/
COTS Electronics in  Liquid COTS Electronics in  Liquid

COTS Electronics in Liquid - PowerPoint Presentation

jubilantbikers
jubilantbikers . @jubilantbikers
Follow
348 views
Uploaded On 2020-06-23

COTS Electronics in Liquid - PPT Presentation

Nitrogen 4262018 TEMPETM 110 2 Tetiana Pridii TEMPEEP Outline Motivation Testing Microcontroller cryo board Components testing campaign Design of FPGA cryo board Conclusions ID: 783991

110 mpe max 2018 mpe 110 2018 max liquid nitrogen room temperature reference system aduc834 aduc831 board input internal

Share:

Link:

Embed:

Download Presentation from below link

Download The PPT/PDF document "COTS Electronics in Liquid" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Slide2

COTS Electronics in Liquid Nitrogen

4/26/2018

TE-MPE-TM #110

2

Tetiana Pridii,

TE-MPE-EP

Slide3

OutlineMotivation

TestingMicrocontroller cryo boardComponents testing campaign

Design of FPGA cryo board

Conclusions

4/26/2018

TE-MPE-TM #110

3

Slide4

The idea

Goal :Embedded electronics

working at 77K confined

inside of the superconducting magnet ,

without

wires

towards exterior

Major challenges

:

electronic data acquisition system of high precision at low temperatureelectronics for the wireless communication link at low temperaturewireless powering system

4/26/2018

TE-MPE-TM #110

4

Smart Diagnostics

Slide5

In order to do our first tests, we chose to use a robust and widely used 8051-based core microcontroller provided on a single chip data acquisition system from Analog Devices : ADuC831 & ADuC834

Examples of QPS circuit boards using

ADuC family

4/26/2018

TE-MPE-TM #110

5

Board

Description

Qty.

installed

DQQBS

Bus-bar Splice Protection System

2048

DQQDC

Protection System for HTS Current Leads

1192

DQAMx

Crate controller

2524

Slide6

Main characteristics

4/26/2018TE-MPE-TM #110

6

ADuC831

ADuC834

12-bit SAR ADC

24-bit

Σ

-

Δ

ADC

Operational clock speed range 400 kHz to 16 MHz

(

internal oscillator or

external clock source)

on-chip PLL that locks onto a multiple of 32.768 kHz generating a high frequency clock of 12.58 MHz

(internal oscillator)

2.5V internal reference

1.25V internal reference

Slide7

4/26/2018

TE-MPE-TM #110

7

Microcontroller

cryo

board

Cryo

specific

Suitable passive components selected

(NP0 ceramic, Tantalum & film capacitors)

Flexible design

Suitable for ADuC831 & ADuC834

Various optional on-board voltage references

Optional external feeding for clock and voltage reference

Optional input buffers for the ADC

Slide8

Testing microcontroller cryo board in liquid nitrogen

All the data acquisition, instruments control and acquired data post-processing was done with MATLAB.

4/26/2018

TE-MPE-TM #110

8

Results

:

Good performance

Small signal distortion due to changes in reference

(input adjusted to reference in LN)

Lower power consumption (~

-34%)

Slide9

4/26/2018

TE-MPE-TM #110

9

Room Temperature

Liquid Nitrogen

mean = 1.50014

V

sigma = 263.313 

uV

mean = 1.4138 V 

sigma

= 291.843 

uV

Noise Measurements

ADuC831

Room Temperature

Liquid Nitrogen

mean =   1.50713V

sigma = 9.8572 

uV

ADuC834

mean = 1.49915 V

sigma

=   4.22359

uV

sigma

: 1.6875

uV

sigma : 0.99372

uV

Shorted differential inputs for ADuC834 :

Input 1.5V

:

Input 1.5V :

Slide10

Total Harmonic Distortion

4/26/2018

TE-MPE-TM #110

10

ADuC831

ADuC834

Room Temperature

Liquid Nitrogen

Room Temperature

Liquid Nitrogen

2.25V, 1kHz

1.5V, 300mHz

THD:

-55.41 dB

THD

:

-72.09

dB

THD:

-81.19 dB

THD:

-82.26

dB

Slide11

Linearity

ADuC831

ADuC834

Room Temperature

Liquid Nitrogen

Room Temperature

Input:  0V -

2.5 in 26 steps

 

 

Max Error = 12mV (0.469%)

Max Error = 1.55

mV

( 0.061%)

Liquid Nitrogen

Internal Reference

Max

Error = 142mV (5.68%)

AD780 Reference

Max

Error =51mV (2.04%)

Max Error =0.5mV (0.2%)

Input:  

0.05V

-

2.45V

in 49 steps

Slide12

Components testing campaign

4/26/2018TE-MPE-TM #110

12

Voltage

Reference

Nominal Value

Value in LN

ADR02

bandgap

5V

4.953V

AD780

bandgap

2.5V

2.485V

LT461

bandgap

2.5V

5V

ADuC831 Internal Reference

bandgap

2.5V

2.659V

MAX6325

buried zener

2.5V

0.354V

ADR421

XFET

2.5V

0.243V

LDO

Room

Temperature

Liquid Nitrogen

Iout,max

Vout

Iin

Vout

Iin

LM1086

3A

1.254V

11mA

0.012V

0.6mA

LT1965

1.1A

1.199V

1mA

1.076V

0.5mA

MCP1827

1.5A

1.209V

0.6mA

1.183V

0.5mA

NCV565

1.5A

1.195V

2.1mA

0.463V

0.5mA

TPS7860

1.5A

1.226V

0.7mA

1.048V

0.7mA

MIC49300

3A

1.209V

21.7mA

2.235V

10.1mA

LDO

Iout,max

Room Temperature

Liquid Nitrogen

TPS7A4533

1.5A

3.291V

3.190V

LMS1587

3A

3.287V

0.172V

Slide13

4/26/2018

TE-MPE-TM #110

13

Components testing campaign

Room Temperature

Liquid

Nitrogen

DCDC

Typ

Efficiency

Vin, I in

Vout, I out

Vin, I in

Vout

, I out

Cold Efficiency

Murata MEJ2D0515SC

(out current max +-67mA)

76-79%

5V

269.3mA

34mA

5V

39.4mA

+-2.006V

4.27

mA

8.7

%

TRACO TMV 2-0515DHI

(out current max +-35mA)

73%

5V

246.9mA

30mA

5V

27.3mA

+-1.064V

2.26

mA

3.5

%

TRACO TMR 3-0523

(out current max +-65mA)

81%

5V

252.5mA

5V

583.5mA

+-19.29V

61.2mA

80.9

%

Cold Start

5V

169mA

+-11.3V

139mA

RECOM RS-0515D

(out current max +-67mA)

75%

5V

252.8mA

31.8mA

5V

382.2mA

+-15.18V

47mA

74.7

%

Slide14

WiFi Modules

4/26/2018

TE-MPE-TM #110

14

Slide15

FPGA cryo board

4/26/2018

TE-MPE-TM #110

15

Slide16

ConclusionsComponent selection is crucial (big variation in behavior)

A working data acquisition system in cold was demonstratedAn advanced component/system testing board is in preparation

4/26/2018

TE-MPE-TM #110

16

Slide17

Thank you for your attention!

4/26/2018

TE-MPE-TM #110

17

Slide18