCcolumn,volatilecom-poundscanbeanalyzedbyavarietyofdifferentdetectors.Flameionizationdetectors(FID)arecommonlyusedforquantitativeanalysisbecauseoftheirwidelineardynamicrange,theirverystableresponseandtheirhighsensitivitywithdetectionlimitsoftheorderofpicogramstonanogramspercompound.Anotherdetector,preferredfortheanalysisofvolatileterpenes,isthephotoionizationdetector(PID)whichisconsiderablymoresensitivethantheFIDinthepresenceofreactivedoublebondsbutrequirescarefulcalibrationforquantitativeanalysis.Massspectrometry(MS)detectorsarethemostpopulartypeofdetectorforroutineplantvolatileGCanalysis.InthemassspectrometersofmoststandardGC-MSbench-topinstruments,compoundsexitingtheGCcolumnareionizedbyelectronimpact(EI)andtheresultingpositivelychargedmoleculesandmoleculefragmentsareselectedaccordingtotheirmass-to-charge()ratiobyenteringaquadrupoleiontraporaquadrupolemassÞlter.Totalionchromatogramsareobtained,whichprovideinformationontheretentiontimeofeachcompoundanditsmassspectrumconsistingofacharacteristicionfragmentationpattern.Detectionlimitsofhighlysensitivemassspec-trometersareinthepicogramrangeforthefullscanmode(scanningionsoverawidemolecularrange)andmaybeaslowasinthefemtogramrange(inquadrupolemassÞlters)intheselectedionmonitoring(SIM)modescanningselectedionsthatarerepresentativeofacompound.QuantiÞcationispossibleinfullscanorSIMmode,butrequiresthoroughcalibrationforeachindividualForidentiÞcationofcompoundsinGC-MSanalysis,suggestionscanbeobtainedfrompopularmassspectrallibrariessuchasWileyandNISTMSdatabasesanddatabasesprovidingretentionindexdatasuchastheKovatsindexsystem,relatedto-alkanes(seeTableS2).However,identiÞcationbasedsolelyonretentionindicesorlibrarymassspectraldataisnotreliableandoftenleadstofalseassignments.AcorrectidentiÞcationrequiresatleastthedeterminationofKovatsindicesontwocolumnswithPlantvolatileanalysis2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560 differentpolaritiesandamatchofthemassspectrumofthecompoundofinterestwiththatofanauthenticstandard.Asimpleco-injectionofsampleandstandardononlyasinglecolumnisnotsufÞcient.Ion-trap-derivedmassdatamaybelesssuitableforidentifyingunknowncompoundsduetopoormatcheswithavailableMSlibraries.Massspectraobtainedbysofterchemicalionization(CI)insteadofEIshowlimitedmolecularfragmentationbutarehelpfulforobtainingstrongermolecularions,especiallyforaliphaticInadditiontotheidentiÞcationofthebasicstructureofplantVOCs,itisoftendesiredtodeterminetheirchiralitysincetheenantiomericcompositionofvolatilescanbecrucialintheirroleaschemicalsignals.Severalenantiose-lectivecapillarycolumnsareavailable(Schurig,2001)withchiralphasessuchasdifferenthydrophobiccyclodextrinderivatives(Bicchietal.,1999;KonigandHochmuth,2004).Generally,acylatedcyclodextrinderivativesarepreferredforseparatingpolaranalytes,whilenon-polarcompoundsarebetterresolvedonpre-alkylatedcyclodextrinderivatives.TheapplicationofchiralseparationinßavorandfragranceanalysisandenantiomericidentiÞcationofsesquiterpenehydrocarbonshasbeenwelldocumentedbyMaasetal.(1994a,b),Schreieretal.(1995)andKonigandco-workers(e.g.KonigandHochmuth,2004;Koetal.,1992).Becauseblendsofplantvolatilescanconsistofmanychemicallydiversecompoundsaswellasisomers,asimpleGC-MSanalysisrunmightnotbesufÞcientfortheidentiÞ-cationofallproducts.Tandemmassspectrometry(MS-MS)hasbeenestablishedallowingseparateanalysesofsinglecompoundsofcomplexGCpeaks(Graneroetal.,2004;etal.,1999).InMS-MS,ionsofinterest(parentions)aremass-selectedandtypicallyfragmentedbycolli-sionwithaneutralgasfollowedbymassanalysisoftheresultingproductions.Furthermore,GC-MSanalysiscanbecomplementedbycapillaryGCÐFouriertransforminfraredspectroscopy(FT-IR).ThisspectroscopicmethodhasbeenemployedtodifferentiatecloselyrelatedisomerswithverysimilarEImassspectra(Ragunathanetal.,1999).Fouriertransforminfraredspectroscopyprovidesinformationontheintactmolecularstructureandallowsuniquespectratobeobtainedevenforsimilarisomers.TheutilityofGC-FT-IRislimitedbydifÞcultiesinquantiÞcationandtime-consu-mingdatainterpretation,althoughagrowingcollectionofhigh-qualitydataisprovidedbytheSadlerdatabase(SadlerDivisionofBio-Rad,Philadelphia,PA,USA).IfitisimpossibletoseparatecomplexvolatilemixturessufÞcientlyonasinglecolumn,two-dimensionalcapillarygaschromatographycanbeused.Here,compoundsareseparatedonaÞrstcolumnfromwhichselectedfractions(heart-cuts)aredirectedtoanothercolumnastheseconddimension.Thisapproachhasbeenused,forexample,todeterminetheenantiomericcompositionofmonoterpenehydrocarbonsintissuesofPiceaabiesbycombiningaconventionalGCcolumnwithachiralcolumn(Borg-Karlsonetal.,1993).Morerecently,so-calledÔcomprehensiveGCsystemsÕhavebeendevelopedthatconsistoftwocolumnswithdifferingpolaritythataredirectlycoupledbyacryogenicmodulatorcompressingregionsoftheefßuentfromtheÞrstcolumnandinjectingtheminthesecondcolumn.Thesimultaneoustwo-columnseparationleadstoasigniÞcantincreaseintotalseparationspace.ThemethodisofparticularinterestintheÞeldofanalysisofessentialoilstoincreasepeakresolutionandimprovequantiÞcationoridentiÞcationofvolatilecomponents(Dietal.,2004;Marriottetal.,2003).TheidentiÞcationofchemicalÞngerprintsviacomprehensiveGCGCmaybeofinterestinthestudyofplantspecieswithverycomplexpatternsofnaturalvariationinvolatileblends.AnotherrecenttrendinGCanalysisofVOCsparticularlyfavoredbyresearchersinvolvedinessentialoilanalysisisthedevelopmentoffastgaschromatography.FastGCanalysisiscarriedoutin3Ð5minwithacomparableefÞciencytoconventionalhigh-resolutionGConthesamematrices(MatisovaandDomotorova,2003).TheapplicationoffastGCcouldbeconsideredforhigh-throughputanalysesinVOCmetaboliteproÞling.However,fastGCrequiresadditionalnon-standardinstrumentationtosupport,forexample,fasttemperaturechangesandhighinletpressures.ForefÞcientdetectionofcompoundsincombinationwithfastGCanalysisandcomprehensiveGCGC,theuseoftime-of-ßight(TOF)-MSdetectorshasbeendiscussed(Ma-tisovaandDomotorova,2003).ThetechniqueofTOF-MS,generatinginstantaneousmassspectra,incombinationwithpeakdeconvolutionalgorithms,resultsinincreasedratesofacquisitionofmassspectraldata(upto5000massspectrasec)comparedwiththoseofquadrupoleMSandallowstheidentiÞcationofoverlappingpeaks.Whethertheresearcherneedshigh-speedGCanalysisorimprovedsampleresolutioncapacity,asdescribedabove,hastobedecidedonacasebycasebasis.TheidentiÞcationofallcompoundsofavolatileblendisnotalwaysrequiredandrelativelysimpleVOCproÞlesmaystillbeanalyzedbystandardGC-MS.However,ongoingadvancesinGCtechnologywillcertainlyfurtherimproveseparationefÞciencyandanalysistimeeveninroutineFinally,theelucidationofthestructureofunknownvolatilecompoundsmeritssomegeneralremarks,althoughdetailsarenotwithinthescopeofthispaper.Multipleanalyticalstepsusuallyneedtobeconsideredforunequi-vocaldetermination.Mostoftenamountsofasinglecom-poundsufÞcientforone-andtwo-dimensionalnuclearmagneticresonance(NMR)analysistechniquesneedtobeisolatedonapreparativescaleusingpreparativepackedGCcolumnsandthick-Þlmcapillarycolumnswithhighlyselect-ivecyclodextrinmatrices(KonigandHochmuth,2004).ArecentpublicationbyNojimaetal.(2004)describesasimpleDorotheaTholletal.2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560 andefÞcienttechniqueforpreparationofNMRsamplesofvolatilechemicalsusingamicropreparativeGCsystem.TodeterminetheabsoluteconÞgurationofanovelcompound,itcanbecomparedwithasyntheticreferencecompoundusingenantioselectiveGC.Ifnosyntheticrefer-encecompoundisavailable,chemicalcorrelationisapplied,meaningthatthenewstructureischemicallymodiÞedtoaknowncompoundoraproductthatcanbecomparedwithaproductderivedfromastructurewithknownabsoluteconÞguration(KonigandHochmuth,2004).MonitoringenvironmentallydependentchangesofVOCManyinvestigationshavedocumentedthatemissionsofplantvolatilesshowtime-dependentchanges.Forexample,emissionofßoralvolatilesoftenfollowsrhythmscontrolledbydiurnalorcircadiancycles.Manyplantsemitlow-molecularterpenevolatilessuchasisopreneandmono-terpenesfromphotosynthetictissuesinalight-andtemperature-dependentmanner.Furthermore,thereleaseofvolatilesasdirectorindirectdefensesignalscanbeinducedbyherbivoredamage.Inordertomonitorchangesinvolatileemissionsinresponsetotheseenvironmentalfactorsandcorrelatethemwithalterationsinphysiologicalparameters,geneexpressionandenzymeactivities,volatileproÞlesandemissionratesneedtobedeterminedatmul-tipletimepoints.AutomateddynamicheadspacecollectionsystemsasdescribedearlierallowsamplingofVOCsatpre-deÞnedtimeintervals.However,samplestrappedinthesesystemsneedtobedesorbedandsubsequentlyanalyzedbyGC.Thisstandardoff-lineGCanalysisexcludesthepossibilityofrecordingfast-changingemissionsofvola-tiles,whichoccurontimescalesofsecondsandminutes.ThisdeÞciencyhasledtothedevelopmentofseveralon-linetechniquescombiningafasttimeresponsewithlowdetectionlimits.Dynamicheadspacesamplingwithon-linethermalAVOCanalysissystemwithmoderatetimeresolutionwasdevelopedbyattachinganautomateddynamicheadspacesamplingsystemtoanon-linethermaldesorptiondevice(GerstelOnline-TDSG,Gerstel,Germany).TheGerstelOn-line-TDSconsistsofathermodesorptionunitconnectedtoacryofocusingdeviceforrefocusingoftheanalytepriortoGCinjection.Byregulatingthemassßow,thesystemcanautomaticallydrawvolatilesamplesandswitchbetweensamplingandthermodesorption.Vercammenetal.connectedtheTDS-Gsystemtotwosamplechambers,theheadspacesofwhichwereanalyzedconsecutivelyusingarotaryvalve.Atimeresolutionof5Ð60mincanbeachieveddependingonthetimenecessarytocollectsufÞcientamountsofVOCsfromtheemittingplantandthetimeforGCseparation.On-linethermaldesorptionwasalsoemployedbyAharonietal.(2003)forcollectionsofVOCsFastandtransportableGC(zNoseArecentlydevelopedminiaturizedGCinstrument,the(ElectronicSensorTechnology,NewburyPark,CA,USA;Figure5),combinesfasttrappingofVOCswithfaston-lineGCanalysis.Theinstrumentoperateswithahighlysensitivesurfaceacousticwave(SAW)quartzmicrobalancedetector,inwhichVOCanalytesarecondensedonthesur-faceofanoscillatingcrystal.Thisleadstoanincreaseintheoscillatormassandlowersthevibrationalfrequencypro-portionaltotheamountofcondensate.DuetothehighsensitivityoftheSAWdetector(intheppbvrange)thetimeforvolatilesamplingonaTenaxtrapcanbereducedto20Ð40sec.Followingrapidthermaldesorption,compoundsareseparatedonacapillarycolumn(DB-5)of1or5mlengthandquantitativelyanalyzedbytheSAWdetector.Becauseoftheshortoperationtimeandfullyautomatedsamplinganddataacquisition,airsamplescanbecollectedintimeinter-valsaslowas3minoverlongerperiodswithoutsupervi-ThezNosehasbeenemployedformonitoringrhythmicVOCemissionsfromßowersandinducedVOCemissionsfromherbivore-damagedplants(Kunertetal.,2002).A traps Figure5.MonitoringofinducedplantVOCemissionsbyfastandtransport-ableGC(zNose)accordingtoKunertetal.Detachedplantletsoflimabean(Phaseoluslunatus)wereplacedinaglassvialcontainingasolutionofthefungalelicitoralamethicinandtransferredtoasealed4-lglassvessel.PressurizedpuriÞedairpassesthroughtheglasscontainer(dashedarrows)ataßowrateof120mlminandexitsthechamberthroughacharcoalÞlteradsorbenttrap(ÔpushÕsystem).Volatilesaretrappedonadsorbentcartridgesin4-hsamplingperiods.Simultaneously,airsamplesareanalyzedevery15minbythezNosewithasamplingtimeof20sec.Volatileemissionsweremonitoredfor4days.RecordingsofVOCemissionproÞleswerecomparablebetweenadsorbenttrappingandzNosemeasurements,withasigniÞcantlyhighertimeresolutionobtainedbyPlantvolatileanalysis2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560 limitationofthisGCistheshortcolumnwhichreducestheresolutionofVOCswithsimilarretentiontimessuchasmonoterpenesorsesquiterpenes.However,theinstrumenthasbeenausefultoolforfastquantitativeestimationsofknownvolatileproÞles,whichmakesitapplicableformeasuringfastchangesinVOCemissionsorscreeningVOCsonahigh-throughputbasis.Evenmoreimportant,theportabilityoftheinstrumentallowssuchmeasurementsnotonlyinthelaboratorybutalsoinÞeldexperiments.Real-timeanalysisofvolatileterpenesandotherVOCsinplantheadspaceandtheatmosphereByfarthemostadvancedtechnologyemployedfortheanalysisofplantvolatileemissionsinrealtimehasbeendevelopedinrecentyearsintheÞeldofatmosphericchemistry.TheparticularinterestinfastmonitoringofVOCssuchasisopreneandotherlow-molecular-weightisopre-noidsthathavesigniÞcantimpactonozoneandaerosolformationhasstimulatedthedevelopmentofdifferenton-linedetectionsystems.High-frequencysamplingisdesiredformeasurementsofvolatileßuxintreecanopieswhereterpenevolatilesshowhighandrapidreactivitywithactivechemicalspeciesintheatmosphere.HillsandZimmerman(1990),fromNCARinBoulder,Colorado,describedtheFIS(fastisoprenesensor)chemilu-minescencedetectorforon-linedetectionofisopreneinair.Thissensor,incombinationwithacuvettesystem,allowedtheÞrstreal-timeobservationoffastchangesinisopreneemissionsfromleaves(HillsandZimmerman,1990;Monsonetal.,1991).Inthechemiluminescencedetector,isoprenereactswithozone,producingformaldehydeinanexcitedstate.Thisreactionproductsubsequentlyrelaxestothegroundstateemittinglightat450Ð550nm,whichisdetectedbyablue-sensitivephotomultipliertubewithadetectionlimitof400partspertrillionbyvolume(pptv)forisopreneandaresponsetimeof0.1sec.ThedetectionisspeciÞcforisoprenesinceothernaturallyabundantvolatiles,forexam-plemonoterpenes,areweakemittersofozone-inducedchemiluminescence(HillsandZimmerman,1990).ThisinstrumenthasbroughtaboutsigniÞcantprogressintheunderstandingofisopreneemissionbyplants(e.g.BruemannandSchnitzler,2002a;Rosenstieletal.,2003;Sings-aasandSharkey,1998)andthedeterminationofisopreneßuxesfromforestcanopies(e.g.Fuentesetal.,1996)andwillremainasigniÞcantinstrumentforthestudyofisopreneßuxes.However,becauseofitsspeciÞcity,itsuseislimitedtoisopreneresearch.Overthelastdecade,laser-basedinfraredphotoacoustic(PA)spectroscopyhasbeendevelopedasanadditionalversatiletoolforsensitivereal-timedetectionofplantvolatilecompounds.Forexample,CO-basedPAspec-trometerswereusedforthedetectionofthephytohor-moneethylene(Arimuraetal.,2002;Waetal.,1999).Thetechniqueisbasedonthestrongabsorptionoftheinfraredwaveband(3Ð10m)byvolatilehydrocarbons,aldehydesandalcohols.Themeasuringprincipleisthedetectionofsoundwaves:absorptionofdistinctpulsedlaserlightbyvolatilesleadstoheatingandconsequentexpansionofthegassample,resultingintheappearanceofsoundwaveswhichcanbedetectedphotoacoustical-lybyverysensitivemicrophones(HarrenandReuss,RecenttechnicaldevelopmentsshowedthatCO(carbonmonoxide)overtonelaserscanbeusedforon-linedetec-tionofisoprene(Dahnkeetal.,2000;Wolfertzetal.,2003,2004),andoxygenatedcompoundssuchasacetaldehydeetal.,2000;Zuckermanetal.,1997)enlargingtheÞeldofapplicationofPAspectroscopyinplantphys-iology.Forexample,thetechniqueallowsthedetectionofisoprenedowntoafewppbvwithatimeresolutionof1mininacontinuousgasstream.However,PAspectros-copyisstillaverysophisticatedon-linetechnology,whichneedssomefurtherdevelopmentstoÞnditswayintotherepertoireoftechniquescommonlyappliedinanalysisofbiogenicvolatiles.Inparticular,futureeffortsarenecessarytoreducethesizeoftheinstrumentsused,forgreatermobility,andtodemonstrateabroaderapplicationofthisspectroscopictechniquetotheanalysisofothervolatileetal.(1995)andLindingeretal.(1998a,b)reportedonthedevelopmentofprotontransferreactionÐmassspectrometry(PTR-MS),acombinationofaprotontransferreactiondrifttubeandaquadrupolemassspectrometer.Theinstrument,whichiscommerciallyavailablefromIoniconAnalytikGmbH,Austria,principallyallowsfastdetectionofmostVOCsincombinationwithlowdetectionlimits(10Ð100pptv).ProtontransferreactionÐmassspectrometrycanreplaceGC-MSinmanyapplicationsofVOCanalysisandachievearesponsetimemeasuredinsecondspercom-pound.ThefundamentaldifferencefromconventionalMSisthatPTR-MSusesÔsoftÕchemicalionizationofVOCmole-culesbyreactionwithhydroxoniumions(H)producedbyanexternalionsource.TheprincipleofoperationofthePTR-MSinstrumentisshownschematicallyinFigure6.Ahollowcathodedis-chargeactsasanionsource,whichproducesHfrompurewatervapor.PrimaryHionsenterthedrifttubethatisßushedcontinuouslywithambientairandundergonon-reactivecollisionswithanyofthecommoncomponentsinair(N,Ar,CO).Asmallfraction(typically1%)oftheprimaryHionstransfersitsprotonstoVOCswhicharepresentastracegasesinairandwhichhaveprotonafÞnitieshigherthanthatofwater.VolatileorganiccompoundsbecomeprotonatedinthefollowingDorotheaTholletal.2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560 (withthereactionconstant).Unlikeconventionalelectronimpactionization,protonationdoesnotgenerallycauseafragmentationoftheionizedmolecule.Theionsaretrans-portedthroughthedrifttubebyahomogeneouselectricÞeld.Thisprovidesaconstantreactiontimeandenergy,sothattheprotontransferreactionsarewelldeÞned.Thefactordeterminingthetimeresponseisthetimetheairspendsinthedrifttube(sec).Primaryandproductionsenterasmallintermediatechamberwhereairispumpedoutandtheionsareextractedintothedetectionchamberwheretheirmassesareanalyzedusingaquadrupolemassspectro-meter.Thedetectionlimitatasignaltonoiselevelof2istypicallyintheorderofafew10pptvfora1secintegrationWhilePTR-MShasbeenusedprimarilyinÞeldcampaignsfortraceatmosphericmeasurementsofavarietyofcom-poundsincludingaromatics,isoprene,ketones,leafwoundaldehydesandalcohols(Falletal.,1999;HanselandWist-haler,2000;Sprungetal.,2001;Wisthaleretal.,2002),thistechnologyhasalsobecomeanalternativeandusefuladditiontoGCanalysisofplantenclosuremeasurements.ThefollowingVOCs,whicharerelevanttoplantphysiology,havebeenmeasuredbyPTR-MS:isoprenoids(isoprene,monoterpenes,sesquiterpenes),aldehydes,alcohols,ke-tonesandothers(e.g.Beauchampetal.,2005;Falletal.1999;Grausetal.,2004;Holzingeretal.,2000;Steeghsetal.2004).WhilePTR-MSdetectsmostvolatilesastheirmolecu-larmassplusone(e.g.methanolm33,acetaldehydem45,acetonem59,isoprenem69),someVOCsincludingCwoundalcoholsormonoterpenesundergosomedegreeoffragmentationwithintheinstrument.AlthoughthePTR-MSmethodhasfoundnumerousapplicationsandhasgreatlyexpandedthecapabilityforrelativelyfastmeasurementsofVOCsthereremainsigni-ÞcantweaknessessuchasdifÞcultiesinthedetectionofveryfast-reactingVOCspecies(e.g.monoterpenesandsesquiterpenes).Furthermore,interferenceinthedetectionofVOCsispossibleduetothelimitedselectivityobtainedfrommonitoringonlytheprotonatedparentmass.Forexample,PTR-MSmeasuresonlythetotalconcentrationofmonoterpeneorsesquiterpeneisomersandgivesnoinformationontheterpenecompositionofanairsample(Tanietal.,2003).Toenabledistinctionbetweenisobariccompoundslike,forexample,alcoholsandorganicacids,acombinationofaprotontransferreactiondrifttubewithaTOF-MSisrequiredwhichwilldramaticallyimprovethedutycycle(allmassescanbemonitoredsimultaneously)andaddahighmass-resolvingpower.Todistinguishevenbetweenisomers,MS-MScapabilityneedstobeadded,whichseemspossiblebyusingiontraportriplequadrupoleMStechnology.Atpresent,combinedexperimentsusingslowGCtechnology(providinghighselectivity)togetherwiththefastPTR-MSmethod(havingpoorselectivity)aremostsuitabletomonitorandidentifyfast-changingconcentrationsofVOCsattracelevels.VOCanalysistechniquesforstudyingthebiosynthesisofplantvolatilesandtheirroleinstressphysiologyTheuseofgasexchangecuvettesystemsCuvettesystemshavebecomeincreasinglypopularintheÞeldofon-lineanalysisofplantvolatiles,andespeciallyforVOCsemittedfromtrees.Inassociationwithsuitabledetectionsystems,cuvettemeasurementsallowpreciseandrapidmonitoringoftheaircompositionandthereleaseoruptakebyplantsofgaseouscompoundssuchasCOandVOCsenablingaccurateinvivostudiesoftherelation-shipsbetweenprimarymetabolism(photosynthesis)andsecondarymetabolism(VOCsynthesis).CuvettesystemsalsoallowtheinvestigationofphysicalconstraintstoVOCemissionssuchasthosecausedbystomatalopeningetal.,2004). Figure6.ProtontransferreactionÐmassspectrometrysystemforreal-timeanalysisofplantvolatiles.(a)SchematicrepresentationofthePTR-MSsystem.(b)InstrumentinuseforVOCcuvettemeasurementsfrompendunculateoak(inset).(PicturesbyJ.Holopainen,UniversityofKuopio,FinlandandJ.KrUniversityofFreiburg,Germany.)Plantvolatileanalysis2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560 Twotypesofcuvettesareingeneraluse,leafandbranchcuvettes.Leafcuvettesaremadeofaframeinwhichaleaf,oraportionofit,issandwiched.TheygenerallyhaveaverysmallandÞxedvolume,rarelyexceeding0.5l.CuvettesusedformeasuringVOCemissionsfromtreebranches,havealargervolume�(2l)andareofteninßatable(withoutsolidframes)andofvariablevolume.AcollageofdifferentcuvettesisshowninFigure7.Cuvetteshavetransparentwindowsofglassorplastictoallowilluminationoftheenclosedplantmaterialontheadaxialand,occasionally,alsoontheabaxialsideoftheleaf.Lightisprovidedbyexternal,generallyartiÞcialsourcessuchaslight-emittingdiodes(LEDs)withwavelengthsneededforphysiologicallightreactionstooccur(Tennessenetal.,1994).Asacoldandeasymodularlightsource,LEDscangenerateveryhighanduniformlightintensitieswithoutoverheatingtheleafcuvette.However,LEDsarecurrentlydifÞculttouseinbranchcuvettesduetoinsufÞcientandinhomogeneous Pollutants? (off-line VOC measurements VOCsout ToGC-MSTo IRGAs(COTo GC or PTR-MS Figure7.ExamplesofcuvettesystemsformeasurementsofplantVOCsandphysiologicalparameters.(a)AsimpliÞedsketchofatypicalcuvetteallowingmeasurementsoftheconcentrationofCOandHO(byinfraredanalysis)andVOCemissionsbyon-lineanalysisviaPTR-MSorGC,oroff-lineanalysisviacartridgetrappingandsubsequentanalysisbyGC-MS.(b)Specialcuvetteforsimultaneousmeasurementsofgasexchangeandßuorescencepropertiesoftheleaf.(c)Cuvetteforanalyzingozoneexchangebyleaveswithoutinterferenceofcuvettematerial(thiscuvetteisentirelymadeoutofTeßon).(d)CuvettesystemusedtomonitorgasexchangesfromentirebranchesunderÞeldconditions(courtesyofR.Baraldi,CNR-IBIMET,Bologna,Italy).(e)CuvettesystemforgasexchangeanalysisfromwholeplantsofArabidopsisthalianaAllcuvettes[except(d)]allowfullcontroloftheprincipalenvironmentalparameters(temperature,lightintensityandquality,windspeedandrelativehumidity)andcanthereforebeusedtoparameterizethedependenceofVOCemissionsfromkeyenvironmentalandphysiologicalfactors.IRGA,infraredgasanalyzerDorotheaTholletal.2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560 illuminationoverlargeandunevensurfaces.LeafcuvettesaregenerallythermoregulatedbyPeltierresistancesor,moresimplybutlesseffectively,bywatercirculatingintheirbodywallsatthedesiredtemperature.Inbothcases,theactualleaftemperatureisconstantlymeasuredbythermo-couplesappressedtothesideoftheleafwhichisnotdirectlyexposedtoincidentlight.Large-volumebranchcuvettesareoftennotthermostatedandtemperatureissimplymonit-oredbyoneormorethermocouplesappressedtoleavesinstrategicpositions.Inallcuvettesystems,aircirculatesinsidethecuvetteenteringfromoneormoreinletholesandgenerallyexitingthroughonlyoneoutlet.Thegeometryofthecuvettemustfavorrapidandturbulentairmotiontoavoidairstagnation,whichmayinturncausecondensationofwateroncoldspotsofthecuvetteandtheformationofaboundarylayerresistancerestrainingtheexchangeofgasesbetweentheleafandtheatmosphere.Therefore,built-infansareoftenusedtostirtheairinsidethecuvettes.Ingeneral,thevolumeofairmustturn-overatleasttwiceperminutetoavoidtheabove-mentionedproblems.Thehumidityoftheairinthecuvettecanbeeasilycontrolledwhenworkingwithlabor-atoryequipmentbybubblingairintowaterandsettingthedesiredrelativehumiditybyabatingtheexcessintoacondenser(asimplecontainer)maintainedatalowertemperature.ThissystemisdifÞculttouseinÞeldexperi-ments,butexcesshumiditycanbecontrolledwiththeuseofdesiccantssuchasmagnesiumperchloriteandsilicagel.Laboratoryequipmentalsoallowsexcellentcontrolofthecompositionoftheairbymixingaircomponentsfromgascylinders.Althoughmeasurementsundercontaminant-freeconditionsmaynotreßectÔreallifeÕconditions,theyaredesiredtodeterminespecies-speciÞcemissionratesofVOCs,andfortheirparameterizationonthebasisofsingleenvironmentalorphysiologicalfactors.ToeliminaterapidreactionsofVOCswithozonepresentintheinßowingair,ozone-freesyntheticairfromcylinderscanbeusedorozonemaybescavengedfromambientairbyappropriatechemicaltrapsorphysicaldevicessuchasasimplepieceofmetal.Inaddition,specialcareshouldbetakeninthechoiceofozone-freefans.Tosimulatethepresenceofcontaminantsorpollutantssuchasozoneoranthropogenichydrocarbons,thesegasescanbesimplyaddedtotheairßow.Thisalsoallowsthefumigationwithenrichedisotopes(typically),tostudytheirincorporationinmetabolites(seeLikeotherdevicesusedinthecollectionofVOCs,cuvettesshouldbeentirelyconstructedwithmaterialswhichareinerttoVOCs,includingglassorspecialplasticandtransparentmaterialssuchasTedlarorTeßonÞlm(Figure7b).Ifmetalistobeused,themetalparts(generallythecuvetteframe)canbewrappedinTeßonÞlmorsprayedwithaliquidlayerofTeßon.Inaddition,theuseofsoftTeßonO-ringsisrecom-mendedtoavoidwoundingthesandwichedleafandeliminatewound-inducedVOCemissions.Incaseoffumi-gatingleaveswithveryreactivecompoundssuchasozone,Þttingsandpipelinesexternaltothecuvetteshouldconsistofinertmaterials(Figure7c).CuvettemeasurementsareafavoriteinvivomethodforstudyingVOCbiosynthesis.TheyhavebeenemployedforthesimultaneousdetectionofisoprenoidemissionsandCOuptakebyphotosynthesisinresponsetochangesinlightandCOandtheapplicationofphotosynthesisinhibitors.ThesestudiesledtotheearlypredictionthatisoprenoidVOCscanbeformedfromphotosynthesisintermediates(LoretoandSharkey,1990).ConcurrentmeasurementsofphotosynthesisandVOCemissionalsoallowedcalculationsofthefractionofphotosyntheticallyÞxedcarbonthatisdirectlymetabolizedinVOCbiosynthesis(Kreuzwieseretal.2002;SharkeyandLoreto,1993).Simultaneousmeasure-mentsarebestperformedwhenairleavingthecuvetteissplittoreachaninfraredgasanalyzerforCOdetectionandafastsensorforVOCemissionssuchasPTR-MS,allowing,inaddition,theexaminationoflabeledcompounds.Specialleafcuvettesallowintegratedmeasurementsofgasexchangeandphotochemicalcharacteristicsoftheleafbychlorophyllßuorescencedetection(Figure7b).Therationaleforthesemeasurementsisthat(i)partoftheelectrontransportratedrivingphotosynthesisandphoto-respirationmayalsodriveVOCbiosynthesis,(ii)theemis-sionofsomeVOCsmayberelatedtothedissipationofexcesslightand(iii)VOC-inducedphotoprotectionmaybemonitoredwitharapid,non-invasiveandremotetechnique.Simultaneousmeasurementsofgasexchangeandchloro-phyllßuorescencesuggestedthatthephysiologicalroleofVOCs(mainlyisoprene)isnotrelatedtoenergydissipationmechanisms(LoretoandSharkey,1990),assupportedbytheearlyworkofJonesandRasmussen(1975).Measure-mentsofgasexchangeandchlorophyllßuorescence,ontheotherhand,enabledcalculationofthefractionofphotosyn-theticelectrontransportneededforbiosynthesisofterpenevolatilesandallowedmodelingofmonoterpeneandiso-prenesynthesisonthebasisofthisphysiologicalparameterratherthanbytheindirectrelationshipwithenvironmental(empirical)variables(Niinemetsetal.,2002).FluorescencewassuccessfullyusedtomonitorVOC-inducedprotectionofphotosynthesisinresponsetostress,whengasexchangemeasurementsarepreventedbyfumigationwithtoxiccompounds(e.g.ozone,LoretoandVelikova,2001;Loretoetal.,2001b)orwhenremotescreeningofphotochemicalefÞciencywassufÞcienttodetectprotectionfromheatdamagebyisoprenes(SharkeyandSingsaas,1995).Finally,specialcuvettesallowrapidfreeze-clampingoftheenclosedleavesforbiochemicalanalysisofenzymeactivitiesandmetaboliteswithveryrapidturnover.InasystemdevelopedbySharkey(LoretoandSharkey,1993)theleafsandwichedinthecuvetteisfrozenextremelyquickly(sec)bysmashingitbetweentheplasticPlantvolatileanalysis2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560 windowsofthecuvetteunderhighpressure�(100bar)withmetallicdrumspreviouslyfrozeninliquidnitrogen.Thissystemwaseffectivelyused,withslightmodiÞcation,todeterminepoolsofdimethylallyldiphosphate(DMADP),thelastintermediateinisoprenebiosynthesis(Loretoetal.,2004;Wolfertzetal.,2003),andtomeasuretheactivitiesofisopreneandmonoterpenesynthases(Loretoetal.,2001a).TheuseofPTR-MSinanalyzingtheoriginofcarbonandmetabolicintermediatesinVOCbiosynthesisOneofthemostpowerfulandvaluableabilitiesofPTR-MSaswellasPAspectroscopyÐthefullpotentialofwhichhasnotyetbeentappedÐisthedetectionofstableisotopesallowingstudyofthemetabolicoriginandßuxofinter-mediatesinthebiosynthesisofplantvolatiles.On-lineanalysisusingeitherstableC-(e.g.Karletal.,2002;etal.,2004a)ordeuterium-labeledprecursors(e.g.Wolfertzetal.,2003,2004)havedemonstratedtheversatilityofPTR-MSandPAspectroscopyforelucidatingtheoriginofcarbonandmetabolicintermediatesinplas-tidicisoprenebiosynthesisandprovidingnewinsightsintothedynamicsofmetabolicturnover.Figure8showsanexampleofC-labelingofisopreneinthepresenceoffollowedbyalossoftheC-labeledisotopebysubsequentexposuretoinpoplar()leavesmeasuredbyPTR-MS.Dependingonthesci-entiÞcquestionandtheavailabilityofstableisotopeprecursors,thisapproachcanbeappliedtostudythebiosynthesisofmanyotherplantvolatilessuchasmono-terpenes,alcoholsandaldehydes.DeterminingthebiosyntheticoriginofVOCsbyisotoperatioInsomeVOCanalyses,CisotoperatioshavebeendeterminedbycouplingGCwithisotope-ratiomassspec-trometryafterconversionoftheelutingcompoundsintoCOandHO(Gleixneretal.,1998).TheisotopiccarbonratiosofplantVOCsdependonthedifferentialincorporationofCisotopesinthecourseofdifferentenzymaticreac-tions.Therefore,determinationoftheisotoperatiosofplantvolatilescangivevaluablehintsabouttheirbiosyntheticandsubcellularorigin.Earlyuseofthismethodindicatedthatvolatileisopreneandcarotenoidssharethesamebiosyn-theticpathwayandthatenvironmentalstressescouldincreasethesupplyofcarbontoisoprenefrompathwaysotherthanphotosyntheticcarbonÞxation(Sharkeyetal.1991).RecentCisotoperatiostudiesofvolatileterpenesconÞrmedthedifferentbiosyntheticoriginofmonoterpenesandsesquiterpenesfromtheplastidicmethylerythritolphosphate(MEP)pathwayandthecytosolicmevalonatepathwayrespectively,butalsoindicatedthemetaboliccrosstalkbetweenbothpathways(Juxetal.,2001).AnalysisofvolatileplantenzymeproductsTechniquesusedforanalyzingVOCscanalsobeappliedtodeterminetheactivityofenzymescatalyzingtheformationofplantVOCs.SincethesolubilityofmanyVOCssuchasterpenehydrocarbonsisextremelylowinthehydrophilicphase,thesecompoundsrapidlyevaporatefromanaque-ousenzymesolutionandcanbeanalyzedbyheadspacecollectiontechniques.ThesensitivemethodofSPME(see min50 mi min –5min50 mi min m74m73m71m70m69Emission rate (nmol sSum of isoprene isotopes VMR (ppm(a)(b) 0246 m74m73m72m71m70m69Emission rate (nmol sSum of isoprene isotopes 0200300 VMR (ppm Figure8.ProtontransferreactionÐmassspectrometrymeasurementsofC-labeledisopreneisotopes.KineticsofClabelingofisoprenefollowingexposureto(a)andwash-outoflabelingafterreturntonormal(b)inpoplarleaves.Toppanel:EnclosureconcentrationsofasresponsetoswitchingfromoneCOsourcetotheotherat0.Bottompanel:Leafemissionratesofisopreneisotopespecies(m69,unlabelled;m70,singlelabeled;m71,doublelabeled;m72,triplelabeled;m73,fourfoldlabeled;m74,fullylabeled)andthesumofallisopreneisotopes.DataareredrawnfromGraus(2005).VMR,volumemixingratio.DorotheaTholletal.2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560 above)wassuccessfullyappliedtoqualitativeanalysisofterpenevolatilesproducedinvitrobyrecombinantplantterpenesynthases(Chenetal.,2003,2004;Koetal.2004;Tholletal.,2005).ArelevantprotocolisprovidedasProtocolS1.AutomatedSPMEextractionmaybeappliedfortherapidanalysisofalargenumberofassays,forexampletoevaluatedifferentproductproÞlesofrecombinantenzymesobtainedinasite-directedmutagenesisapproach.QuantitativeanalysiswithSPMEmaybepossiblebutrequiresextremelycarefulcalibration.Directheadspaceanalysishasbeenusedasanalternat-ivemethodformeasuringtheactivityofterpenesynthases.Thistechniquewassuccessfullyusedfortheanalysisoftheactivityofisoprenesynthase(Schnitzleretal.,1996;SilverandFall,1991)andhasbecomethestandardapproachfordeterminingtheactivityofthisenzymefrommanyplantspecies.Theprincipleoftheenzymeassayisrathersimple:Proteinextractscontainingappropriatecon-centrationsofsubstrate(DMADP)andco-factorsareincu-batedingas-tightvialsunderoptimizedconditions.Toterminatetheenzymereaction,theliquidphasecontainingtheenzyme,substrateandco-factorsisremovedbyagas-tightsyringewhiletheevaporatedenzymeproductre-mainstrappedintheheadspaceofthegas-tightvial(Figure9).Analiquotoftheheadspaceistheninjectedbyagas-tightsyringeforGCanalysis.Analyticalpre-requi-sitesfortheapplicationofautomatedheadspaceanalysisareapre-column,ÞlledwithabsorbentmaterialsuchasTenaxTAfortrappingthevolatilecompoundsupstreamoftheGCcolumn,andatemperature-programmedinjectionsystemforfocusedcompoundinjection.Inasimilarapproach,theactivityofmonoterpenesynthaseshasbeenqualitativelyandquantitativelydeterminedincell-freeproteinextractsofotherplantspecies(Piceaabiescusilex;Fischbachetal.,2000;Loretoetal.,2001a)withahighlylineardetectionrangeofmonoterpenevolatilesintheassayheadspaceandadetectionlimitof1.5ppmvetal.,2000).Themethodhasalsobeenexploi-tedfortheanalysisofcellularDMADPlevelsviaquantita-tiveconversionofDMADPtoisopreneunderacidicandhigh-temperatureconditions(BruggemannandSchnitzler,2002b;Fisheretal.,2001;Loretoetal.,2004;Rosenstieletal.,2002,2003).Thesametechniquecanbeusedtomeasuretheactivityofisopentenyldiphosphate:dimethylallyldiphosphate(IDP)isomerases(Figure9,ggemannandSchnitzler,2002a).EvaluationofthemethodsusedforVOCanalysisAlthoughthelargearrayofavailabletechniquesforvolatileanalysisallowsselectionofthemethodmostsuitableforstudyingspeciÞcresearchproblems,italsoleadstothedifÞcultyofcomparingresultsbiasedbyeachindividualmethod.AßoralorleafvolatileproÞlemayvarydependingonthetechniqueused.Unfortunately,almostnocompar-ativestudiesofdifferentmethodshavebeenperformed.Someofthemostcriticalfactorsinßuencingvolatiledataacquisitionaretheenvironmentalconditionsinthecollec-tionchamberorcuvette,includinglightintensity,tem-peratureandrelativehumidity,sincetheydirectlyinßuencevolatilemetabolismandthephysiologyoftheplantinclu-dingphotosynthesisandtranspiration.Theeffectsoflightintensityandtemperaturehavebeenintensivelyinvesti-gatedforisopreneaswellasothervolatilesemittedfromleavesandßowers.Controloftheairßowiscriticalforregulatingtemperatureandrelativehumidityandproviding 05101520 IsoprenesynthaseMonoterpene synthases IDP isomerase Isopreneormonoterpenes Isoprene 05101520 IsoprenesynthaseMonoterpene synthases IsoprenesynthaseMonoterpene synthases IDP isomerase IDP isomerase+ DMADPorGDPAcidichydrolysisof Isopreneormonoterpenes Isoprene Isoprene30°C or 40°C 30°C70°C Figure9.Schemeforheadspaceanalysisofterpenesynthaseandisopentenyldiphosphate(IDP)isomeraseactivities.Enzymesareincubatedwiththeirsubstratesandco-factorsinsealedGCvials.Afterterminationofthereaction,thewaterphaseiswithdrawnformthevialandVOCproductsareanalyzedviaGCbyautomatedheadspaceinjection.Plantvolatileanalysis2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560 optimalgasexchangebetweentheplanttissueandthesurroundingair.Anothercauseofqualitativeandquanti-tativevariationofvolatileresultsobtainedbydifferentanalysisprotocolsistheuseofdifferentvolatileadsorbentsanddesorptionmethods.RagusoandPellmyr(1998)ob-servedsigniÞcantvariationinvolatileblendsfromßowersC.breweriduetotheuseofdifferentsorbentsandor-ganicsolventsforcompoundelution.Inaddition,theyreportedontheinßuenceofhigherßowratesintrappingcompoundswithlowervolatility,butsimultaneouslycausingincreasedcontaminantbackgroundlevelsinGCAnothervariableinvolatileanalysisisthetimeatwhichvolatilesarecollectedinheadspacesamplingtechniques.Thetimeforvolatilecollectionshouldalwaysbeoptimized,sinceemissionsareaffectedbydiurnalandcircadianrhythms.ChangesinvolatileproÞlesinresponsetoherb-ivoryormimickedherbivory(RoseandTumlinson,2005;etal.,1990)canoftentakeseveralhourstoseveraldays,dependingontheplantspeciesandthepartoftheplantchosenforvolatilemeasurements(RoseandTumlin-son,2004).Initialcollectionofvolatilesmaybeperformedoverseveraldayswith24-hcollectionintervals,andsubse-quentlycomparedwithresultsfromseveralshortersamp-lingintervals.Forlow-emittingplantsinparticular,longercollectiontimesareappliedtotrapenoughvolatilesforanalysis.Tofurtherenhancethedetectabilityofvolatilecompounds,onecanincreasetheamountofplantmaterial,decreasethevolumeofsurroundingairspaceandincreasetheairßow,althoughlimitationssuchasincreasedtranspir-ation(inthecaseoftoomuchplanttissue)oraircontam-ination(inthecaseofhigherßowrates)havetobeconsidered.Ariskwillremainthatsomevolatilesmaybeemittedinquantitiesbelowtechnicaldetectability,whichmaybefunctionallyrelevant,forexample,forinsectattrac-ResultsobtainedfromvolatilecollectionsunderÞeldconditionswillalwaysvaryfromthoseacquiredinthelaboratoryduetoßuctuatingenvironmentalparametersandthedifferentialreactivityofplantVOCswithreactivemole-culesintheatmosphere,suchasozone,whenambientairisIntersamplevariabilityofaparticularmethodoccursduetotheplantmaterialbeinginvestigated.Evenifclonallinesareused,caremustbetakentostandardizeplantage,development,light,nutritionalandsoil-moistureconditionsaswellasthetimeofdayforvolatilesampling.Furthermore,ithastobeconsideredthattheemissionofVOCsisstronglyaffectedbyinsectandmicrobialdamageorevenpesticidetreatment,andplantshavetobeselectedormonitoredaccordinglypriortovolatileanalysis.Overall,researchersareadvisedtoperformtheirvolatileanalyseswithmorethanÞvereplicatesandtotestseveraldifferentparametersusing,ifpossible,morethanonemethodofanalysis.ExperimentalconditionsshouldbereportedascarefullyaspossibletofacilitatecomparisonofWithinthepastdecadewehaveseenenormousprogressintheanalysisofplantvolatilesthathasbeenstimulatedbyverydifferentareasofresearchsuchasplantbiochemistry,ecologyandatmosphericchemistry.Particularachieve-mentshavebeenmadeinreal-timeVOCanalysisinmonit-oringrapidandsubtlechangesofvolatileemissionsinresponsetoabioticorbioticfactors.TheseadvanceshavecreatedopportunitiesfordetailedviewsonthetimecoursesofVOCemissions,whethertheyareinvolvedintheattrac-tionofpollinatorsorthedeterrenceofherbivores.Further-more,thesenewanalyticalcapabilitiescanmatchorexceedthetimescaleandsensitivityofcontemporarygenomicandproteomictechniquestoprovidemoreprecisecorrelationswiththebiochemistryunderlyingthebiosynthesisandregulationofVOCs.Therecentdevelopmentsingaschro-matographyandmassspectrometrydescribedherehavereduceddetectionlimitsandimprovedseparationefÞcien-ciesandtimeresponsefactors,andthesewillfacilitatehigh-throughputscreeningsofplantstodetecttransgenics,mutantsornaturalvariantswithalteredVOCemissionpro-Þles.DespitethisprogressinVOCanalysis,traditionalVOCcollectiontechniquesandoff-lineGCanalyseswillremainessentialformanylaboratoriesandespeciallyforremoteÞeldstudies.Therefore,thisreviewhasdescribedsomeimportantguidelinesandparametersregardingVOCcol-lectiondevicesandGCseparationtechniques.Insummary,themethodspresentedhereshouldgivetheVOCresearchertheßexibilitytoinvestigatemultipleaspectsandstillunex-ploredareasofthebiosynthesis,emissionandfunctionofplantVOCs.Forexample,littleisknownsofaraboutthebiosynthesisofVOCsinrootsandtheirroleintherhizo-sphereandsoilecology.Furthermore,integrativestudiesofprimarymetabolismandVOCbiosynthesishavemostlybeenconductedwithisopreneandshouldbeamodelforcomparativeinvestigationsofthebiosynthesisofßoralandwound-inducedvolatiles.AcknowledgementsWearegratefultoJonathanGershenzonandEranPicherskyforsupportandinspiration.WethankJimTokuhisaforhelpfulcommentsandcriticalreviewofthemanuscript.Theexperi-mentalworkpresentedbyD.T.,W.B.andU.RwassupportedbyfundsoftheMaxPlanckSociety(toJonathanGershenzonandW.B.)andNationalScienceFoundationgrantIBN-0211697(toEranPichersky,UniversityofMichigan).WethankMartinGrausandRobertFischbachforscientiÞcsupportinpresentingPTR-MSresultsandheadspaceanalysisprotocolsforterpenesynthaseactivityassays.WearethankfultoNataliaDudarevaandAngelaDorotheaTholletal.2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560 Overmeyerforprovidingphotographicmaterial(Figure3).WealsothanktheMarieCurieResearchandTrainingNetworkÔEcologicalandphysiologicalfunctionsofbiogenicisoprenoidsandtheirimpactontheenvironmentÕ(ISONET)forsupportingpartsoftheexperimentalworkpresentedbyD.T.,A.H.,F.L.andSupplementaryMaterialThefollowingsupplementarymaterialisavailableforthisarticleTableS1CommonadsorbentsfortrappingofplantVOCsTableS2GC-massspectraland/orretentionindexdatabasesforplantVOCidentiÞcationAppendixS1.AnalysisofvolatileproductsofterpenesynthasesbySPMEorautomatedheadspacesampling.Thismaterialisavailableaspartoftheonlinearticlefromhttp://www.blackwell-synergy.comAharoni,A.,Giri,A.P.,Deuerlein,S.,Griepink,F.,deKogel,W.J.,Verstappen,F.W.A.,Verhoeven,H.A.,Jongsmaa,M.A.,Schwab,W.andBouwmeester,H.J.(2003)Terpenoidmetabolisminwild-typeandtransgenicArabidopsisPlantCellAndersen,R.A.,Hamiltonkemp,T.R.,Hildebrand,D.F.,McCracken,C.T.,Collins,R.W.andFleming,P.D.(1994)Structure-antifungalactivityrelationshipsamongvolatileC-6andC-9aliphatic-alde-hydes,ketones,andalcohols.J.Agric.FoodChem.,1563Ð1568.Arimura,G.,Ozawa,R.,Shimoda,T.,Nishioka,T.,Boland,W.andTakabyashi,J.(2000)Herbivory-inducedvolatileselicitdefencegenesinlimabeanleaves.,512Ð515.Arimura,G.,Ozawa,T.,Nishioka,T.,Boland,W.,Koch,T.,Kuemann,F.andTakabayashi,J.(2002)Herbivore-inducedvolatilesinducetheemissionofethyleneinneighboringlimabeanplants.PlantJ.,87Ð98.Atkinson,R.(2000)AtmosphericchemistryofVOCsandNOx.Atmos.Environ.,2063Ð2101.Beauchamp,J.,Wisthaler,A.,Hansel,A.,Kleist,E.,Miebach,M.,Niinemets,U.,Schurr,U.andWildt,J.(2005)OzoneinducedemissionsofbiogenicVOCfromtobacco:relationshipsbetweenozoneuptakeandemissionsofLOXproducts.PlantCellEnviron.,1334Ð1343.Bicchi,C.(2004)Specialissue:analysisofßavorsandfragrances.J.Chromatogr.Sci.,401.Bicchi,C.,D’Amato,A.andRubiolo,P.(1999)Cyclodextrinderiva-tivesaschiralselectorsfordirectgaschromatographicseparationofenantiomersintheessentialoil,aromaandßavourÞelds.J.Chromatogr.A,99Ð121.Bicchi,C.,Cordero,C.,Iori,C.,Rubiolo,P.andSandra,P.Headspacesorptiveextraction(HSSE)intheheadspaceanalysisofaromaticandmedicinalplants.J.HighRes.Chromatogr.Boland,W.,Ney,P.,Jaenicke,L.andGassmann,G.(1984)AÔclosed-loop-strippingÕtechniqueasaversatiletoolformetabolicstudiesofvolatiles.InAnalysisofVolatiles(Schreier,P.,ed.).Berlin:WalterdeGruyter,pp.371Ð373.Borg-Karlson,A.K.,Lindstroem,M.,Norin,T.,Persson,M.andValterova,I.(1993)EnatiomericcompositionofmonoterpenehydrocarbonsindifferenttissuesofNorwaySpruce,Piceaabies(L.)Karst.Amulti-dimensionalgaschromatographystudy.Chem.Scand.,138Ð144.ggemann,N.andSchnitzler,J.-P.(2002a)RelationshipbetweenIDPisomeraseactivityandisopreneemissionofoakleaves.Physiol.,1011Ð1018.ggemann,N.andSchnitzler,J.-P.(2002b)Diurnalvariationofdimethylallyldiphosphateconcentrationsinoak(QuercusroburL.)leaves.Physiol.Plant.,190Ð196.Burger,B.V.,Munro,Z.M.andVisser,J.H.(1988)Determinationofplantvolatiles1:analysisoftheinsect-attractingallomoneoftheparasiticplantHydnoraafricanausingGrob-Habichactivatedcharcoaltraps.J.HighRes.Chromatogr.,496Ð499.Chen,F.,Tholl,D.,D’Auria,J.C.,Farooq,A.,Pichersky,E.andGershenzon,J.(2003)BiosynthesisandemissionofterpenoidvolatilesfromPlantCell,481Ð494.Chen,F.,Ro,D.K.,Petri,J.,Gershenzon,J.,Bohlmann,J.,Pichersky,E.andTholl,D.(2004)Characterizationofaroot-speciÞcterpenesynthaseresponsiblefortheformationofthevolatilemonoterpene1,8-cineole.PlantPhysiol.,1956Ð1966.Ciccioli,P.,Brancaleoni,E.,Frattoni,M.andMaris,C.Samplingofatmosphericvolatileorganiccompounds(VOCs)withsorbenttubesandtheiranalysisbyGC-MS.InmentalMonitoringHandbook(Burden,F.R.,ed.).NewYork:McGraw-HillPublisher,pp.21.1Ð21.85.Dahnke,H.,Kahl,J.,Schuler,G.,Boland,W.,Urban,W.andKuemann,F.(2000)On-linemonitoringofbiogenicisopreneemis-sionsusingphotoacousticspectroscopy.Appl.Phys.B,275ÐDegenhardt,J.andGershenzon,J.(2000)Demonstrationandcharacterizationof()-nerolidolsynthasefrommaize:aherbi-vore-inducibleterpenesynthaseparticipatingin(3methyl-1,3,7-nonatrienebiosynthesis.,815Ð822.DeMoraes,C.M.,Mescher,M.C.andTumlinson,J.H.(2001)Cater-pillar-inducednocturnalplantvolatilesrepelnonspeciÞcfemales.,577Ð580.Dettmer,K.andEngewald,W.(2002)Adsorbentmaterialscom-monlyusedinairanalysisforadsorptiveenrichmentandthermaldesorptionofvolatileorganiccompounds.Anal.Bioanal.Chem.,490Ð500.Dewulf,J.andVanLangenhove,H.(2002)Analysisofvolatileorganiccompoundsusinggaschromatography.TrendsAnal.,637Ð646.Di,X.,Shellie,R.A.,Marriott,P.J.andHuie,C.W.(2004)Applicationofheadspacesolid-phasemicroextraction(HS-SPME)andcom-prehensivetwo-dimensionalgaschromatography(GCGC)forthechemicalproÞlingofvolatileoilsincomplexherbalmixtures.J.Sep.Sci.,451Ð458.Dicke,M.,Gols,R.,Ludeking,D.andPosthumus,M.A.(1999)Jas-monicacidandherbivorydifferentiallyinducecarnivore-attract-ingplantvolatilesinlimabeanplants.J.Chem.Ecol.,1907ÐDicke,M.,vanPoecke,R.M.P.anddeBoer,J.G.(2003)Inducibleindirectdefenceofplants:frommechanismstoecologicalfunc-BasicAppl.Ecol.,27Ð42.Dobson,H.E.M.(1991)Analysisofßowerandpollenvolatiles.InModernMethodsofPlantAnalysis,Vol.12(Linskens,H.F.andJackson,J.F.,eds).Berlin:Springer,pp.231Ð251.Donath,J.andBoland,W.(1995)Biosynthesisofacyclichomoter-penesÐenzymeselectivityandabsoluteconÞgurationofthenerolidolprecursor.,785Ð790.Dudareva,N.,Martin,D.,Kish,C.M.,Kolosova,N.,Gorenstein,N.,¨ldt,J.,Miller,B.andBohlmann,J.(2003)(andmyrcenesynthasegenesofßoralscentbiosynthesisinsnapdragon:functionandexpressionofthreeterpenesynthasegenesofanewterpenesynthasesubfamily.PlantCell,1227ÐPlantvolatileanalysis2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560 Dudareva,N.,Pichersky,E.andGershenzon,J.(2004)Biochemistryofplantvolatiles.PlantPhysiol.,1893Ð1902.Dudareva,N.,Andersson,S.,Orlova,I.,Gatto,N.,Reichelt,M.,Rhodes,D.,Boland,W.andGershenzon,J.(2005)Thenon-mevalonatepathwaysupportsbothmonoterpeneandsesquit-erpeneformationinsnapdragonßowers.Proc.NatlAcad.Sci.,933Ð938.Ebel,R.C.,Mattheis,J.P.andBuchanan,D.A.(1995)Droughtstressofappletreesaltersleafemissionsofvolatilecompounds.Physiol.Plant.,709Ð712.Effmert,U.,Große,J.,Ro¨se,U.S.R.,Ehrig,F.,Ka¨gi,R.andPiechulla,(2005)Volatilecomposition,emissionpattern,andlocalizationofßoralscentemissioninMirabilisjalapaAm.J.,2Ð12.Engelberth,J.,Alborn,H.T.,Schmelz,E.A.andTumlinson,J.H.(2004)AirbornesignalsprimeplantsagainstinsectherbivoreProc.NatlAcad.SciUSA,1781Ð1785.Fall,R.,Karl,T.,Hansel,A.,Jordan,A.andLindinger,W.Volatileorganiccompoundsemittedafterleafwounding:on-lineanalysisbyproton-transfer-reactionmassspectrometry.J.Geo-phys.Res.,15963Ð15974.Fischbach,R.J.,Zimmer,I.,Steinbrecher,R.,Pchner,A.andSchnitzler,J.-P.(2000)MonoterpenesynthaseactivitiesinleavesPiceaabies(L.)Karst.andQuercusilexPhytochemistryFisher,A.J.,Rosenstiel,T.N.,Shirk,M.C.andFall,R.(2001)Nonra-dioactiveassayforcellulardimethylallyldiphosphate.Anal.Bio-,272Ð279.Flamini,G.,Cioni,P.L.andMorelli,I.(2002)Differencesinthefra-grancesofpollenanddifferentßoralpartsofmaleandfemaleßowersofLaurusnobilisJ.Agric.Chem.,4647Ð4652.Fuentes,J.D.,Wang,D.,Neumann,H.H.,Gillespie,T.J.,DenHartog,G.andDann,T.F.(1996)Ambientbiogenichydrocarbonsandisopreneemissionsfrommixeddeciduousforest.J.Atmos.,67Ð95.Gershenzon,J.,McConkey,M.E.andCroteau,R.B.(2000)Regula-tionofmonoterpeneaccumulationinleavesofpeppermint.,205Ð213.Gleixner,G.,Scrimgeour,C.,Schmidt,H.L.andViola,R.StableisotopedistributioninthemajormetabolitesofsourceandsinkorgansofSolanumtuberosumL.:apowerfultoolinthestudyofmetabolicpartitioninginintactplants.Granero,A.M.,Gonzalez,F.J.E.,Frenich,A.G.,Sanz,J.M.G.andVidal,J.L.M.(2004)SinglestepdeterminationoffragrancesinCucurbitaßowersbycouplingheadspacesolid-phasemicroex-tractionlow-pressuregaschromatography-tandemmassspectr-J.Chromatogr.A,173Ð179.Graus,M.(2005)Applicationofproton-transfer-reactionmassspectrometry:researchonbiosyntheticpathwaystoVOCforma-tionandemissionbydeciduoustreesusingC-labelling.PhDThesis,UniversityofInnsbruck,Austria.Graus,M.,Schnitzler,J.-P.,Hansel,A.,Cojocariu,C.,Rennenberg,H.,Wisthaler,A.andKreuzwieser,J.(2004)TransientreleaseofoxygenatedVOCduringlight-darktransitions.PlantPhysiol.Halitschke,R.,Kessler,A.,Kahl,J.,Lorenz,A.andBaldwin,I.T.(2000)Ecophysiologicalcomparisonofdirectandindirectdef-ensesinNicotianaattenuata,408Ð417.Handley,A.J.andAdlard,E.R.GasChromatographicTech-niquesandApplications.BocaRaton,FL:CRCPress.Hansel,A.andWisthaler,A.(2000)Amethodforreal-timedetectionofPAN,PPNandMPANinambientair.Geophys.Res.Lett.Hansel,A.,Jordan,A.,Holzinger,R.,Prazeller,P.,Vogel,W.andLindinger,W.(1995)Proton-transfer-reactionmassspectrometry:on-lineanalysisattheppblevel.Int.J.MassSpectrom.IonPro-,609Ð619.Harren,F.andReuss,J.(1997)Spectroscopy,photoacoustic.EncyclopediaAppl.Phys.,413Ð435.Heath,R.R.andManukian,A.(1992),Developmentandevaluationofsystemstocollectvolatilesemiochemicalsfrominsectsandplantsusingacharcoal-infusedmediumforairpuriÞcation.Chem.Ecol.,1209Ð1226.Heath,R.R.andManukian,A.(1994)Anautomatedsystemforuseincollectingvolatilechemicalsreleasedfromplants.J.Chem.Ecol.,593Ð608.Hills,A.J.andZimmerman,P.(1990)Isoprenemeasurementbyozone-inducedchemiluminescence.Anal.Chem.,1055Ð1060.Hoffmann,T.,Odum,J.R.,Bowman,F.,Collins,D.,Klockow,D.,Flagan,R.C.andSeinfeld,J.H.(1997)Formationoforganicaer-osolsfromtheoxidationofbiogenichydrocarbons.J.Atmos.,189Ð222.Holzinger,R.,Sandoval-Soto,L.,Rottenberger,S.,Crutzen,P.J.andKesselmeier,J.(2000)EmissionsofvolatileorganiccompoundsQuercusilexL.measuredbyproton-transfer-reactionmassspectrometryunderdifferentenvironmentalconditions.J.Geo-phys.Res.,20573Ð20579.Jakobsen,H.B.(1997)Thepreisolationphaseofinsituheadspaceanalysis:methodsandperspectives.InModernMethodsofPlantAnalysis,Vol.19(Linskens,H.-J.andJackson,J.F.,eds).Berlin:Springer,pp.1Ð22.Jones,C.A.andRasmussen,R.A.(1975)Productionofisoprenebyleaftissues.PlantPhysiol.,982Ð987.rgens,A.andDo¨tterl,S.(2004)ChemicalcompositionofanthervolatilesinRanunculaceae:genera-speciÞcproÞlesinAnemone,Aquilegia,Caltha,Pulsatilla,Ranunculus,andTrolliusspecies.Am.J.Bot.,1969Ð1980.Jux,A.,Gleixner,G.andBoland,W.(2001)ClassiÞcationofterpe-noidsaccordingtothemethylerythritolphosphateorthemeval-onatepathwaywithnaturalC-12/C-13isotoperatios:dynamicallocationofresourcesininducedplants.Angew.Chemie-Inter.,2091Ð2093.Kaiser,R.(1991)Trapping,investigationandreconstitutionofßowerscents.InPerfumes:Art,Science,Technology(Mueller,P.M.andLamparsky,D.,eds).London:ElsevierAppliedScience,pp.213ÐKarl,T.,Fall,R.,Rosenstiel,T.N.,Prazeller,P.,Larsen,B.,Seufert,G.andLindinger,W.(2002)On-lineanalysisofthelabelingofleafisoprenesuggestsmultiplesubcellularoriginsofisopreneprecursors.Planta,894Ð905.Kesselmeier,J.andStaudt,M.(1999)Biogenicvolatileorganiccompounds(VOC):Anoverviewonemission,physiologyandecology.J.Atmos.Chem.,23Ð88.Kessler,A.andBaldwin,I.T.(2001)Defensivefunctionofherbivore-inducedplantvolatileemissionsinnature.,2141ÐKoch,T.,Krumm,T.,Jung,V.,Engelberth,J.andBoland,W.Differentialinductionofplantvolatilebiosynthesisinthelimabeanbyearlyandlateintermediatesoftheoctadecanoid-signa-lingpathway.PlantPhysiol.,153Ð162.¨llner,T.G.,Schnee,C.,Gershenzon,J.andDegenhardt,J.ThevariabilityofsesquiterpenesemittedfromtwoZeamayscultivarsiscontrolledbyallelicvariationoftwoterpenesynthasegenesencodingstereoselectivemultipleproductenzymes.,1115Ð1131.¨nig,W.A.andHochmuth,D.H.(2004)Enantioselectivegaschro-matographyinßavorandfragranceanalysis:strategiesfortheDorotheaTholletal.2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560 identiÞcationofknownandunknownplantvolatiles.J.Chroma-togr.Sci.,423Ð439.¨nig,W.A.,Kruger,A.,Icheln,D.andRunge,T.(1992)Enantio-mericcompositionofthechiralconstituentsinessentialoils1.Monoterpenehydrocarbons.J.HighRes.Chromatogr.,184ÐKreuzwieser,J.,Kuhnemann,F.,Martis,A.,Urban,W.andRen-nenberg,H.(2000)Diurnalpatternofacetaldehydeemissionbyßoodedpoplartrees.Physiol.Plant.,79Ð86.Kreuzwieser,J.,Graus,M.,Wisthaler,A.,Hansel,A.,Rennenberg,H.andSchnitzler,J.-P.(2002)Xylem-transportedglucoseasadditionalcarbonsourceforleafisopreneformationinNewPhytol.,171Ð178.Kunert,M.,Biedermann,A.,Koch,T.andBoland,W.(2002)Ultra-fastsamplingandanalysisofplantvolatilesbyahand-heldminiaturisedGCwithpre-concentrationunit:kineticandquanti-tativeaspectsofplantvolatileproduction.J.Sep.Sci.,677ÐKunert,G.,Otto,S.,Ro¨se,U.S.R.,Gershenzon,J.andWeisser,W.(2005)Alarmpheromonemediatesproductionofwingeddis-persalmorphsinaphids.Ecol.Lett.,596Ð603.Langenheim,J.H.(1994)Higherplantterpenoids:aphytocentricoverviewoftheirecologicalroles.J.Chem.Ecol.,1223Ð1280.Lindinger,W.,Hansel,A.andJordan,A.(1998a)Proton-transferreactionmassspectrometry(PTR-MS):on-linemonitoringofvolatileorganiccompoundsatpptvlevels.Chem.Soc.Rev.Lindinger,W.,Hansel,A.andJordan,A.(1998b)On-linemonitoringofvolatileorganiccompoundsatpptvlevelsbymeansofproton-transfer-reactionmassspectrometry(PTR-MS):medicalapplica-tions,foodcontrol,andenvironmentalresearch.Int.J.MassSpectrom.IonProcess.,191Ð241.Linskens,H.F.andJackson,J.F.ModernMethodsofPlantAnalysis.PlantVolatileAnalysis.NewYork:Springer.Lockwood,G.B.(2001)Techniquesforgaschromatographyofvolatileterpenoidsfromarangeofmatrices.J.Chromatogr.A,23Ð31.Loreto,F.andSharkey,T.D.(1990)Agasexchangestudyofpho-tosynthesisandisopreneemissioninredoak(Quercusrubra,523Ð531.Loreto,F.andSharkey,T.D.(1993)Ontherelationshipbetweenisopreneemissionandphotosyntheticmetabolitesunderdiffer-entenvironmentalconditions.,420Ð424.Loreto,F.andVelikova,V.(2001)Isopreneproducedbyleavesprotectsthephotosyntheticapparatusagainstozonedamage,quenchesozoneproducts,andreduceslipidperoxidationofcel-lularmembranes.PlantPhysiol.,1781Ð1787.Loreto,F.,Forster,A.,Durr,M.,Csiky,O.andSeufert,G.OnthemonoterpeneemissionunderheatstressandontheincreasedthermotoleranceofleavesofQuercusilexL.fumi-gatedwithselectedmonoterpenes.PlantCellEnviron.,101ÐLoreto,F.,Fischbach,R.J.,Schnitzler,J.-P.,Ciccioli,P.,Brancaleoni,E.,Calfapietra,C.andSeufert,G.(2001a)MonoterpeneemissionandmonoterpenesynthaseactivitiesintheMediterraneanever-greenoakQuercusilexL.grownatelevatedCOGlobalChangeBiol.,709Ð717.Loreto,F.,Mannozzi,M.,Maris,C.,Nascetti,P.,Ferranti,F.andPasqualini,S.(2001b)Ozonequenchingpropertiesofisopreneanditsantioxidantroleinleaves.PlantPhysiol.,993Ð1000.Loreto,F.,Pinelli,P.,Brancaleoni,E.andCiccioli,P.labellingrevealschloroplasticandextra-chloroplasticpoolsofdimethylallylpyrophosphateandtheircontributiontoisoprenePlantPhysiol.,1903Ð1907.Maas,B.,Dietrich,A.andMosandl,A.(1994a)Collectionofenanti-omerseparationfactorsobtainedbycapillarygaschromatogra-phyonchiralstationaryphases.J.HighRes.Chromatogr.Maas,B.,Dietrich,A.andMosandl,A.(1994b)Collectionofenantiomerseparationfactorsobtainedbycapillarygaschro-matographyonchiralstationaryphases.J.HighRes.Chroma-,169Ð173.Manukian,A.andHeath,R.R.(1993)Developmentofanautomateddatacollectionandenvironmentalmonitoringsystem.Comput.Autom.,27Ð40.Marriott,P.J.,Shellie,R.andCornwell,C.(2001)Gaschromato-graphictechnologiesfortheanalysisofessentialoils.J.Chro-matogr.A,1Ð22.Marriott,P.J.,Morrison,P.D.,Shellie,R.A.,Dunn,M.S.,Sari,E.andRyan,D.(2003)MultidimensionalandcomprehensiveÐtwo-dimensionalgaschromatography.LCGCEurope,23Ð31.Matisova,E.andDomotorova,M.(2003)Fastgaschromatographyanditsuseintraceanalysis.J.Chromatogr.A,199Ð221.McGarvey,D.J.andCroteau,R.(1995)Terpenoidmetabolism.,1015Ð1026.Merfort,I.(2002)Reviewoftheanalyticaltechniquesforsesquiter-penesandsesquiterpenelactones.J.Chromatogr.A,115ÐMillar,J.G.andSims,J.J.(1998)Preparation,cleanup,andprelim-inaryfractionationofextracts.InMethodsinChemicalEcology(Millar,J.G.andHaynes,K.F.,eds).Boston:KluwerAcademicPublishers,pp.1Ð37.Monson,R.K.,Hills,A.J.,Zimmerman,P.R.andFall,R.Studiesoftherelationshipbetweenisopreneemissionrateandorphoton-ßuxdensityusingareal-timeisopreneanalyzer.PlantCellEnviron.,517Ð523.Niinemets,U.,Seufert,G.,Steinbrecher,R.andTenhunen,J.D.(2002)AmodelcouplingfoliarmonoterpeneemissionstoleafphotosyntheticcharacteristicsinMediterraneanevergreenNewPhytol.,257Ð275.Niinemets,U.,Loreto,F.andReichstein,M.(2004)Physiologicalandphysico-chemicalcontrolsonfoliarvolatileorganiccom-poundemissions.TrendsPlantSci.,180Ð186.Nojima,S.,Kiemle,D.J.,Webster,F.X.andRoelofs,W.L.SubmicroscaleNMRsamplepreparationforvolatilechemicals.J.Chem.Ecol.,2153Ð2161.Pham-Tuan,H.,Vercammen,J.andSandra,P.(2001)AversatileroboticarmforstaticheadspacesamplingwithSPME.LCGC,1Ð8.Pichersky,E.andGershenzon,J.(2002)Theformationandfunctionofplantvolatiles:perfumesforpollinatorattractionanddefense.Curr.Opin.PlantBiol.,237Ð243.Ragunathan,N.,Krock,K.A.,Klawun,C.,Sasaki,T.A.andWilkins,(1999)Gaschromatographywithspectroscopicdetectors.Chromatogr.A,349Ð397.Raguso,R.A.andPellmyr,O.(1998)Dynamicheadspaceanalysisofßoralvolatiles:acomparisonofmethods.,238ÐRasmann,S.,Ko¨llner,T.G.,Degenhardt,J.,Hiltpold,I.,Toepfer,S.,Kuhlmann,U.,Gershenzon,J.andTurlings,T.C.J.Recruitmentofentomopathogenicnematodesbyinsect-dam-agedmaizeroots.,732Ð737.¨se,U.S.R.andTumlinson,J.H.(2004)VolatilesreleasedfromcottonplantsinresponsetoHelicoverpazeafeedingdamageoncottonßowerbuds.Planta,824Ð832.¨se,U.S.R.andTumlinson,J.H.(2005)Systemicinductionofvolatilereleaseincotton:howspeciÞcisthesignaltoherbivory?,327Ð335.Plantvolatileanalysis2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560 ¨se,U.S.R.,Manukian,A.,Heath,R.R.andTumlinson,J.H.Volatilesemiochemicalsreleasedfromundamagedcottonleaves:asystemicresponseoflivingplantstocaterpillardamage.PlantPhysiol.,487Ð495.Rohloff,J.andBones,A.M.(2005)VolatileproÞlingofArabidopsisthalianaÐPutativeolfactorycompoundsinplantcommunica-Phytochemistry,1941Ð1955.Rosenstiel,T.N.,Fisher,A.J.,Fall,R.andMonson,R.K.(2002)Dif-ferentialaccumulationofdimethylallyldiphosphateinleavesandneedlesofisoprene-emitting,methylbutenol-emitting,andnon-emittingspecies.PlantPhysiol.,1276Ð1284.Rosenstiel,T.N.,Potosnak,M.J.,Grifn,K.L.,Fall,R.andMon-son,R.K.(2003)IncreasedCOuncouplesgrowthfromiso-preneemissioninanagriforestecosystem.,256ÐRosenstiel,T.N.,Ebbets,A.L.,Khatri,W.C.,Fall,R.andMonson,R.K.(2004)Inductionofpoplarleafnitratereductase:atestofextra-chloroplasticcontrolofisopreneemissionrate.PlantBiol.,12ÐSchnitzler,J.-P.,Arenz,R.,Steinbrecher,R.andLehning,A.Characterizationofanisoprenesynthasefromleavesof(Mattuschka)Liebl.Bot.Acta,216Ð221.Schnitzler,J.-P.,Graus,M.,Kreuzwieser,J.,Heizmann,U.,Ren-nenberg,H.,Wisthaler,A.andHansel,A.(2004a)ContributionofdifferentcarbonsourcestoisoprenebiosynthesisinpoplarPlantPhysiol.,152Ð160.Schnitzler,J.-P.,Steinbrecher,R.,Zimmer,I.,Steigner,D.andFla-dung,M.(2004b)HybridizationofEuropeanoaks(Q.robur)resultsinamixedisoprenoidemittertype.CellEnviron.,585Ð593.Schreier,P.,Bernreuther,A.andHuffner,A.AnalysisofChiralOrganicMolecules,MethodologyandApplications.Berlin:deSchurig,V.(2001)Separationofenantiomersbygaschromatogra-J.Chromatogr.A,275Ð299.Sha,Y.F.,Huang,T.M.,Shen,S.andDuan,G.L.(2004)Determin-ationofvolatilecompoundsinMagnoliabarkbymicrowave-assistedextractioncoupledtoheadspacesolid-phasemicroex-tractionandgaschromatography-massspectrometry.Anal.Sci.,857Ð859.Sharkey,T.D.andLoreto,F.(1993)Waterstress,temperature,andlighteffectsonthecapacityforisopreneemissionandphoto-synthesisofkudzuleaves.,328Ð333.Sharkey,T.D.andSingsaas,E.L.(1995)Whyplantsemitisoprene.,769Ð769.Sharkey,T.D.andYeh,S.S.(2001)Isopreneemissionfromplants.Ann.Rev.PlantPhysiol.Mol.Biol.,407Ð436.Sharkey,T.D.,Loreto,F.,Delwiche,C.F.andTreichel,I.W.Fractionationofcarbonisotopesduringbiogenesisofatmo-sphericisoprene.PlantPhysiol.,463Ð466.Sharkey,T.D.,Chen,X.Y.andYeh,S.(2001)Isopreneincreasesthermotoleranceoffosmidomycin-fedleaves.PlantPhysiol.Silver,G.M.andFall,R.(1991)Enzymaticsynthesisofisoprenefromdimethylallyldiphosphateinaspenleafextracts.PlantPhysiol.,1588Ð1591.Singsaas,E.L.andSharkey,T.D.(1998)Isopreneemissionunderrapidlyßuctuatingleaftemperatures.PlantCellEnviron.,1181ÐSprung,D.,Jost,C.,Reiner,T.,Hansel,A.andWisthaler,A.AirbornemeasurementsofacetoneandacetonitrileinthetropicalIndianOceanboundarylayerandfreetroposphere:aircraft-basedintercomparisonofAP-CIMSandPTR-MSmeasurements.Geophys.Res.,28511Ð28528.Steeghs,M.,Bais,H.P.,deGrouw,J.,Goldan,P.,Kuster,W.,Northway,M.,Fall,R.andVivanco,J.M.(2004)Proton-transfer-reactionmassspectrometryasanewtoolforrealtimeanalysisofroot-secretedvolatileorganiccompoundsinPhysiol.,47Ð58.Tani,A.,Hayward,S.andHewitta,C.N.(2003)Measurementofmonoterpenesandrelatedcompoundsbyprotontransferreac-tion-massspectrometry(PTR-MS).Int.J.MassSpectrom.Tennessen,D.J.,Singsaas,E.L.andSharkey,T.D.(1994)Light-emittingdiodesasalightsourceforphotosynthesisresearch.Photosyn.Res.,85Ð92.Tholl,D.,Chen,F.,Petri,J.,Gershenzon,J.andPichersky,E.TwosesquiterpenesynthasesareresponsibleforthecomplexmixtureofsesquiterpenesemittedfromPlantJ.,757Ð771.Thompson,A.M.(1992)TheoxidizingcapacityoftheEarthÕsatmosphere:probablepastandfuturechanges.Tomova,B.S.,Waterhouse,J.S.andDoberski,J.(2005)TheeffectoffractionatedTagetesoilvolatilesonaphidreproduction.Exp.Appl.,153Ð159.Turlings,T.C.J.,Tumlinson,J.H.andLewis,W.J.(1990)Exploitationofherbivore-inducedplantodorsbyhostseekingparasiticwasps.,1251Ð1253.Turlings,T.C.J.,Loughrin,J.H.,McCall,P.J.,Ro¨se,U.S.R.,Lewis,W.J.andTumlinson,J.H.(1995)Howcaterpillar-damagedplantsprotectthemselvesbyattractingparasiticwasps.Proc.NatlAcad.Sci.USA,4169Ð4174.Vercammen,J.,Pham-Tuan,H.andSandra,P.(2001)Automateddynamicsamplingsystemfortheon-linemonitoringofbiogenicemissionsfromlivingorganisms.J.Chromatogr.A,39Ð51.¨chter,R.,Fischer,K.,Ga¨bler,R.,Kuhnemann,F.,Urban,W.,¨gemann,G.M.,Blom,C.W.P.M.,Voesenek,L.A.C.J.andUlrich,(1999)EthyleneproductionandACCaccumulationinbacteriumtumefaciens-inducedplanttumoursandtheirimpactontumourandhoststemstructureandfunction.PlantCell,1263Ð1273.Wisthaler,A.,Hansel,A.,Dickerson,R.R.andCrutzen,P.J.OrganictracegasmeasurementsbyPTR-MSduringINDOEXJ.Geophys.Res.,doi:10.1029/2001JD000576.Wolfertz,M.,Sharkey,T.D.,Boland,W.,Kuhnemann,F.,Yeh,S.andWeise,S.E.(2003)Biochemicalregulationofisopreneemission.PlantCellEnviron.,1357Ð1364.Wolfertz,M.,Sharkey,T.D.,Boland,W.andKuhnemann,F.Rapidregulationofthemethylerythritol4-phosphatepathwayduringisoprenesynthesis.PlantPhysiol.,1939Ð1945.Zuckerman,H.,Harren,F.J.M.,Reuss,J.andParker,D.H.Dynamicsofacetaldehydeproductionduringanoxiaandpost-anoxiainredbellpepperstudiedbyphotoacoustictechniques.PlantPhysiol.,925Ð932.DorotheaTholletal.2006TheAuthorsJournalcompilation2006BlackwellPublishingLtd,ThePlantJournal,(2006),,540Ð560

Related Contents


Next Show more