/
Web-based Class Project on Rock Mechanics Web-based Class Project on Rock Mechanics

Web-based Class Project on Rock Mechanics - PowerPoint Presentation

jovita
jovita . @jovita
Follow
342 views
Uploaded On 2022-06-01

Web-based Class Project on Rock Mechanics - PPT Presentation

Report prepared as part of course CEE 544 Rock Mechanics Winter 2015 Semester Instructor Professor Dimitrios Zekkos Department of Civil and Environmental Engineering University of Michigan Summary of Surface Blasting with Comparison of Two Mitigation Techniques Presplitting and Smooth Bl ID: 912758

blasting rock damage blast rock blasting blast damage smooth presplit high excavation slopes main blasts china production mechanics final

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Web-based Class Project on Rock Mechanic..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Web-based Class Projecton Rock Mechanics

Report prepared as part of course CEE 544: Rock MechanicsWinter 2015 SemesterInstructor: Professor Dimitrios ZekkosDepartment of Civil and Environmental Engineering University of Michigan

Summary of Surface Blasting with Comparison of Two Mitigation Techniques - Presplitting and Smooth Blasting

Prepared by:

Charles Krolikowski

With the Support of:

Slide2

Overview

1.0 Introduction2.0 Mechanics of Rock Blasting3.0 Types of Blasting4.0 Typical Components and Terms of Blasting5.0 Damages and Mitigation6.0 Case Studies

Slide3

Introduction

Rock blasting as a practice dates back many centuries and general rules were developed from experienceRock blasting as a science, however, is fairly newOne of the goals to understanding rock blasting better is to limit the extent of damage in the remaining rock massThe two techniques investigated are presplitting and smooth blastingFor this, two case studies will be looked at – The Ekati Mine and the Excavation of High Rock Slopes in China

Slide4

Mechanics of a Blast

Release of energy from explosives in the form of waves and expanding hot gasesCrushing – Compression failureRadial Cracking – Tension failure Spalling – Tension failureExpelling and escape of gases

Slide5

Mechanics of a Blast

From USACE EM-1110-2-3800 (1972)

Slide6

Types of Blasting

Two main categories: Underground blasting and surface blastingSurface blasting is used for excavation and mines or quarriesWhy does it matter? Scale of the blast, fragmentation of material to be removed, and finally, the extent of damage to the remaining rock mass

Slide7

Typical Terms and Components

Parameters of Blasting

1. Explosives2. Blast Hole Diameter and Drilling

3. Burden

4. Bench Height

5. Spacing

6. Detonation7. Stemming

8. Properties

of the Rock Mass

Slide8

Typical Terms and Components - Explosives

(Langefors 1978)

Where

:V= burdenK= bench

heightE=spacing between blast holesh= height of the charged

= hole diameters= weight strengthp= density of explosiveu=detonation velocityci

= rock characterization 

Slide9

Typical Terms and Components - Explosives

USACE EM-1110-2-3800 (1972)

Slide10

Typical Terms and Components

ParameterPossible Damage Effects from Improper DesignDiameter and Drilling

Poor fragmentation, excessive burden, too little burden, uneven floor, etc.>> BurdenVibrations, poor fragmentation

<< BurdenFlyrock, airblast>> Bench HeightU

neven bore holes, explosive cutoff<< Bench Height

Airblast, flyrock>> SpacingUneven final face

<< SpacingCratering, crushingDetonation timeVibrations, fragmentation, flyrock

>> StemmingVibrations, unbroken rock at surface<< Stemming

Airblast

,

flyrock

Slide11

Typical Terms and Components – Properties of the Rock Mass

Blasting coefficient, powder factor, hardness of rock massPre-existing weaknesses can create paths for explosive energyBaker (1982)

Slide12

Damages

Slide13

Damages

Overbreak – Creation of new cracks from the blast. About 80% reduction of strength with an extent approximately the burden length.Excavation Stability – Movement of rock blocks from vibrations and gases can disrupt interlocking of joints/fractures. This lowers shear strength and additional excavation leaves the slopes susceptible to failureRelease of Load – Rubber mat analogy. This can create vertical fractures up to 55m behind a new face.Hoek-Brown parameter D in rock strength equation is example of importance between good and bad blasting

Slide14

Damages and Relation to Vibrations

The most widely used way of monitoring and gauging the effects of blasting is measuring the PPVTwo main factors that affect vibrations are weight of the charge and distance from detonation, among others, as mentioned previouslyThere have been studies that correlate PPV to strains experienced by the rock, and therefore, the likelihood new fractures will form or slippage along existing discontinuities

Slide15

Damages and Relation to Vibrations

Rock QualityThreshold Limits

Excavation in poor quality rock200-600 mm/s (0.66 – 1.97 ft/s)Excavation in good quality rock

600-2000 mm/s (1.97 – 6.56 ft/s)Excavation with unfavorable jointing and potential for unstable blocks along walls

100 – 600 mm/s (0.33 – 1.96 ft/s)

Slide16

Mitigation – Smooth Blasting

Main Objective – Leave a berm between main blasts and final faceThen, use lower charge weights and smaller spacing to form a continual crack between holesThis takes advantage of several mechanical aspects of blasting e.g. stress concentration, crack length to fracture density, simultaneous blasting

Slide17

Mitigation – Presplit Blasting

Main Objective – Form a free face before main production blastDrill closely spaced holes and lightly pack with explosives and detonate firstTakes advantage of same mechanisms in smooth blasting except more contained

Slide18

Mitigation

Hu et al (2013)

Slide19

Mitigation

Hoek (2007)

Slide20

Case Studies

Blast Damage Mechanisms at EkatiTM Mine by Peterson (2001)Comparison of Blast-Induced Damage between Presplit and Smooth Blasting of High Rock Slope by Hu et al. (2013)

Slide21

Ekati Mine

Diamond mine located in Northwest Territory, Canada that used presplit blasting for final pit walls3 blasts were monitored by measuring PPV and gas pressureOne production blast, one blast after presplitting (wall control blast), and presplitting blast itselfConcluded that heave and gas penetration were main causes of damage, not vibrationsThus not overbreak but excavation instability

Slide22

Ekati Mine

Why was presplitting beneficial to the final wall face?It was suggested by Peterson that the blast pattern can be setup in such a way that the blasted rock moves along the presplit face instead of into the remaining rockThis limits thrust and movement of the remaining wallPeterson also stressed importance of overall blast design in limiting damage because it is production blasts that are responsible for most of the damage

Slide23

High Rock Slopes in China

Used numerical modeling to estimate damages to the final rock faceCompared smooth blasting with presplit blastingFor each case, there were production blasts, buffer blasts, and then either a smooth or presplit blast

Slide24

High Rock Slopes in China – Smooth Blast

Damage is predominately a result of the first two production blasts, penetrating into the rock massLittle columnar damage was noted around the final smooth blast hole

Slide25

High Rock Slopes in China – Smooth Blast

Slide26

High Rock Slopes in China – Presplit Blast

Most damage was from the presplit blast itself, specifically around the blast hole in a columnar shapeHowever, extent and depth of damage was minimized to the main rock mass in comparison to the smooth blast

Slide27

High Rock Slopes in China – Presplit Blast

Slide28

High Rock Slopes in China - Recommendations

Use a combination of the two techniquesThis will take advantage of the smaller confinement of smooth blasting and the limit of damage from production blasts as a result of presplit

Slide29

References

Dick, R. A., Fletcher, L. R., and D’Andrea, D. V. (1982). Explosives and Blasting Procedures Manual, Bureau of Mines, Washington, D.C.Hoek, E. (2007). “Blasting Damage in Rock.” Practical Rock Engineering.Hu, Y., Lu, W., Chen, M., Yan, P., and Yang, J. (2013). “Comparison of Blast- Induced Damage Between Presplit and Smooth Blasting of High Rock Slope.” Rock Mechanics and Rock Engineering, 47 (4), 1307-1320.Langefors, U., and

Kihlstrӧm, B. (1978). The Modern Technique of Rock Blasting, 3rd Ed., Wiley and Sons Inc., NY. Peterson, J. A. (2001). Blast Damage Mechanisms at Ekati(TM) Mine (Order No. MQ69811). Available from ProQuest Dissertations & Theses A&I;

ProQuest Dissertations & Theses Full Text; ProQuest Dissertations & Theses Global. (304744467).U.S. Army Corps of Engineers (USACE). (1972). Systematic Drilling and Blasting for Surface Excavations Engineering Manual. Engineer Manual

1110-2-3800, U.S. Army Corps of Engineers, Washington, D.C.

Slide30

Questions?

Slide31

More Information

More detailed technical information on this project can be found at:http://www.geoengineer.org/education/web-based-class-projects/rock-mechanics