/
MammalfaunalresponsetothePaleogenehyperthermalsETM2AEChew MammalfaunalresponsetothePaleogenehyperthermalsETM2AEChew

MammalfaunalresponsetothePaleogenehyperthermalsETM2AEChew - PDF document

josephine
josephine . @josephine
Follow
356 views
Uploaded On 2022-09-09

MammalfaunalresponsetothePaleogenehyperthermalsETM2AEChew - PPT Presentation

CPD11137115014052015 TitlePage Abstract Introduction Conclusions References Tables Figures J I J I Back Close FullScreenEsc PrinterfriendlyVersion InteractiveDiscussion DiscussionPaperDiscussi ID: 953676

discussionpaper 150 chew 2012 150 discussionpaper 2012 chew 2009 cpd11 close 2013 interactivediscussion friendlyversion printer esc fullscreen 1371 figures

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "MammalfaunalresponsetothePaleogenehypert..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

CPD11,1371–1405,2015 MammalfaunalresponsetothePaleogenehyperthermalsETM2A.E.Chew TitlePage Abstract Introduction Conclusions References Tables Figures J I J I Back Close FullScreen/Esc Printer-friendlyVersion InteractiveDiscussion DiscussionPaper|DiscussionPaper|DiscussionPaper|DiscussionPaper| AbstractScientistsareincreasinglyturningtodeep-timefossilrecordstodecipherthelong-termconsequencesofclimatechangeintheracetopreservemodernbiotasfromanthro-pogenicallydrivenglobalwarming.“Hyperthermals”arepastintervalsofgeologicallyrapidglobalwarmingthatprovidetheopportunitytostudytheeectsofclimatechange5onexistingfaunasoverthousandsofyears.AserieshyperthermalsisknownfromtheearlyEocene(56–54millionyearsago),includingthePaleocene-EoceneThermalMaximum(PETM)andtwosubsequenthyperthermals,EoceneThermalMaximum2(ETM2)andH2.ThelaterhyperthermalsoccurredfollowingtheonsetofwarmingattheEarlyEoceneClimaticOptimum(EECO),thehottestsustainedperiodoftheCenozoic.10ThePETMhasbeencomprehensivelystudiedinmarinea

ndterrestrialsettings,buttheterrestrialbioticeectsofETM2andH2areunknown.Theirgeochemicalsigna-tureshavebeenlocatedinthenorthernpartoftheBighornBasin,WY,USA,andtheirlevelscanbeextrapolatedtoanextraordinarilydense,well-studiedterrestrialmammalfossilrecordinthesouth-centralpartofthebasin.High-resolution,multi-parameterpa-15leoecologicalanalysisrevealssignicantpeaksinspeciesdiversityandturnoverandchangesinabundanceandrelativebodysizeatthelevelsofETM2andH2inthesouth-centralBighornBasinrecord.IncontrastwiththePETM,faunalchangeatthelaterhyperthermalsislessextreme,doesnotincludeimmigrationandinvolvesapro-liferationofbodysizes,althoughabundanceshiftstendtofavorsmallercongeners.20FaunalresponseatETM2andH2isdistinctiveinitshighproportionofspecieslossespotentiallyrelatedtoheightenedspeciesvulnerabilityinresponsetothechangesal-readyunderwayatthebeginningoftheEECO.FaunalresponseatETM2andH2isalsodistinctiveinhighproportionsofbetarichness,suggestiveofincreasedgeographicdispersalrelatedtotransientincreasesinhabitat(

;oral)complexityand/orprecipitation25orseasonalityofprecipitation.Theseresultssuggestthatrapidecologicalchanges,in-creasedheterogeneityinspeciesincidence,andheightenedspeciesvulnerabilityand1372 CPD11,1371–1405,2015 MammalfaunalresponsetothePaleogenehyperthermalsETM2A.E.Chew TitlePage Abstract Introduction Conclusions References Tables Figures J I J I Back Close FullScreen/Esc Printer-friendlyVersion InteractiveDiscussion DiscussionPaper|DiscussionPaper|DiscussionPaper|DiscussionPaper| lossmaybeexpectedacrossmostofNorthAmericainthenearfutureinresponsetoanthropogenically-drivenclimatechange.1IntroductionContemporaryscienticprioritiesincludethestudyofpastgeobiologicalsystemstopredictEarthsystemresponsetoclimateforcing(NationalResearchCouncil,2011).5TheearlyEocene(56–52Ma)isparticularlyrelevantforunderstandingmodernan-thropogenicwarmingasitwitnessedglobaltemperatureuctuationincludingseveralhyperthermals(intervalsofgeologicallyrapidglobalwarming)intheapproachtotheEarlyEoceneClimaticOptimum(EE

CO),thehottestsustainedperiodoftheCenozoic(53–51Ma,Zachosetal.,2008).Thelargestandbestknownofthehyperthermalsis10thePaleocene-EoceneThermalMaximum(PETM)atthebaseoftheEocene(KennettandStott,1991;Zachosetal.,1993).Excursionsinmultiplecarbonisotoperecords(carbonisotopeexcursions,CIEs)atthePETMindicatethatseveralthousandpeta-gramsofreducedcarbonwerereleasedintotheocean–atmospheresystemin20ka(reviewinMcInerneyandWing,2011).Thisinitiateda100kaperiodofelevated15globaltemperature(5–7Cwarmer)andperturbationsinEarth'scarboncycling,oceanchemistryandplanktoncommunities(Bowenetal.,2006;Gingerich,2006;McInerneyandWing,2011).Onland,bioticresponsetothePETMisbestknownfromthefossilrecordoftheBighornBasininnorthwesternWyoming,whichdocumentsmajorintra-andintercontinentalimmigration,widespreadtemporarydwarng,andchangesinthe20diversity,trophicstructureandphysiologyoforasandfaunas(Curranoetal.,2008;Gingerich,1989;GingerichandSmith,2006;Roseetal.,2012;Secordetal.,2012;Smithetal.,2009;Wingetal.,2005;Yan

setal.,2006).ThePETMhasbeendescribedasthebestdeep-timeanalogueforanthropogenicclimatewarming(Bowenetal.,2006;Gingerich,2006;McInerneyandWing,2011).25Amajoradvantageofdeep-timerecordsisthepotentialfordocumentationofmulti-pleevents,providingtheopportunitytocharacterizefaunalresponsetoclimatechange1373 CPD11,1371–1405,2015 MammalfaunalresponsetothePaleogenehyperthermalsETM2A.E.Chew TitlePage Abstract Introduction Conclusions References Tables Figures J I J I Back Close FullScreen/Esc Printer-friendlyVersion InteractiveDiscussion DiscussionPaper|DiscussionPaper|DiscussionPaper|DiscussionPaper| ofvaryingrateandmagnitudeagainstdierentbackgroundconditions.Consistenciesinfaunalrepsonseunderspecicconditionsstrengthenthecaseforcausalityandcanbeusedforpredictivepurposes.TwoadditionalearlyEocenehyperthermals,EoceneThermalMaximum2(ETM2=H1)andH2(Crameretal.,2003;Lourensetal.,2005),occurred2maafterthePETM,constitutingwhatiseectivelyasetofrepeatednat-5uralexperimentsinclimatechange.TheCIEsofETM2andH2are

similarbutonehalftoonethirdthemagnitudeofthePETMCIE(Lourensetal.,2005;Sextonetal.,2011;Stapetal.,2010).TheyoccurredwhentheEarthwaswarmerandmayhavepushedhigh-latitudetemperaturestogreaterextremesthanthePETM(Sluijsetal.,2009).ChangesinplanktonatETM2andH2weresimilartothoseatthePETMwith10thedegreeofresponseproportionatetothemagnitudeoftheCIEs(Fosteretal.,2013;Gibbsetal.,2012;Sluijsetal.,2009;Stassenetal.,2012).However,instarkcontrastwiththewell-studiedPETM,terrestrialbioticresponsetoETM2andH2iscurrentlyunknown.TheETM2andH2CIEshavebeendocumentedinthenorthernpartoftheBighornBasin(Abelsetal.,2012)andfromoneotherterrestrialsequenceinIndia15(Clementzetal.,2011),butneitherrecordincludessucientfossilstopermittestingoffaunalresponse.Thedense,highly-resolved,well-documentedmammalrecordfromtheFifteenmileCreek(FC)inthesouth-centralpartoftheBighornBasin(Fig.1)chroniclesalmosttheentireearlyEocenefromthePETMtotheEECO(Bownetal.,1994b).Thelargest20sampleofPETMmammalshasbeenstudiedanddescribedfromtheFCrecord(Roseetal.,2012)alo

ngwithotherfaunaleventsor“biohorizons”,thelargestofwhichafterthePETMisBiohorizonB(Chew,2009a;Schankler,1980).BiohorizonBmarksamajorturningpointinfaunaldiversity(ChewandOheim,2013)thathasbeencorrelatedwithpaleoecologicalchangeacrossNorthAmericaattributedtotheonsetofwarmingat25theEECO(Woodburneetal.,2009).InthenorthernBighornBasinisotoperecord,theCIEsofETM2andH2occur60–80kaafterbiostratigraphiceventsatthebeginningofBiohorizonB(Abelsetal.,2012)butthereisnoobviouslycorrelatedfaunalchangeafterBiohorizonBintheFCrecord(Chew,2009a,b;ChewandOheim,2009).Thislack1374 CPD11,1371–1405,2015 MammalfaunalresponsetothePaleogenehyperthermalsETM2A.E.Chew TitlePage Abstract Introduction Conclusions References Tables Figures J I J I Back Close FullScreen/Esc Printer-friendlyVersion InteractiveDiscussion DiscussionPaper|DiscussionPaper|DiscussionPaper|DiscussionPaper| wasinterpretedasbioticinsensitivitytoETM2andH2(Abelsetal.,2012).However,nopreviousanalysisoftheFCrecordachievedsucientresolutiontodetectf

aunalperturbationatthescaleofthehyperthermals(40ka).Thisreportdescribesthersthigh-resolution,multi-parameterpaleoecologicalanalysisoftheexceptionalFCrecordtotestmammalfaunalresponsetoETM2andH2.52Methodsandmaterials2.1CollectionsThelowangleofdipandwideareaofexposurealongtheFifteenmileCreek(FC)inthesouth-centralpartoftheBighornBasin(Fig.1)allowsWillwoodFormation(earlyEocene)fossillocalitiestobetiedbymeterleveltoacompositestratigraphicsectionof10700m(Bownetal.,1994b).ThebaseoftheFCsection(0m)restsonadistinctiveredbedthatmarksthebeginningofthePETMatSandCreekDivideontheeasternedgeofthestudyarea(Roseetal.,2012).TheC24r-C24ngeomagneticpolarityshifthasbeenlocatednearthemiddleofthesection(455m,Clydeetal.,2007).Nearthetopofthesection(634m),the40Ar=39Ardateofavolcanicashindicatesthattheupperlevels15arewithintheEECO(Smithetal.,2004).Numericalages(56.33,53.57,and52.9Ma,respectively)areassignedtothesethreetiepointsfollowingtherecentregionalrecal-ibrationofTsukuiandClyde(2012).Averagesedimentaccumulationrat

esbetweenthetiepointsincreasefrom0.165to0.267mka�1abovetheC24r-C24ngeomagneticpolarityshift,whichisinbroadagreementwithpreviousanalysisofdepositionalrates20basedonpaleosols(BownandKraus,1993).TheseratessuggestthatonemeterofFCsectionthicknessrepresents6kainthelowerlevelsand4kaabovetheC24r-C24ngeomagneticpolarityshift.Previousanalysisofpaleosolcarbonateswasnotsucientlyresolvedtodemon-stratetheCIEsofETM2andH2intheFCsection(Fig.2,Kochetal.,2003)buttheir25levelscanbeextrapolatedfromisotopicworkintheMcCulloughPeaksofthenorth-1375 CPD11,1371–1405,2015 MammalfaunalresponsetothePaleogenehyperthermalsETM2A.E.Chew TitlePage Abstract Introduction Conclusions References Tables Figures J I J I Back Close FullScreen/Esc Printer-friendlyVersion InteractiveDiscussion DiscussionPaper|DiscussionPaper|DiscussionPaper|DiscussionPaper| ernBighornBasin.Abelsetal.(2012)identiedtheCIEsofETM2andH2withinanintervalofmixedgeomagneticpolaritybelowtheshiftfromtheC24reversedtoC24normalgeomagneticzones(Fig.2).Biostra

tigraphiceventsatthebeginningofBiohori-zonBarealsolooselytiedtotheMcCulloughPeaksisotopesections,includingthelastappearanceofthecondylarthHaplomylusspeirianusandtherstappearanceof5theartiodactylBunophorusetsagicus.Thesespeciesco-occuratasinglelocality(MP122,5kmwestofthenearestisotopesection)thatwastracedtonearthemiddleofa35mthickgapbetweenthemintheisotopesections(Fig.2).TheC24r-C24nge-omagneticshiftandthenearlysimultaneousBiohorizonBstratigraphiceventsbrackettheETM2andH2CIEsandarealsoknownat455m(Clydeetal.,2007)and381m10(thisproject)intheFCsection.Betweenthesetiepoints,theMcCulloughPeakssedi-mentsareroughly42%thickerthantheFCsediments.ScalingtheMcCulloughPeakssectionsby0.68allowstheextrapolationofETM2andH2tothe410–420and430–440mlevels,respectively,oftheFCsection.TheseareroughpredictionsduetotheuncertaintyassociatedwiththelevelofthebiostratigraphiceventsintheMcCullough15Peaksandtovariationinsedimentaccumulationratesovertime,especiallyaroundBiohorizonB(BownandKraus,1993;Clyde,2001

).Allspecimensincludedinthisprojectwerecollectedfrom410fossillocalitiesspan-ning290–510mintheFCsection.NeighboringlocalitiesalongtheElkCreek(Fig.1)havealsobeentiedtotheFCsectionbutareexcludedfromthisanalysisbecauseof20dierencesinsectionthickness(upto70m,Bownetal.,1994b)thatwouldcompromiseresolution.Thisexclusionresultsincomparativelylimitedsamplesizesbelow370m(Fig.2).Morethan32000specimensareincludedinthisstudy(TableS1),represent-ing103lineagesandspecies(TableS2,68genera,27families,16orders).Ofthese,�1100arerecentlycollectedspecimens(2004–2011eldseasons)notincludedin25previouspaleoecologicalanalyses(Chew,2009a,b;ChewandOheim,2009,2013).Specimensareidentiedtospecieslevel(asinChew,2009a).Singletontaxaandstratigraphicoutliersareexcludedtoavoidinationofpaleoecologicalparametersandlossofresolution.Specieswithsingleoccurrencesinthisdatasetthatarenotexcluded1376 CPD11,1371–1405,2015 MammalfaunalresponsetothePaleogenehyperthermalsETM2A.E.Chew TitlePage Abstract Introduction C

onclusions References Tables Figures J I J I Back Close FullScreen/Esc Printer-friendlyVersion InteractiveDiscussion DiscussionPaper|DiscussionPaper|DiscussionPaper|DiscussionPaper| (TableS2)areknowntohaveexistedbelow290mand/orabove510m.Astratigraphicoutlierisdenedasawell-documented,clearlyidentiableindividualrecovered50-100moutsideofthestratigraphicrangeofthespecies.Sevenstratigraphicoutlierswereidentiedandexcluded(Anacodonursidens–Condylarthra,Apatemysrodens–Apatotheria,BunophorusetsagicusandBunophorusgrangeri–Artiodactyla,Lamb-5dotherium–Perissodactyla,Pachyaenaossifraga–Mesonychia,Palaeictopsbicuspis–Leptictida).2.2SpecimendatabinningThespecimendataarebinnedbymeterlevel,providingthemaximumpossibleresolu-tion(4–6ka).Atthisresolution,stratigraphicgapsconstitute40%oftherecord10andtherearelargedisparitiesinsamplesize(0–3000specimensm�1)andatrendofincreasingsamplesizeovertime(Spearman's=0.19,p0.05),allofwhichcompli-catethec

alculationandinterpretationofpaleoecologicalparameters.Althoughlongerdatabinsdecreaseresolution,theyeliminategapsandallowextensivesamplesizestandardization,permittingthecalculationofmultiple,complimentaryandunbiasedpa-15leoecologicalparameters.FivemetersistheminimumbinthicknessthateliminatesallgapsinthezoneinwhichETM2andH2mustoccur(370–455m)intheFCsection.However,eachve-meterbinrepresents30ka,whichapproachesthelengthofthehyperthermalsunderinvestigationandmakesitimpossibletoconstructasinglebinningseriesthatdividesthesectionappropriatelytocaptureeachevent.Onealternativeis20toapproximatemeter-levelresolutionthroughthecombinationofaseriesofrandomlyoverlappingbinsofdierentlengths.Fourseriesofequal-timedatabinsarecreatedthroughanexhaustivesearchtoeliminategapsandmaximizesamplesizesatve-,six-,seven-andeight-meterbinlengths(TableS3).(Toaccommodateincreasingsedi-mentaccumulationrateabove455m,thebinsineachseriesarelengthenedaccord-25ingly;5–7,6–8,7–10,and8–11m).Collectively

,thebinningseriesprovidecontinuouscoverageandsamplesizes&#x]TJ/;&#x 10.;邑&#x Tf ;.4;# 0;&#x Td ;&#x[000;100specimensfrom376–505mintheFCsection.Pale-oecologicalparametersarecalculatedforeachseries.Parametervaluesareassigned1377 CPD11,1371–1405,2015 MammalfaunalresponsetothePaleogenehyperthermalsETM2A.E.Chew TitlePage Abstract Introduction Conclusions References Tables Figures J I J I Back Close FullScreen/Esc Printer-friendlyVersion InteractiveDiscussion DiscussionPaper|DiscussionPaper|DiscussionPaper|DiscussionPaper| thestandardizedappearancesandrelativeabundancesprovidedbythealgorithmictreatmentofthebinneddata.2.3.1RichnessRichnessisthenumberofspeciespresentinasampleandishighlydependentonsamplesize.Wheresamplesallow(�100specimens,continuouslydistributed),rar-5efactionisusedtoproducestandardizedestimatesofrichness(Colwell,2013;Hol-land,2003).Alpha(average,within-sample)richnessisestimatedusingconventional,individual-basedrarefaction(IR,Fig.3),whichplotsthenumberofspeciesfoundthrou

ghtheaccumulationofindividuals(Hurlburt,1971;Sanders,1968).Pointesti-matesofalpharichnessatasamplesizeof100specimensaredirectlycomparable10betweensamples.Toestimatebeta(dierentiationbetweensample)richness,sample-basedrarefaction(SR,Fig.3)isused,whichplotsthenumberofspeciesthatarefoundthroughtheaccumulationofsamples(Chiaruccietal.,2008;Colwelletal.,2004;GotelliandColwell,2001).SRisdependentuponthespatialdistributionofspecimens.Inthepresenceofdistributionalheterogeneity,SRrichnessestimatesarelowerthanIR15richnessestimates,asIRassumesarandomdistributionofindividualsandproducesacurveofmaximal,theoreticalrichness(Colwelletal.,2004;Foote,1992;GotelliandColwell,2001;Olszewski,2004).ThedierencebetweenIRandSRcurvesreectsbetarichness(CristandVeech,2006;GotelliandColwell,2001;Olszewski,2004)andislargestnearthebaseoftheSRcurve(Fig.3).ComparableIRandSRpointrichness20estimatesfromthebaseofeachSRcurveareusedtoestimatebetarichness(asinChewandOheim,2013).Gamma(totallandscape)richnessisthesumofalphaandbetarichness.

2.3.2EvennessAspectsofevennessareindependentofsamplesize,butevennessisdiculttochar-25acterize(Magurran,2004).Twoindicesareusedhere,bothcalculatedfromstandard-1379 CPD11,1371–1405,2015 MammalfaunalresponsetothePaleogenehyperthermalsETM2A.E.Chew TitlePage Abstract Introduction Conclusions References Tables Figures J I J I Back Close FullScreen/Esc Printer-friendlyVersion InteractiveDiscussion DiscussionPaper|DiscussionPaper|DiscussionPaper|DiscussionPaper| izedproprotionalrelativeabundances.Therstisthewell-knownProbabilityofInter-specicEncounter,PIE,index(Hurlburt,1971),whichistheinverseofSimpson'sdom-inanceindexstandardizedfornitecollectionsize.PIE=1�"sXi=1ni(ni�1)=N(N�1)#,(1)whereniisthenumberofspecimensofspecies“i”andNisthetotalnumberof5specimensinasample.Thoughwidelyemployedasadescriptorofthe“evenness”ofspeciesabundancedistributions,PIEisstronglycorrelatedwiththeproportionalrel-ativeabundanceofthetwomostcommonspeciesinthesedata(mainlyequidandhyopsodontidspeci

es;Spearman's=�0.49to�0.84,p=0.00).Toavoidconfusion,itisreferredtohereasanindexof“inversedominance”.Thesecondindexisamod-10icationofrank-abundanceanalysis(Fig.3),inwhichspeciesarerankedfrommosttoleastabundantandtheirnatural-logtransformedrelativeabundancesareplottedagainstranks(Magurran,2004).Rank-abundancecurvesprovideavisualrepresenta-tionofanabundancedistributionthatisshapedbythemajorityofthespeciespresentinasample.Theslopesofexponentialtrendlinesttedtothecurvesaredirectlycompa-15rablebetweensamples(Fig.3,asinCaronandJackson,2008).Thetofthetrendlinesforthesedataishigh(R2�0.75)andtheslopesofthetrendlinesareshallowandneg-ative(�0.1).Thereciprocaloftheabsolutevalueoftheslopesisusedtotransformthemintoanindexof“inclusiveabundance”.Thetwoindiceshavevaluesbetweenzeroandone.Highervaluesofinversedominanceindicatehigherevennessthrough20decreaseddominanceofthesamplebyafewtaxa.Highervaluesofinclusiveabun-danceindicatehigherevennessthroughamoreequaldistributionoftheabu

ndancesofthemajorityofthespeciesinthesample.Thetwoindicesaresummedasanindexofevenness.1380 CPD11,1371–1405,2015 MammalfaunalresponsetothePaleogenehyperthermalsETM2A.E.Chew TitlePage Abstract Introduction Conclusions References Tables Figures J I J I Back Close FullScreen/Esc Printer-friendlyVersion InteractiveDiscussion DiscussionPaper|DiscussionPaper|DiscussionPaper|DiscussionPaper| andaresimilarinallaspectsoffaunalchangedescribedhere.Thesimplestexplana-tionfortheirsimilarityisacomparabletrigger,andETM2andH2areakin(Abelsetal.,2012;Sextonetal.,2011;Stapetal.,2010).ChangeatfaunaleventsB-1andB-2issuperciallysimilartothatdescribedattheonlyotherwell-knownearlyEocenehyper-thermal,thePETM(Gingerich,1989;Roseetal.,2012;Secordetal.,2012),including5increasesindiversityandturnoverandageneralshifttowardssmallerbodysize.Inaddition,theincreasesin(alpha)richnessandturnoverarelesspronouncedatfaunaleventsB-1andB-2thanatthePETM(Table2),whichisalsothecaseinmarineplank-tonacrossthehyperthermals(Fosteretal.,2013;Gibbsetal

.,2012;Stassenetal.,2012)andconformswiththeexpectationthatETM2andH2weresmallerevents.Itis10assumedherethatthereisacausalrelationshipbetweenETM2andH2andfaunaleventsB-1andB-2.4.1ComparisonwiththePETMTurnoverandchangesinbodysizeatthePETMaredramaticcomparedwithfau-naleventsB-1andB-2(Table2).PronouncedturnoveratthePETMwasrecognized15longbeforethehyperthermalwasknownbytheplacementoftherstmajorboundary(Clarkforkian/Wasatchian)intheNorthAmericanLandMammalAgesequence(Wood,1941).NearlyhalfoftheBighornBasinmammalgeneraand80%ofthespeciesthatexistedduringthePETMarenew(Roseetal.,2012;Woodburneetal.,2009).Thisturnoverwasfueledbyimmigration;upto40%ofnewgeneraatthePETM20wereimmigrants(Roseetal.,2012;Woodburneetal.,2009)fromthesouthernpartofthecontinent(Burger,2012;Gingerich,2001)andfromtheHolarcticcontinentsvianorthernlandbridges(Bowenetal.,2002;Gingerich,2006;Roseetal.,2011).Incom-parison,10%ofgeneraatfaunaleventsB-1andB-2arenew(Table2)andnoneofthesearedocumentedimmigrants(Woodburneetal.,2009).Decreasesinbodysize

25atthePETMarewidespread(e.g.,Smithetal.,2009)including40%ofallmammalgenera(Secordetal.,2012).Thesedecreasesoccurredthroughtemporarydwarngoflineagesandspeciesviametaboliceects,orthroughtheimmigrationofclosely1384 CPD11,1371–1405,2015 MammalfaunalresponsetothePaleogenehyperthermalsETM2A.E.Chew TitlePage Abstract Introduction Conclusions References Tables Figures J I J I Back Close FullScreen/Esc Printer-friendlyVersion InteractiveDiscussion DiscussionPaper|DiscussionPaper|DiscussionPaper|DiscussionPaper| abundanceofdominantspecies,seeChew,2009a,b;ChewandOheim,2013)andcarriedthroughfaunaleventsB-1andB-2.However,faunaleventsB-1andB-2areuniqueintheirhigherproportionsofspeciesloss,whichnearlyequaltheproportionsofnewspeciesateachevent(Table2).NearlyhalfoftheturnoveratfaunaleventsB-1andB-2occurswithinlineages,withcorrespondinglysmallproportions(6%)of5genericevents.Incontrast,andinspiteoftheirwidelydierentmechanisms,boththePETMandBiohorizonBarecharacterizedbyburstsofnewspecies,includingmany

newgenera,andcomparativelyfewlosses.ThePETMwasatransientepisodeofeco-logicalchange,includingimmigrationandbodysizeadjustment,whereasBiohorizonBinvolvedmarkedevolutionarychange(Woodburneetal.,2009).Botheventswere10initiatedbysignicantclimaticandenvironmentaldisturbancethatended1maperi-odsofrelativelystaticconditions;warmandmoistbeforethePETMandcoolanddrybeforeBiohorizonB(Krausetal.,2013;KrausandRiggins,2007;Snelletal.,2013;Wilf,2000;Wingetal.,2000).Incontrast,therapidwarmingofETM2andH2occurredsoonaftertheonsetoftheclimaticandenvironmentaldisturbancerelatedtotheEECO15andBiohorizonB.Faunalstructuremayhavebeencomparativelyunstableascommu-nitieswereadjustingtochangingconditions,perhapsleavingmorespeciesvulnerabletofurtherchange.TheturnoverwithinlineagesatfaunaleventsB-1andB-2suggeststhatmorespecieswerelostthroughevolutionarytransitionsatETM2andH2.FaunaleventsB-1andB-2arealsouniqueintheirhighproportionsofbetarichness20(Table2).Betarichnessreectsheterogeneityinspeciesincidencepatterns(CollinsandSimberlo&#

19;,2009;Colwelletal.,2004;GotelliandColwell,2001)thatmayoccurthroughspecializationfordispersedmicrohabitatsand/orheightenedecologicalinter-actionsthatpromptspeciestoseekoutoravoideachother(e.g.,competition,preda-tion).Previousanalysisidentiedariseinbetarichnessinthe2maafterBiohorizon25Btowhichbothmechanismsmayhavecontributed(Fig.3,ChewandOheim,2013;Woodburneetal.,2009).Acoincidentlong-termincreaseinalpharichness(Fig.3,ChewandOheim,2013;Woodburneetal.,2009)impliesthatthereweremorespeciespackedintotheavailablespaceofthelandscape,increasingthepotentialforecologi-1387 CPD11,1371–1405,2015 MammalfaunalresponsetothePaleogenehyperthermalsETM2A.E.Chew TitlePage Abstract Introduction Conclusions References Tables Figures J I J I Back Close FullScreen/Esc Printer-friendlyVersion InteractiveDiscussion DiscussionPaper|DiscussionPaper|DiscussionPaper|DiscussionPaper| calinteractions.Increasedhabitatcomplexityassubtropicalandtropicalorasbecamemoreestablishedimpliesmoreopportunitiesformicrohabitatspecializa

tion(ChewandOheim,2013;Wingetal.,2000;Woodburneetal.,2009).TheproportionsofnewspeciesandalpharichnessarenotparticularlyhighatfaunaleventsB-1andB-2,sug-gestingthatthetemporarypeaksinbetarichnessatETM2andH2areprobablynot5relatedtoanaccelerationofspeciespackingandheightenedecologicalinteractions.Instead,theymayrepresentincreasedmicrohabitatspecializationinresponsetotran-sientincreasesoralcomplexity,perhapsheightenedbythemoreseasonal,possiblymoreintenseandepisodic,precipitationsuggestedbytransientlithologicalchanges(Abelsetal.,2012).104.3ImplicationsformodernanthropogenicchangeAspectsoffaunalchangeintheBighornBasinrecordoftheearlyEocenearerele-vantforpredictingmodernanthropogeniceects.ThePETM,ETM2andH2raisedMATintheBighornBasintonearlythesameabsolutevalue(20Cgiventhepro-portionalityofCIEandtemperature,andlong-termtemperaturetrendsatETM2and15H2,Abelsetal.,2012;FrickeandWing,2004;Wingetal.,2000).Extrapolatingfromcurrentandprojectedregionalratesofchange,Wyoming'sMAT(8CaccordingtoUSclimated

ata)willapproachthisvaluein300yearsevenifemissionsarestabi-lizedbeforethen,giventhetimescaleofclimateprocessesandfeedbacks(PachauriandReisinger,2007).Thisrateofwarmingfarexceedsthoseofthepast,implyingthat20species-specic,rapidecologicaladjustments(e.g.,geographicrangeandbodysizechanges)willprobablyoccurinthenearfutureastheydidatthePETM,theintervalwiththehighestrateofwarming.RiverrunoandwateravailabilityareexpectedtodecreaseinthedryareasofwesternNorthAmericawithongoingclimatechangebutprecipitia-tionandthefrequencyofheavyprecipitationeventsareexpectedtoincreaseacross25therestofthecontinentwiththecontractionoftheGreenlandicesheet(PachauriandReisinger,2007).ThelatterchangesaremoreconsistentwiththeBighornBasinrecordofthebeginningoftheEECO.Inaddition,humanactivitiessuchasurbanization,habi-1388 CPD11,1371–1405,2015 MammalfaunalresponsetothePaleogenehyperthermalsETM2A.E.Chew TitlePage Abstract Introduction Conclusions References Tables Figures J I J I Back Close FullScreen/Esc Printer-friendlyVersion

InteractiveDiscussion DiscussionPaper|DiscussionPaper|DiscussionPaper|DiscussionPaper| Clementz,M.,Bajpai,S.,Ravikant,V.,Thewissen,J.G.M.,Saravanan,N.,Singh,I.B.,andPrasad,V.:EarlyEocenewarmingeventsandthetimingofterrestrialfaunalexchangebe-tweenIndiaandAsia,Geology,39,15–18,2011.Clyde,W.C.:MammalianbiostratigraphyoftheMcCulloughPeaksareainthenorthernBighornBasin,in:Paleocene-EoceneStratigraphyandBioticChangeintheBighornAndClarksFork5Basins,Wyoming,editedby:Gingerich,P.D.,UniversityofMichiganPapersonPaleontologyVolume33,AnnArbor,Michigan,109–126,2001.Clyde,W.C.,Hamzi,W.,Finarelli,J.A.,Wing,S.L.,Schankler,D.,andChew,A.:Basin-widemagnetostratigraphicframeworkforthebighornbasin,Wyoming,Geol.Soc.Am.Bull.,119,848–859,2007.10Collins,M.D.andSimberlo,D.:Rarefactionandnonrandomspatialdispersionpatterns,Envi-ron.Ecol.Stat.,16,89–103,2009.Collinson,M.E.,Hooker,J.J.,andGrocke,D.R.:Cobhamlignitebedandpenecontemporane-ousmacroorasofsouthernEngland:arecordofvegetationandreacrossthePaleocene-E

oceneThermalMaximum,in:CausesandConsequencesofGloballyWarmClimatesin15theEarlyPaleogene,editedby:Wing,S.L.,Gingerich,P.D.,Schmidtz,B.,andThomas,E.,Geol.Soc.Am.SpecialPaper369,Boulder,CO,333–350,2003.Colwell,R.K.:EstimateS9.1:StatisticalEstimationofSpeciesRichnessandSharedSpeciesfromSamples(SoftwareandUser'sGuide),availableat:http://purl.oclc.org/estimates,2013.Colwell,R.K.,Mao,C.X.,andChang,J.:Interpolating,extrapolating,andcomparingincidence-20basedspeciesaccumulationcurves,Ecology,85,2717–2727,2004.Cramer,B.S.,Wright,J.D.,Kent,D.V.,andAubry,M.-P.:Orbitalclimateforcingofdelta13CexcursionsinthelatePaleocene-earlyEocene(chronsC24n-C25n),Paleoceanography,18,21-1–21-25,2003.Crist,T.O.andVeech,J.A.:Additivepartitioningofrarefactioncurvesandspecies–areare-25lationships:unifyingalpha-,beta-andgammadiversitywithsamplesizeandhabitatarea,Ecol.Lett.,9,923–932,2006.Currano,E.D.,Wilf,P.,Wing,S.L.,Labandeira,C.C.,Lovelock,E.C.,andRoyer,D.L.:SharplyincreasedinsectherbivoryduringthePaleocene-Eocenethe

rmalmaximum,P.Natl.Acad.Sci.USA,105,1960–1964,2008.30Foden,W.,Midgley,G.F.,Hughes,G.,Bond,W.J.,Thuiller,W.,Homan,M.T.,Kaleme,P.,Underhill,L.G.,Rebelo,A.,andHannah,L.:Achangingclimateiserodingthegeographical1392 CPD11,1371–1405,2015 MammalfaunalresponsetothePaleogenehyperthermalsETM2A.E.Chew TitlePage Abstract Introduction Conclusions References Tables Figures J I J I Back Close FullScreen/Esc Printer-friendlyVersion InteractiveDiscussion DiscussionPaper|DiscussionPaper|DiscussionPaper|DiscussionPaper| rangeoftheNamibDeserttreeAloethroughpopulationdeclinesanddispersallags,Divers.Distrib.,13,645–653,2007.Foote,M.:Rarefactionanalysisofmorphologicalandtaxonomicdiversity,Paleobiology,18,1–16,1992.Foote,M.:Originationandextinctioncomponentsoftaxonomicdiversity:generalproblems,5Paleobiology,26(Supplementtono.4),74–102,2000.Foreman,B.Z.:Climate-drivengenerationofauvialsheetsandbodyatthePaleocene-Eoceneboundaryinnorth-westWyoming(USA),BasinRes.,26,225–241,2014.Foreman,B.Z.,Heller,P

.L.,andClementz,M.T.:FluvialresponsetoabruptglobalwarmingatthePalaeocene/Eoceneboundary,Nature,491,92–95,2012.10Foster,L.C.,Schmidt,D.N.,Thomas,E.,Arndt,S.,andRidgwell,A.:SurvivingrapidclimatechangeinthedeepseaduringthePaleogenehyperthermals,P.Natl.Acad.Sci.USA,110,9273–9276,2013.Fricke,H.C.andWing,S.L.:Oxygenisotopeandpaleobotanicalestimatesoftemperatureanddelta(18)O-latitudegradientsoverNorthAmericaduringtheEarlyEocene,Am.J.Sci.,304,15612–635,2004.Gibbs,S.J.,Bown,P.R.,Murphy,B.H.,Sluijs,A.,Edgar,K.M.,Pälike,H.,Bolton,C.T.,andZachos,J.C.:ScaledbioticdisruptionduringearlyEoceneglobalwarmingevents,Biogeo-sciences,9,4679–4688,doi:10.5194/bg-9-4679-2012,2012.Gingerich,P.D.:NewearliestWasatchianmammalianfaunafromtheEoceneofNorthwestern20Wyoming:compositionanddiversityinararelysampledhigh-oodplainassemblage,Univer-sityofMichiganPapersonPaleontology,AnnArbor,Michigan,1989.Gingerich,P.D.:BiostratigraphyofthecontinentalPaleocene-EoceneboundaryintervalonPolecatbenchinthenorthernBighornBasin,in:P

aleocene-EoceneStratigraphyandBioticChangeintheBighornAndClarksForkBasins,Wyoming,editedby:Gingerich,P.D.,Uni-25versityofMichiganPapersonPaleontologyVolume33,AnnArbor,Michigan,37–71,2001.Gingerich,P.D.:EnvironmentandevolutionthroughthePaleocene-EoceneThermalMaximum,TrendsEcol.Evol.,21,246–253,2006.Gingerich,P.D.andSmith,T.:Paleocene-EocenelandmammalsfromthreenewlatestClark-forkianandearliestWasatchianwashsitesatPolecatBenchinthenorthernBighornBasin,30Wyoming,ContributionsfromtheMuseumofPaleontology,UniversityofMichigan,31,245–303,2006.1393 CPD11,1371–1405,2015 MammalfaunalresponsetothePaleogenehyperthermalsETM2A.E.Chew TitlePage Abstract Introduction Conclusions References Tables Figures J I J I Back Close FullScreen/Esc Printer-friendlyVersion InteractiveDiscussion DiscussionPaper|DiscussionPaper|DiscussionPaper|DiscussionPaper| Gotelli,N.J.andColwell,R.K.:Quantifyingbiodiversity:proceduresandpitfallsinthemea-surementandcomparisonofspeciesrichness,Ecol.Lett.,4,379–391,2001.Holland,S.:A

nalyticRarefaction1.3(SoftwareandUser'sGuide),UniversityofGeorgia,Athens,GA,2003.Hurlburt,S.H.:Thenonconceptofspeciesdiversity:acritiqueandalternativeparameters,5Ecology,52,577–586,1971.Kennett,J.P.andStott,L.D.:Abruptdeep-seawarming,palaeoceanographicchangesandbenthicextinctionsattheendofthePaleocene,Nature,353,225–229,1991.Koch,P.L.,Clyde,W.C.,Hepple,R.P.,Fogel,M.L.,Wing,S.L.,andZachos,J.C.:CarbonandoxygenisotoperecordsfrompaleosolsspanningthePaleocene-Eoceneboundary,Bighorn10Basin,Wyoming,in:CausesandConsequencesofGloballyWarmClimatesintheEarlyPaleogene,editedby:Wing,S.L.,Gingerich,P.D.,Schmidtz,B.,andThomas,E.,Geol.Soc.Am.SpecialPaper369,Boulder,CO,49–64,2003.Kraus,M.J.andRiggins,S.:TransientdryingduringthePaleocene-EoceneThermalMaximum(PETM):analysisofpaleosolsintheBighornBasin,Wyoming,Palaeogeogr.Palaeocl.,245,15444–461,2007.Kraus,M.J.,McInerney,F.A.,Wing,S.L.,Secord,R.,Baczynski,A.A.,andBloch,J.I.:PaleohydrologicresponsetocontinentalwarmingduringthePaleocene-EoceneThermalMaximum,Bigho

rnBasin,Wyoming,Palaeogeogr.Palaeocl.,370,196–208,2013.Lourens,L.J.,Sluijs,A.,Kroon,D.,Zachos,J.C.,Thomas,E.,Rohl,U.,Bowles,J.,andRa,I.:20AstronomicalpacingoflatePalaeocenetoearlyEoceneglobalwarmingevents,Nature,435,1083–1087,2005.Magurran,A.E.:MeasuringBiologicalDiversity,Wiley-Blackwell,Indianapolis,IN,2004.McInerney,F.A.andWing,S.L.:ThePaleocene-EoceneThermalMaximum:aperturbationofcarboncycle,climate,andbiospherewithimplicationsforthefuture,Annu.Rev.EarthPl.25Sc.,39,489–516,2011.NationalResearchCouncil:UnderstandingEarth'sDeepPast:LessonsforOurClimateFuture,TheNationalAcademiesPress,Washington,DC,2011.Olszewski,T.D.:Auniedmathematicalframeworkforthemeasurementofrichnessandeven-nesswithinandamongmultiplecommunities,Oikos,104,377–387,2004.30Pachauri,R.K.andReisinger,A.:ClimateChange2007–SynthesisReport,IPCCFourthAssessment,Geneva,Switzerland,2007.1394 CPD11,1371–1405,2015 MammalfaunalresponsetothePaleogenehyperthermalsETM2A.E.Chew TitlePage Abstract Introduction Conclusio

ns References Tables Figures J I J I Back Close FullScreen/Esc Printer-friendlyVersion InteractiveDiscussion DiscussionPaper|DiscussionPaper|DiscussionPaper|DiscussionPaper| Sluijs,A.,Schouten,S.,Donders,T.H.,Schoon,P.L.,Rohl,U.,Reichart,G.-J.,Sangiorgi,F.,Kim,J.-H.,SinningheDamste,J.S.,andBrinkhuis,H.:WarmandwetconditionsintheArcticregionduringEoceneThermalMaximum2,Nat.Geosci.,2,777–780,2009.Smith,J.J.,Hasiotis,S.T.,Kraus,M.J.,andWoody,D.T.:TransientdwarsmofsoilfaunaduringthePaleocene–EoceneThermalMaximum,P.Natl.Acad.Sci.USA,106,17655–517660,2009.Smith,M.E.,Singer,B.,andCarroll,A.:40Ar=39ArgeochronologyoftheEoceneGreenRiverformation,Wyoming,Reply,Geol.Soc.Am.Bull.,116,253–256,2004.Snell,K.E.,Thrasher,B.L.,Eiler,J.M.,Koch,P.L.,Sloan,L.C.,andTabor,N.J.:HotsummersintheBighornBasinduringtheearlyPaleogene,Geology,41,55–58,2013.10Stap,L.,Lourens,L.J.,Thomas,E.,Sluijs,A.,Bohaty,S.,andZachos,J.C.:High-resolutiondeep-seacarbonandoxygenisotoperecordsofEoceneThermalMaximum2andH2,Ge-ology,38,6

07–610,2010.Stassen,P.,Steurbaut,E.,Morsi,A.M.M.,Schulte,P.,andSpeijer,R.P.:BioticimpactofEoceneThermalMaximum2inashelfsetting(Dababiya,Egypt),Aust.J.EarthSci.,105,15154–160,2012.Tsukui,K.andClyde,W.C.:Fine-tuningthecalibrationoftheearlytomiddleEocenegeo-magneticpolaritytimescale:paleomagnetismofradioisotopicallydatedtusfromLaramideforelandbasins,Geol.Soc.Am.Bull.,124,870–885,2012.VanDeVelde,J.H.,Bowen,G.J.,Passey,B.H.,andBowen,B.B.:Climaticanddiagenetic20signalsinthestableisotopegeochemistryofdolomiticpaleosolsspanningthePaleocene-Eoceneboundary,Geochim.Cosmochim.Ac.,109,254–267,2013.Wilf,P.:LatePaleocene-earlyEoceneclimaticchangesinsouth-westernWyoming:paleob-otanicalanalysis,Geol.Soc.Am.Bull.,112,292–307,2000.Wing,S.L.,Bown,T.M.,andObradovich,J.D.:EarlyEocenebioticandclimaticchangein25interiorwesternNorthAmerica,Geology,9,1189–1192,1991.Wing,S.L.,Bao,H.,andKoch,P.L.:AnearlyEocenecoolperiod?EvidenceforcontinentalcoolingduringthewarmestpartoftheCenozoic,in:WarmClimatesinEarth

History,editedby:Huber,B.T.,MacLeod,K.G.,andWing,S.L.,CambridgeUniversityPress,Cambridge,197–237,2000.30Wing,S.L.,Harrington,G.J.,Smith,F.A.,Bloch,J.I.,Boyer,D.M.,andFreeman,K.H.:Tran-sientoralchangeandrapidglobalwarmingatthePaleocene-Eoceneboundary,Science,310,993–996,2005.1396 CPD11,1371–1405,2015 MammalfaunalresponsetothePaleogenehyperthermalsETM2A.E.Chew TitlePage Abstract Introduction Conclusions References Tables Figures J I J I Back Close FullScreen/Esc Printer-friendlyVersion InteractiveDiscussion DiscussionPaper|DiscussionPaper|DiscussionPaper|DiscussionPaper| Wood,H.E.:NomenclatureandcorrelationoftheNorthAmericancontinentalTertiary,Bull.Geol.Soc.Am.,52,1–48,1941.Woodburne,M.O.,Gunnell,G.F.,andStucky,R.K.:ClimatedirectlyinuencesEocenemam-malfaunaldynamicsinNorthAmerica,P.Natl.Acad.Sci.,106,13399–13403,2009.Yans,J.,Strait,S.G.,Smith,T.,Dupuis,C.,Steurbaut,E.,andGingerich,P.D.:High-resolution5carbonisotopestratigraphyandmammalianfaunalchangeatthePaleocene-Eocenebound-aryi

ntheHoneycombsareaofthesouthernBighornBasin,Wyoming,Am.J.Sci.,306,712–735,2006.Zachos,J.C.,Lohmann,K.C.,Walker,J.C.G.,andWise,S.W.:AbruptclimatechangeandtransientclimatesduringthePaleogene:amarineperspective,J.Geol.,101,191–213,1993.10Zachos,J.C.,Dickens,G.R.,andZeebe,R.E.:AnearlyCenozoicperspectiveongreenhousewarmingandcarbon-cycledynamics,Nature,451,279–283,2008.1397 CPD11,1371–1405,2015 MammalfaunalresponsetothePaleogenehyperthermalsETM2A.E.Chew TitlePage Abstract Introduction Conclusions References Tables Figures J I J I Back Close FullScreen/Esc Printer-friendlyVersion InteractiveDiscussion DiscussionPaper|DiscussionPaper|DiscussionPaper|DiscussionPaper| Figure1.Fossillocalitiesinthesouth-centralpartoftheBighornBasin.ColoredlocalitieshavebeentiedbymeterleveltotheFifteenmileCreekcompositestratigraphicsectionofBownetal.(1994b).CircledlocalitiesspantheETM2andH2hyperthermallevels(290–510m)intheFifteenmileCreeksection.IsotopesectionsrecordingtheETM2andH2CIEsintheMcCulloughPeaksarefromAb

Related Contents


Next Show more