/
Automorphism groups of free groups surface groups and free abelian groups Martin R Automorphism groups of free groups surface groups and free abelian groups Martin R

Automorphism groups of free groups surface groups and free abelian groups Martin R - PDF document

kittie-lecroy
kittie-lecroy . @kittie-lecroy
Follow
1223 views
Uploaded On 2014-12-12

Automorphism groups of free groups surface groups and free abelian groups Martin R - PPT Presentation

Bridson and Karen Vogtmann The group of 2 2 matrices with integer entries and determinant can be identi64257ed either with the group of outer automorphism s of a rank two free group or with the group of isotopy classes of homeomo rphisms of a 2dimen ID: 22381

Bridson and Karen Vogtmann

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Automorphism groups of free groups surfa..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Automorphismgroupsoffreegroups,surfacegroupsandfreeabeliangroupsMartinR.BridsonandKarenVogtmannThegroupof22matriceswithintegerentriesanddeterminant1canbeidenti edeitherwiththegroupofouterautomorphismsofaranktwofreegrouporwiththegroupofisotopyclassesofhomeomorphismsofa2-dimensionaltorus.Thusthisgroupisthebeginningofthreenaturalsequencesofgroups,namelythegenerallineargroupsGL(n;Z),thegroupsOut(Fn)ofouterautomorphismsoffreegroupsofrankn2,andthemap-pingclassgroupsMod(Sg)oforientablesurfacesofgenusg1.Muchoftheworkonmappingclassgroupsandautomorphismsoffreegroupsismotivatedbytheideathatthesesequencesofgroupsarestronglyanalogous,andshouldhavemanypropertiesincommon.Thisprogramisoccasionallyderailedbyuncooperativefactsbuthasingeneralprovedtobeasuccess-fulstrategy,leadingtofundamentaldiscoveriesaboutthestructureofthesegroups.Inthisarticlewewillhighlightafewofthemoststrikingsimilar-itiesanddi erencesbetweentheseseriesofgroupsandpresentsomeopenproblemsmotivatedbythisphilosophy.SimilaritiesamongthegroupsOut(Fn),GL(n;Z)andMod(Sg)beginwiththefactthatthesearetheouterautomorphismgroupsofthemostprim-itivetypesoftorsion-freediscretegroups,namelyfreegroups,freeabeliangroupsandthefundamentalgroupsofclosedorientablesurfaces1Sg.InthecaseofOut(Fn)andGL(n;Z)thisisobvious,inthecaseofMod(Sg)itisaclassicaltheoremofNielsen.Inallcasesthereisadeterminanthomomor-phismtoZ=2;thekernelofthismapisthegroupof\orientation-preserving"or\special"automorphisms,andisdenotedSOut(Fn);SL(n;Z)orMod(Sg)respectively.1GeometricandtopologicalmodelsAnaturalgeometriccontextforstudyingtheglobalstructureofGL(n;Z)isprovidedbythesymmetricspaceXofpositive-de nite,realsymmetric1 matricesofdeterminant1(see[78]foraniceintroductiontothissubject).Thisisanon-positivelycurvedmanifolddi eomorphictoRd,whered=1 2n(n+1)1.GL(n;Z)actsproperlybyisometriesonXwithaquotientof nitevolume.EachA2Xde nesaninnerproductonRnandhenceaRiemannianmetricofconstantcurvatureandvolume1onthen-torusTn=Rn=Zn.OnecanrecoverAfromthemetricandanorderedbasisfor1Tn.ThusXishomeomorphictothespaceofequivalenceclassesofmarkedEuclideantori(Tn;)ofvolume1,whereamarkingisahomotopyclassofhomeomor-phisms:Tn!(Tn;)andtwomarkedtoriareconsideredequivalentifthereisanisometryi:(Tn1;1)!(Tn2;2)suchthat12i1ishomotopictotheidentity.ThenaturalactionofGL(n;Z)=Out(Zn)onTn=K(Zn;1)twiststhemarkingsontori,andwhenonetracesthroughtheidenti cationsthisisthestandardactiononX.IfonereplacesTnbySgandfollowsexactlythisformalismwithmarkedmetricsofconstantcurvature1and xedvolume,thenonearrivesatthede -nitionofTeichmullerspaceandthenaturalactionofMod(Sg)=Out(1Sg)onit.TeichmullerspaceisagainhomeomorphictoaEuclideanspace,thistimeR6g6.InthecaseofOut(Fn)thereisnocanonicalchoiceofclassifyingspaceK(Fn;1)butrathera nitecollectionofnaturalmodels,namelythe nitegraphsofgenusnwithnoverticesofvalencelessthan3.Nevertheless,onecanproceedinessentiallythesameway:oneconsidersmetricsof xedvol-ume(sumofthelengthsofedges=1)onthevariousmodelsforK(Fn;1),eachequippedwithamarking,andonemakestheobviousidenti cationsasthehomeomorphismtypeofagraphchangeswithasequenceofmetricsthatshrinkanedgetolengthzero.ThespaceofmarkedmetricstructuresobtainedinthiscaseisCullerandVogtmann'sOuterspace[27],whichisstrati edbymanifoldsubspacescorrespondingtothedi erenthomeomor-phismtypesofgraphsthatarise.Thisspaceisnotamanifold,butitiscontractibleanditslocalhomotopicalstructureisanaturalgeneralizationofthatforamanifold(cf.[80]).OnecanalsolearnagreatdealaboutthegroupGL(n;Z)byexaminingitsactionsontheBorel-Serrebordi cationofthesymmetricspaceXandonthesphericalTitsbuilding,whichencodestheasymptoticgeometryofX.TeichmullerspaceandOuterspacebothadmitusefulbordi cationsthatarecloselyanalogoustotheBorel-Serrebordi cation[44,53,2].AndinplaceofthesphericalTitsbuildingforGL(n;Z)onehasthecomplexofcurves 1ifg2thenthecurvaturewillbenegative2 [46]forMod(Sg),whichhasplayedanimportantroleinrecentadvancesconcerningthelargescalegeometryofMod(Sg).Forthemomentthiscomplexhasnowell-establishedcounterpartinthecontextofOut(Fn).Thesecloselyparalleldescriptionsofgeometriesforthethreefamiliesofgroupshaveledmathematicianstotrytopushtheanalogiesfurther,bothforthegeometryandtopologyofthe\symmetricspaces"andforpurelygroup-theoreticpropertiesthataremostnaturallyprovedusingthegeometryofthesymmetricspace.Forexample,thesymmetricspaceforGL(n;Z)admitsanaturalequivariantdeformationretractionontoann(n1)=2-dimensionalcocompactsubspace,thewell-roundedretract[1].Similarly,bothOuterspaceandtheTeichmullerspaceofapuncturedorboundedorientablesur-faceretractequivariantlyontococompactsimplicialspines[27,44].Inallthesecases,theretractshavedimensionequaltothevirtualcohomologicaldimensionoftherelevantgroup.Forclosedsurfaces,however,thequestionremainsopen:Question1DoestheTeichmullerspaceforSgadmitanequivariantdefor-mationretractionontoacocompactspinewhosedimensionisequalto4g5,thevirtualcohomologicaldimensionofMod(Sg)?Furtherquestionsofasimilarnaturearediscussedin(2.1).TheissuesinvolvedinusingthesesymmetricspaceanalogstoprovepurelygrouptheoreticpropertiesareillustratedintheproofoftheTitsalternative,whichholdsforallthreeclassesofgroups.AgroupissaidtosatisfytheTitsalternativeifeachofitssubgroupseithercontainsanon-abelianfreegrouporelseisvirtuallysolvable.Thestrategyforprovingthisissimilarineachofthethreefamiliesthatweareconsidering:inspiredbyTits'soriginalproofforlineargroups(suchasGL(n;Z)),oneattemptstouseaping-pongargumentonasuitableboundaryatin nityofthesymmetricspace.Thisstrategyultimatelysucceedsbutthedetailsvaryenormouslybetweenthethreecontexts,andinthecaseofOut(Fn)theyareparticularlyintricate([4,3]versus[9]).One ndsthatthisisoftenthecase:analogiesbetweenthethreeclassesofgroupscanbecarriedthroughtotheorems,andthearchitectureoftheexpectedproofisoftenagoodguide,butatamoredetailedlevelthetechniquesrequiredvaryinessentialwaysfromoneclasstothenextandcanbeofcompletelydi erentordersofdiculty.Letusreturntoproblemsmoredirectlyphrasedintermsofthegeometryofthesymmetricspaces.ThesymmetricspaceforGL(n;Z)hasaleft-invariantmetricofnon-positivecurvature,thegeometryofwhichisrelevanttomanyareasofmathematicsbeyondgeometricgrouptheory.Teichmuller3 spacehastwonaturalmetrics,theTeichmullermetricandtheWeyl-Petersenmetric,andagainthestudyofeachisarichsubject.Incontrast,themetrictheoryofOuterspacehasnotbeendeveloped,andinfactthereisnoobviouscandidateforanaturalmetric.Thus,thefollowingquestionhasbeenleftdeliberatelyvague:Question2DevelopametrictheoryofOuterspace.Theelementsofin niteorderinGL(n;Z)thatarediagonalizableoverCactasloxodromicisometriesofX.Whenn=2,theseelementsarethehyperbolicmatrices;each xestwopointsatin nityinX=H2,oneasourceandoneasink.TheanalogoustypeofelementinMod(Sg)isapseudo-Anosov,andinOut(Fn)itisaniwip(irreduciblewithirreduciblepowers).Inbothcases,suchelementshavetwo xedpointsatin nity(i.e.inthenaturalboundaryofthesymmetricspaceanalog),andtheactionofthecyclicsubgroupgeneratedbytheelementexhibitsthenorth-southdynamicsfamiliarfromtheactionofhyperbolicmatricesontheclosureofthePoincaredisc[62],[54].InthecaseofMod(Sg)thiscyclicsubgroupleavesinvariantauniquegeodesiclineinTeichmullerspace,i.e.pseudo-Anosov'sareaxiallikethesemi-simpleelementsofin niteorderinGL(n;Z).InitialworkofHandelandMosher[43]showsthatinthecaseofiwipsonecannothopetohaveauniqueaxisinthesamemetricsense,butleavesopenthepossibilitythattheremaybeareasonablenotionofaxisinaweakersense.(Wehighlightedthisprobleminanearlierversionofthecurrentarticle.)Inamorerecentpreprint[42]theyhaveaddressedthislastpointdirectly,de ninganaxisbundleassociatedtoanyiwip,cf.[63].Nevertheless,manyinterestingquestionsremain(someofwhicharehighlightedbyHandelandMosher).Thusweretainamodi edversionofouroriginalquestion:Question3Describethegeometryoftheaxisbundle(andassociatedob-jects)foraniwipactingonOuterSpace.2ActionsofAut(Fn)andOut(Fn)onotherspacesSomeofthequestionsthatweshallpresentaremorenaturallystatedintermsofAut(Fn)ratherthanOut(Fn),whilesomearenaturalforboth.Toavoidredundancy,weshallstateonlyoneformofeachquestion.4 2.1Baum-ConnesandNovikovconjecturesTwofamousconjecturesrelatingtopology,geometryandfunctionalanalysisaretheNovikovandBaum-Connesconjectures.TheNovikovconjectureforclosedorientedmanifoldswithfundamentalgroupsaysthatcertainhighersignaturescomingfromH(;Q)arehomotopyinvariants.ItisimpliedbytheBaum-Connesconjecture,whichsaysthatacertainassemblymapbetweentwoK-theoreticobjectsassociatedtoisanisomorphism.Kasparov[57]provedtheNovikovconjectureforGL(n;Z),andGuenther,HigsonandWeinbergerproveditforalllineargroups[40].TheBaum-ConnesconjectureforGL(n;Z)isopenwhenn4(cf.[61]).RecentlyStorm[79]pointedoutthattheNovikovconjectureformappingclassgroupsfollowsfromresultsthathavebeenannouncedbyHamenstadt[41]andKato[59],leavingopenthefollowing:Question4DomappingclassgroupsorOut(Fn)satisfytheBaum-Connesconjecture?DoesOut(Fn)satisfytheNovikovconjecture?AnapproachtoprovingtheseconjecturesisgivenbyworkofRosenthal[75],generalizingresultsofCarlssonandPedersen[23].Acontractiblespaceonwhichagroupactsproperlyandforwhichthe xedpointsetsof nitesubgroupsarecontractibleiscalledanE .Rosenthal'stheoremsaysthattheBaum-ConnesmapforissplitinjectiveifthereisacocompactE =Ethatadmitsacompacti cationX,suchthat1.the-actionextendstoX;2.Xismetrizable;3.XGiscontractibleforevery nitesubgroupGof4.EGisdenseinXGforevery nitesubgroupGof5.compactsubsetsofEbecomesmallnearY=XrEunderthe-action:foreverycompactKEandeveryneighborhoodUXofy2Y,thereexistsaneighborhoodVXofysuchthat\rK\V=;implies\rKU.TheexistenceofsuchaspaceEalsoimpliestheNovikovconjecturefor.ForOut(Fn)thespineofOuterspacementionedintheprevioussectionisareasonablecandidatefortherequiredE ,andthereisasimilarlyde nedcandidateforAut(Fn).Formappingclassgroupsofpuncturedsurfacesthecomplexofarcsystemswhich llupthesurfaceisagoodcandidate(note5 thatthiscanbeidenti edwithasubcomplexofOuterspace,asin[47],section5).Question5Doesthereexistacompacti cationofthespineofOuterspacesatisfyingRosenthal'sconditions?Samequestionforthecomplexofarcsystems llingapuncturedsurface.Inallofthecasesmentionedabove,thecandidatespaceEhasdimensionequaltothevirtualcohomologicaldimensionofthegroup.G.Mislin[68]hasconstructedacocompactE Gforthemappingclassgroupofaclosedsurface,butithasmuchhigherdimension,equaltothedimensionoftheTeichmullerspace.ThisleadsustoaslightvariationonQuestion1.Question6CanoneconstructacocompactE Gwithdimensionequaltothevirtualcohomologicaldimensionofthemappingclassgroupofaclosedsurface?2.2Properties(T)andFAAgrouphasKazdhan'sProperty(T)ifanyactionofthegroupbyisometriesonaHilbertspacehas xedvectors.KazdhanprovedthatGL(n;Z)hasproperty(T)forn3.Question7Forn�3,doesAut(Fn)haveproperty(T)?Thecorrespondingquestionformappingclassgroupsisalsoopen.IfAut(Fn)weretohaveProperty(T),thenanargumentofLubotzkyandPak[64]wouldprovideaconceptualexplanationoftheapparently-unreasonablee ectivenessofcertainalgorithmsincomputerscience,speci callytheProd-uctReplacementAlgorithmofLeedham-Greenetal.IfagrouphasProperty(T)thenithasSerre'spropertyFA:everyactionofthegrouponanR-treehasa xedpoint.Whenn3,GL(n;Z)haspropertyFA,asdoAut(Fn)andOut(Fn),andmappingclassgroupsingenus3(see[28]).Incontrast,McCool[67]hasshownthatAut(F3)hasasubgroupof nite-indexwithpositive rstbettinumber,i.e.asubgroupwhichmapsontoZ.InparticularthissubgroupactsbytranslationsonthelineandthereforedoesnothavepropertyFAor(T).Sinceproperty(T)passesto nite-indexsubgroups,itfollowsthatAut(F3)doesnothaveproperty(T).Question8Forn�3,doesAut(Fn)haveasubgroupof niteindexwithpositive rstbettinumber?6 Another nite-indexsubgroupofAut(F3)mappingontoZwascon-structedbyAlexLubotzky,andwasexplainedtousbyAndrewCasson.Re-gardF3asthefundamentalgroupofagraphRwithonevertex.Thesingle-edgeloopsprovideabasisfa;b;cgforF3.Considerthe2-sheetedcovering^R!Rwithfundamentalgroupha;b;c2;cac1;cbc1iandletGAut(F3)bethestabilizerofthissubgroup.GactsonH1(^R;Q)leavinginvarianttheeigenspacesoftheinvolutionthatgeneratestheGaloisgroupofthecover-ing.Theeigenspacecorrespondingtotheeigenvalue1istwodimensionalwithbasisfacac1;bcbc1g.TheactionofGwithrespecttothisbasisgivesanepimorphismG!GL(2;Z).SinceGL(2;Z)hasafreesubgroupof nite-index,weobtainasubgroupof niteindexinAut(F3)thatmapsontoanon-abelianfreegroup.Onecanimitatetheessentialfeaturesofthisconstructionwithvariousother nite-indexsubgroupsofFn,thusproducingsubgroupsof niteindexinAut(Fn)thatmapontoGL(m;Z).Ineachcaseone ndsthatmn1.Question9Ifthereisahomomorphismfromasubgroupof niteindexinAut(Fn)ontoasubgroupof niteindexinGL(m;Z),thenmustmn1?Indeedonemightask:Question10Ifmn1andHAut(Fn)isasubgroupof niteindex,thendoeseveryhomomorphismH!GL(m;Z)have niteimage?Similarquestionsareinterestingfortheothergroupsinourfamilies(cf.section3).Forexample,ifmn1andHAut(Fn)isasubgroupof niteindex,thendoeseveryhomomorphismH!Aut(Fm)have niteimage?ApositiveanswertothefollowingquestionwouldanswerQuestion8;anegativeanswerwouldshowthatAut(Fn)doesnothaveproperty(T).Question11Forn4,dosubgroupsof niteindexinAut(Fn)havePropertyFA?Apromisingapproachtothislastquestionbreaksdownbecausewedonotknowtheanswertothefollowingquestion.Question12FixabasisforFnandletAn1Aut(Fn)bethecopyofAut(Fn1)correspondingtothe rstn1basiselements.Let:Aut(Fn)!Gbeahomomorphismofgroups.If(An1)is nite,musttheimageofbe nite?7 NotethattheobviousanalogofthisquestionforGL(n;Z)hasapositiveanswerandplaysaroleinthefoundationsofalgebraicK-theory.Adi erentapproachtoestablishingProperty(T)wasdevelopedbyZuk[85].HeestablishedacombinatorialcriteriononthelinksofverticesinasimplyconnectedG-complexwhich,ifsatis ed,impliesthatGhasprop-erty(T):onemustshowthatthesmallestpositiveeigenvalueofthediscreteLaplacianonlinksissucientlylarge.Onemighthopetoapplythiscri-teriontooneofthenaturalcomplexesonwhichAut(Fn)andOut(Fn)act,suchasthespineofOuterspace.ButDavidFisherhaspointedouttousthattheresultsofIzekiandNatayani[55](alternatively,SchoenandWang{unpublished)implythatsuchastrategycannotsucceed.2.3ActionsonCAT(0)spacesAnR-treemaybede nedasacompleteCAT(0)spaceofdimension21.ThusonemightgeneralizepropertyFAbyasking,foreachd2N,whichgroupsmust xapointwhenevertheyactbyisometriesonacompleteCAT(0)spaceofdimensiond.Question13WhatistheleastintegersuchthatOut(Fn)actswithoutaglobal xedpointonacompleteCAT(0)spaceofdimension?AndwhatistheleastdimensionforthemappingclassgroupMod(Sg)?TheactionofOut(Fn)onthe rsthomologyofFnde nesamapfromOut(Fn)toGL(n;Z)andhenceanactionofOut(Fn)onthesymmetricspaceofdimension1 2n(n+1)1.Thisactiondoesnothaveaglobal xedpointandhenceweobtainanupperboundon.Ontheotherhand,sinceOut(Fn)haspropertyFA,2.Infact,motivatedbyworkofFarbonGL(n;Z),Bridson[14]hasshownthatusingaHelly-typetheoremandthestructureof nitesubgroupsinOut(Fn),onecanobtainalowerboundonthatgrowsasalinearfunctionofn.Notethatalowerboundof3n3onwouldimplythatOuterSpacedidnotsupportacompleteOut(Fn)-equivariantmetricofnon-positivecurvature.IfXisaCAT(0)polyhedralcomplexwithonly nitelymanyisometrytypesofcells(e.g.a nitedimensionalcubecomplex),theneachisometryofXiseitherelliptic( xesapoint)orhyperbolic(hasanaxisoftranslation)[15].Ifn4thenavariationonanargumentofGersten[36]showsthatinanyactionofOut(Fn)onX,noNielsengeneratorcanactasahyperbolicisometry. 2topologicalcoveringdimension8 Question14Ifn4,thencanOut(Fn)actwithoutaglobal xedpointona nite-dimensionalCAT(0)cubecomplex?2.4LinearityFormanekandProcesi[33]provedthatAut(Fn)isnotlinearforn3byshowingthatAut(F3)containsa\poisonsubgroup",i.e.asubgroupwhichhasnofaithfullinearrepresentation.SinceAut(Fn)embedsinOut(Fn+1),thissettlesthequestionoflinearityforOut(Fn)aswell,exceptwhenn=3.Question15DoesOut(F3)haveafaithfulrepresentationintoGL(m;C)forsomem2N?Notethatbraidgroupsarelinear[8]butitisunknownifmappingclassgroupsofclosedsurfacesare.BrendleandHamidi-Tehrani[13]showedthattheapproachofFormanekandProcesicannotbeadapteddirectlytothemappingclassgroups.Moreprecisely,theyprovethatthetypeof\poisonsubgroup"describedabovedoesnotariseinmappingclassgroups.ThefactthattheabovequestionremainsopenisanindicationthatOut(F3)canbehavedi erentlyfromOut(Fn)fornlarge;theexistenceof niteindexsubgroupsmappingontoZwasanotherinstanceofthis,andweshallseeanotherinourdiscussionofautomaticstructuresandisoperimetricinequalities.3MapstoandfromOut(Fn)AparticularlyintriguingaspectoftheanalogybetweenGL(n;Z)andthetwootherclassesofgroupsistheextenttowhichthecelebratedrigidityphenomenaforlatticesinhigherranksemisimplegroupstransfertomappingclassgroupsandOut(Fn).Manyofthequestionsinthissectionconcernaspectsofthisrigidity;questions9to11shouldalsobeviewedinthislight.BridsonandVogtmann[21]showedthatanyhomomorphismfromAut(Fn)toagroupGhas niteimageifGdoesnotcontainthesymmetricgroupn+1;inparticular,anyhomomorphismAut(Fn)!Aut(Fn1)hasimageoforderatmost2.Question16Ifn4andg1,doeseveryhomomorphismfromAut(Fn)toMod(Sg)have niteimage?9 By[21],onecannotobtainhomomorphismswithin niteimageunlessMod(Sg)containsthesymmetricgroupn+1.Forlargeenoughgenus,youcanrealizeanysymmetricgroup;buttheorderofa nitegroupofsymmetriesisatmost84g-6,sohereoneneeds84g6(n+1)!.TherearenoinjectivemapsfromAut(Fn)tomappingclassgroups.ThisfollowsfromtheresultofBrendleandHamidi-Tehranithatwequotedear-lier.ForcertaingonecanconstructhomomorphismsAut(F3)!Mod(Sg)within niteimage,butwedonotknowtheminimalsuchg.Question17LetbeanirreduciblelatticeinasemisimpleLiegroupofR-rankatleast2.DoeseveryhomomorphismfromtoOut(Fn)have niteimage?Thisisknownfornon-uniformlattices(see[16];itfollowseasilyfromtheKazdhan-Margulis nitenesstheoremandthefactthatsolvablesubgroupsofOut(Fn)arevirtuallyabelian[5]).FarbandMasurprovidedapositiveanswertotheanalogousquestionformapstomappingclassgroups[32].TheproofoftheirtheoremwasbasedonresultsofKaimanovichandMasur[56]concerningrandomwalksonTeichmullerspace.(See[54]and,foranalternativeapproach,[6].)Question18IsthereatheoryofrandomwalksonOuterspacesimilartothatofKaimanovichandMasurforTeichmullerspace?PerhapsthemostpromisingapproachtoQuestion17isviaboundedco-homology,followingthetemplateofBestvinaandFujiwara'sworkonsub-groupsofthemappingclassgroup[6].Question19IfasubgroupGOut(Fn)isnotvirtuallyabelian,thenisH2b(G;R)in nitedimensional?IfmnthenthereareobviousembeddingsGL(n;Z)!GL(m;Z)andAut(Fn)!Aut(Fm),buttherearenoobviousembeddingsOut(Fn)!Out(Fm).BogopolskiandPuga[10]haveshownthat,form=1+(n1)kn,wherekisanarbitrarynaturalnumbercoprimeton1,thereisinfactanembedding,byrestrictingautomorphismstoasuitablecharacteristicsubgroupofFm.Question20ForwhichvaluesofmdoesOut(Fn)embedinOut(Fm)?Whatistheminimalsuchm,andisittrueforallsucientlylargem?10 Ithasbeenshownthatwhennissucientlylargewithrespecttoi,thehomologygroupHi(Out(Fn);Z)isindependentofn[50,51].Question21IsthereamapOut(Fn)!Out(Fm)thatinducesanisomor-phismonhomologyinthestablerange?Anumberofthequestionsinthissectionand(2.2)askwhethercertainquotientsofOut(Fn)orAut(Fn)arenecessarily nite.Thefollowingquo-tientsarisenaturallyinthissetting:de neQ(n;m)tobethequotientofAut(Fn)bythenormalclosureofm,whereistheNielsenmovede nedonabasisfa1;:::;angbya17!a2a1.(AllsuchNielsenmovesareconjugateinAut(Fn),sothechoiceofbasisdoesnotalterthequotient.)TheimageofaNielsenmoveinGL(n;Z)isanelementarymatrixandthequotientofGL(n;Z)bythenormalsubgroupgeneratedbythem-thpowersoftheelementarymatricesisthe nitegroupGL(n;Z=m).ButBridsonandVogtmann[21]showedthatifmissucientlylargethenQ(n;m)isin nitebecauseithasaquotientthatcontainsacopyofthefreeBurnsidegroupB(n1;m).SomefurtherinformationcanbegainedbyreplacingB(n1;m)withthequotientsofFnconsideredinsubsection39.3ofA.Yu.Ol'shanskii'sbook[73].ButweknowverylittleaboutthegroupsQ(n;m).Forexample:Question22ForwhichvaluesofnandmisQ(n;m)in nite?IsQ(3;5)in nite?Question23CanQ(n;m)havein nitelymany nitequotients?Isitresidually nite?4IndividualelementsandmappingtoriIndividualelements 2GL(n;Z)canberealizedasdi eomorphisms^ ofthen-torus,whileindividualelements 2Mod(Sg)canberealizedasdi eomorphisms^ ofthesurfaceSg.Thusonecanstudy viathegeometryofthetorusbundleoverS1withholonomy^ andonecanstudy viathegeometryofthe3-manifoldthat bresoverS1withholonomy^ .(Ineachcasethemanifolddependsonlyontheconjugacyclassoftheelement.)ThesituationforAut(Fn)andOut(Fn)ismorecomplicated:thenaturalchoicesofclassifyingspaceY=K(Fn;1)are nitegraphsofgenusn,andnoelementofin niteorder2Out(Fn)isinducedbytheactionon1(Y)ofahomeomorphismofY.ThusthebestthatonecanhopeforinthissituationistoidentifyagraphYthatadmitsahomotopyequivalenceinducing11 andthathasadditionalstructurewell-adaptedto.OnewouldthenformthemappingtorusofthishomotopyequivalencetogetagoodclassifyingspaceforthealgebraicmappingtorusFnoZ.ThetraintracktechnologyofBestvina,FeighnandHandel[7,4,3]isamajorpieceofworkthatderivessuitablegraphsYwithadditionalstructureencodingkeypropertiesof.ThisresultsinadecompositiontheoryforelementsofOut(Fn)thatiscloselyanalogousto(butmorecomplicatedthan)theNielsen-Thurstontheoryforsurfaceautomorphisms.Manyoftheresultsmentionedinthissectionarepremisedonadetailedknowledgeofthistechnologyandoneexpectsthataresolutionofthequestionswillbetoo.Thereareseveralnaturalwaystode nethegrowthofanautomorphismofagroupGwith nitegeneratingsetA;inthecaseoffree,free-abelian,andsurfacegroupstheseareallasymptoticallyequivalent.Themosteasilyde nedgrowthfunctionis\r(k)where\r(k):=maxfd(1;k(a)ja2Ag.IfG=Znthen\r(k)'kdforsomeintegerdn1,orelse\r(k)growsexponentially.IfGisasurfacegroup,theNielsen-Thurstontheoryshowsthatonlybounded,linearandexponentialgrowthcanoccur.IfG=Fnand2Aut(Fn)then,asintheabeliancase,\r(k)'kdforsomeintegerdn1orelse\r(k)growsexponentially.Question24Canonedetectthegrowthofasurfaceorfree-grouphomo-morphismbyitsactiononthehomologyofacharacteristicsubgroupof niteindex?Noticethatonehastopasstoasubgroupof niteindexinordertohaveanyhopebecauseautomorphismsofexponentialgrowthcanacttriviallyonhomology.A.Piggott[74]hasansweredtheabovequestionforfree-groupautomorphismsofpolynomialgrowth,andlinear-growthautomorphismsofsurfacesareeasilydealtwith,buttheexponentialcaseremainsopeninbothsettings.Finerquestionsconcerninggrowthareaddressedintheon-goingworkofHandelandMosher[43].Theyexplore,forexample,theimplicationsofthefollowingcontrastinbehaviourbetweensurfaceautomorphismsandfree-groupautomorphisms:inthesurfacecasetheexponentialgrowthrateofapseudo-Anosovautomorphismisthesameasthatofitsinverse,butthisisnotthecaseforiwipfree-groupautomorphisms.FormappingtoriofautomorphismsoffreeabeliangroupsG=ZnoZ,thefollowingconditionsareequivalent(see[17]):Gisautomatic;Gisa12 CAT(0)group3;Gsatis esaquadraticisoperimetricinequality.Inthecaseofmappingtoriofsurfaceautomorphisms,allmappingtorisatisfythe rstandlastoftheseconditionsandoneunderstandsexactlywhichSgoZareCAT(0)groups.Brady,BridsonandReeves[12]showthatthereexistmappingtorioffree-groupautomorphismsFoZthatarenotautomatic,andGerstenshowedthatsomearenotCAT(0)groups[36].Ontheotherhand,manysuchgroupsdohavetheseproperties,andtheyallsatisfyaquadraticisoperimetricin-equality[18].Question25Classifythose2Aut(Fn)forwhichFnoZisautomaticandthoseforwhichitisCAT(0).Ofcentralimportanceintryingtounderstandmappingtoriis:Question26IsthereanalogrithmtodecideisomorphismamonggroupsoftheformFoZ.Inthepurestformofthisquestiononeisgiventhegroupsas nitepresentations,soonehastoaddressissuesofhowto ndthedecompositionFoZandonehastocombatthefactthatthisdecompositionmaynotbeunique.Buttheheartofanysolutionshouldbeananswerto:Question27IstheconjugacyproblemsolvableinOut(Fn)?MartinLustigpostedadetailedoutlineofasolutiontothisproblemonhiswebpagesomeyearsago[65],butneitherthisproofnoranyotherhasbeenacceptedforpublication.Thisproblemisofcentralimportancetothe eldandaclear,compellingsolutionwouldbeofgreatinterest.TheconjugacyproblemformappingclassgroupswasshowntobesolvablebyHemion[52],andane ectivealgorithmfordeterminingconjugacy,atleastforpseudo-Anosovmappingclasses,wasgivenbyMosher[70].TheisomorphismproblemforgroupsoftheformSgoZcanbeviewedasaparticularcaseofthesolutiontotheisomorphismproblemforfundamentalgroupsofgeometrizable3-manifolds[76].ThesolvabilityoftheconjugacyproblemforGL(n;Z)isduetoGrunewald[39] 3thismeansthatGactsproperlyandcocompactlybyisometriesonaCAT(0)space13 5CohomologyIneachoftheseriesofgroupsfngweareconsidering,theithhomologyofnhasbeenshowntobeindependentofnfornsucientlylarge.ForGL(n;Z)thisisduetoCharney[24],formappingclassgroupstoHarer[45],forAut(Fn)andOut(Fn)toHatcherandVogtmann[48,50],thoughforOut(Fn)thisrequiresanerratumbyHatcher,VogtmannandWahl[51].Withtrivialrationalcoecients,thestablecohomologyofGL(n;Z)wascomputedinthe1970'sbyBorel[11],andthestablerationalcohomologyofthemappingclassgroupcomputedbyMadsenandWeissin2002[66].ThestablerationalcohomologyofAut(Fn)(andOut(Fn))wasveryrecentlydeterminedbyS.Galatius[34]tobetrivial.TheexactstablerangefortrivialrationalcoecientsisknownforGL(n;Z)andformappingclassgroupsofpuncturedsurfaces.ForAut(Fn)thebestknownresultisthattheithhomologyisindependentofnforn�5i=4[49],buttheexactrangeisunknown:Question28WherepreciselydoestherationalhomologyofAut(Fn)stabi-lize?AndforOut(Fn)?Thereareonlytwoknownnon-trivialclassesinthe(unstable)rationalhomologyofOut(Fn)[49,26].However,Morita[69]hasde nedanin niteseriesofcycles,usingworkofKontsevichwhichidenti esthehomologyofOut(Fn)withthecohomologyofacertainin nite-dimensionalLiealgebra.The rstofthesecyclesisthegeneratorofH4(Out(F4);Q)=Q,andConantandVogtmannshowedthatthesecondalsogivesanon-trivialclass,inH8(Out(F6);Q)[26].BothMoritaandConant-Vogtmannalsode nedmoregeneralcycles,parametrizedbyodd-valentgraphs.Question29AreMorita'soriginalcyclesnon-trivialinhomology?ArethegeneralizationsduetoMoritaandtoConantandVogtmannnon-trivialinhomology?NootherclasseshavebeenfoundtodateinthehomologyofOut(Fn),leadingnaturallytothequestionofwhetherthesegivealloftherationalhomology.Question30DotheMoritaclassesgeneratealloftherationalhomologyofOut(Fn)?ThemaximumdimensionofaMoritaclassisabout4n=3.Morita'scyclesliftnaturallytoAut(Fn),andagainthe rsttwoarenon-trivialinhomology.14 ByGalatius'result,allofthesecyclesmusteventuallydisappearunderthestabilizationmapAut(Fn)!Aut(Fn+1).ConantandVogtmannshowthatinfacttheydisappearimmediatelyaftertheyappear,i.e.oneapplicationofthestabilizationmapkillsthem[25].IfitistruethattheMoritaclassesgeneratealloftherationalhomologyofOut(Fn)thenthisimpliesthatthestablerangeissigni cantlylowerthanthecurrentbound.WenotethatMoritahasidenti edseveralconjecturalrelationshipsbe-tweenhiscyclesandvariousotherinterestingobjects,includingtheimageoftheJohnsonhomomorphism,thegroupofhomologycobordismclassesofhomologycylinders,andthemotivicLiealgebraassociatedtothealgebraicmappingclassgroup(seeMorita'sarticleinthisvolume).SincethestablerationalhomologyofOut(Fn)istrivial,thenaturalmapsfrommappingclassgroupstoOut(Fn)andfromOut(Fn)toGL(n;Z)areofcoursezero.However,theunstablehomologyofallthreeclassesofgroupsremainslargelyunkownandintheunstablerangethesemapsmightwellbenontrivial.Inparticular,wenotethatH8(GL(6;Z);Q)=Q[30];thisleadsnaturallytothequestionQuestion31IstheimageofthesecondMoritaclassinH8(GL(6;Z);Q))non-trivial?ForfurtherdiscussionofthecohomologyofAut(Fn)andOut(Fn)wereferto[81].6GeneratorsandRelationsThegroupsweareconsideringareall nitelygenerated.Ineachcase,themostnaturalsetofgeneratorsconsistsofasingleorientation-reversinggen-eratorofordertwo,togetherwithacollectionofsimplein nite-orderspecialautomorphisms.ForOut(Fn),thesespecialautomorphismsaretheNielsenautomorphisms,whichmultiplyonegeneratorofFnbyanotherandleavetherestofthegenerators xed;forGL(n;Z)thesearetheelementaryma-trices;andformappingclassgroupstheyareDehntwistsaroundasmallsetofnon-separatingsimpleclosedcurves.Thesegeneratingsetshaveanumberofimportantfeaturesincommon.First,implicitinthedescriptionofeachisachoiceofgeneratingsetforthegroupBonwhichisacting.InthecaseofMod(Sg)this\basis"canbetakentoconsistof2g+1simpleclosedcurvesrepresentingthestandardgeneratorsa1;b1;a2;b2;:::;ag;bg;of1(Sg)togetherwithz=a12b3a3b13.15 InthecaseofOut(Fn)andGL(n;Z),thegeneratingsetisabasisforFnandZnrespectively.Notethatinthecases=Out(Fn)orGL(n;Z),theuniversalpropertyoftheunderlyingfreeobjectsB=FnorZnensuresthatactstransitivelyonthesetofpreferredgeneratingsets(bases).InthecaseB=1Sg,thecorrespondingresultisthatanytwocollectionsofsimpleclosedcurveswiththesamepatternofintersectionnumbersandcomplementaryregionsarerelatedbyahomeomorphismofthesurface,hence(atthelevelof1)bytheactionof.IfweidentifyZnwiththeabelianizationofFnandchoosebasesaccord-ingly,thentheactionofOut(Fn)ontheabelianizationinducesahomo-morphismOut(Fn)!GL(n;Z)thatsendseachNielsenmovetothecorre-spondingelementarymatrix(andhenceissurjective).Correspondingly,theactionMod(Sg)ontheabelianizationof1SgyieldsahomomorphismontothesymplecticgroupSp(2g;Z)sendingthegeneratorsofMod(Sg)givenbyDehntwistsaroundtheaiandbitotransvections.Anothercommonfeatureofthesegeneratingsetsisthattheyallhavelineargrowth(seesection4).Smaller(butlesstransparent)generatingsetsexistineachcase.IndeedB.H.Neumann[72]provedthatAut(Fn)(henceitsquotientsOut(Fn)andGL(n;Z))isgeneratedbyjust2elementswhenn4.Wajnryb[83]provedthatthisisalsotrueofmappingclassgroups.Ineachcaseonecanalso ndgeneratingsetsconsistingof niteorderelements,involutionsinfact.ZuccashowedthatAut(Fn)canbegeneratedby3involutionstwoofwhichcommute[84],andKassabov,buildingonworkofFarbandBrendle,showedthatmappingclassgroupsoflargeenoughgenuscanbegeneratedby4involutions[58].Ourgroupsarealsoall nitelypresented.ForGL(n;Z),ormorepre-ciselyforSL(n;Z),therearetheclassicalSteinbergrelations,whichinvolvecommutatorsoftheelementarymatrices.ForthespecialautomorphismsSAut(Fn),Gerstengaveapresentationintermsofcorrespondingcommu-tatorrelationsoftheNielsengenerators[35].Finitepresentationsofthemappingclassgroupsaremorecomplicated.The rstwasgivenbyHatcherandThurston,andworkedoutexplicitlybyWajnryb[82].Question32IsthereasetofsimpleSteinberg-typerelationsforthemap-pingclassgroup?ThereisalsoapresentationofAut(Fn)comingfromtheactionofAut(Fn)onthesubcomplexofAuterspacespannedbygraphsofdegreeatmost2.Thisissimply-connectedby[48],soBrown'smethod[22]canbeusedtowrite16 downapresentation.Thevertexgroupsarestabilizersofmarkedgraphs,andtheedgegroupsarethestabilizersofpairsconsistingofamarkedgraphandaforestinthegraph.ThequotientofthesubcomplexmoduloAut(Fn)canbecomputedexplicitly,andone ndsthatAut(Fn)isgeneratedbythe( nite)stabilizersofsevenspeci cmarkedgraphs.Inaddition,alloftherelationsexcepttwocomefromthenaturalinclusionsofedgestabilizersintovertexstabilizers,i.e.eitherincludingthestabilizerofapair(graph,forest)intothestabilizerofthegraph,orintothestabilizerofthequotientofthegraphmodulotheforest.Thusthewholegroupisalmost(butnotquite)apushoutofthese nitesubgroups.IntheterminologyofHae\riger(see[19],II.12),thecomplexofgroupsisnotsimple.Question33CanOut(Fn)andMod(Sg)beobtainedasapushoutofa nitesubsystemoftheir nitesubgroups,i.e.iseitherthefundamentalgroupofadevelopablesimplecomplexof nitegroupsona1-connectedbase?6.1IAautomorphismsWeconcludewithawell-knownproblemaboutthekernelIA(n)ofthemapfromOut(Fn)toGL(n;Z).Thenotation\IA"standsforidentityontheabelianization;theseare(outer)automorphismsofFnwhicharetheidentityontheabelianizationZnofFn.Magnusshowedthatthiskernelis nitelygenerated,andforn=3KrsticandMcCoolshowedthatitisnot nitelypresentable[60].Itisalsoknownthatinsomedimensionthehomologyisnot nitelygenerated[77].Butthatistheextentofourknowledgeofbasic nitenessproperties.Question34Establish nitenesspropertiesofthekernelIA(n)ofthemapfromOut(Fn)toGL(n;Z).Inparticular,determinewhetherIA(n)is nitelypresentableforn�3.ThesubgroupIA(n)isanalogoustotheTorellisubgroupofthemappingclassgroupofasurface,whichalsoremainsquitemysteriousinspiteofhavingbeenextensivelystudied.7AutomaticityandIsoperimetricInequalitiesInthefoundationaltextonautomaticgroups[31],EpsteingivesadetailedaccountofThurston'sproofthatifn3thenGL(n;Z)isnotautomatic.Theargumentusesthegeometryofthesymmetricspacetoobtainanex-ponentiallowerboundonthe(n1)-dimensionalisoperimetricfunctionof17 GL(n;Z);inparticulartheDehnfunctionofGL(3;Z)isshowntobeexpo-nential.BridsonandVogtmann[20],buildingonthislastresult,provedthattheDehnfunctionsofAut(F3)andOut(F3)areexponential.Theyalsoprovedthatforalln3,neitherAut(Fn)norOut(Fn)isbiautomatic.Incontrast,Mosherprovedthatmappingclassgroupsareautomatic[71]andHamenstadt[41]provedthattheyarebiautomatic;inparticularthesegroupshavequadraticDehnfunctionsandsatisfyapolynomialisoperimetricinequalityineverydimension.HatcherandVogtmann[47]obtainanexpo-nentialupperboundontheisoperimetricfunctionofAut(Fn)andOut(Fn)ineverydimension.AnargumentsketchedbyThurstonandexpandeduponbyGromov[37],[38](cf.[29])indicatesthattheDehnfunctionofGL(n;Z)isquadraticwhenn4.Moregenerally,theisoperimetricfunctionsofGL(n;Z)shouldparallelthoseofEuclideanspaceindimensionsmn=2.Question35WhataretheDehnfunctionsofAut(Fn)andOut(Fn)forn�3?Question36Whatarethehigher-dimensionalisoperimetricfunctionsofGL(n;Z),Aut(Fn)andOut(Fn)?Question37IsAut(Fn)automaticforn�3?References[1]A.Ash,Small-dimensionalclassifyingspacesforarithmeticsubgroupsofgenerallineargroups,DukeMath.J.,51(1984),pp.459{468.[2]M.BestvinaandM.Feighn,Thetopologyatin nityofOut(Fn),Invent.Math.,140(2000),pp.651{692.[3]M.Bestvina,M.Feighn,andM.Handel,TheTitsalternativeforOut(Fn)II:AKolchintypetheorem.arXiv:math.GT/9712218.[4] ,TheTitsalternativeforOut(Fn).I.Dynamicsofexponentially-growingautomorphisms,Ann.ofMath.(2),151(2000),pp.517{623.[5] ,SolvablesubgroupsofOut(Fn)arevirtuallyAbelian,Geom.Ded-icata,104(2004),pp.71{96.18 [6]M.BestvinaandK.Fujiwara,Boundedcohomologyofsubgroupsofmappingclassgroups,Geom.Topol.,6(2002),pp.69{89(electronic).[7]M.BestvinaandM.Handel,Traintracksandautomorphismsoffreegroups,Ann.ofMath.(2),135(1992),pp.1{51.[8]S.J.Bigelow,Braidgroupsarelinear,J.Amer.Math.Soc.,14(2001),pp.471{486(electronic).[9]J.S.Birman,A.Lubotzky,andJ.McCarthy,Abelianandsolv-ablesubgroupsofthemappingclassgroups,DukeMath.J.,50(1983),pp.1107{1120.[10]O.BogopolskiandD.V.Puga,EmbeddingtheouterautomorphismgroupOut(Fn)ofafreegroupofrankninthegroupOut(Fm)form�n.preprint,2004.[11]A.Borel,Stablerealcohomologyofarithmeticgroups,Ann.Sci.EcoleNorm.Sup.(4),7(1974),pp.235{272(1975).[12]N.Brady,M.R.Bridson,andL.Reeves,Free-by-cyclicgroupsthatarenotautomatic.preprint2005.[13]T.E.BrendleandH.Hamidi-Tehrani,Onthelinearityproblemformappingclassgroups,Algebr.Geom.Topol.,1(2001),pp.445{468(electronic).[14]M.R.Bridson,Helly'stheoremandactionsoftheautomorphismgroupofafreegroup.Inpreparation.[15] ,Onthesemisimplicityofpolyhedralisometries,Proc.Amer.Math.Soc.,127(1999),pp.2143{2146.[16]M.R.BridsonandB.Farb,Aremarkaboutactionsoflatticesonfreegroups,TopologyAppl.,110(2001),pp.21{24.Geometrictopologyandgeometricgrouptheory(Milwaukee,WI,1997).[17]M.R.BridsonandS.M.Gersten,Theoptimalisoperimetricin-equalityfortorusbundlesoverthecircle,Quart.J.Math.OxfordSer.(2),47(1996),pp.1{23.[18]M.R.BridsonandD.Groves,Free-groupautomorphisms,traintracksandthebeadeddecomposition.arXiv:math.GR/0507589.19 [19]M.R.BridsonandA.Haefliger,Metricspacesofnon-positivecurvature,vol.319ofGrundlehrenderMathematischenWissenschaften[FundamentalPrinciplesofMathematicalSciences],Springer-Verlag,Berlin,1999.[20]M.R.BridsonandK.Vogtmann,Onthegeometryoftheauto-morphismgroupofafreegroup,Bull.LondonMath.Soc.,27(1995),pp.544{552.[21] ,Homomorphismsfromautomorphismgroupsoffreegroups,Bull.LondonMath.Soc.,35(2003),pp.785{792.[22]K.S.Brown,Presentationsforgroupsactingonsimply-connectedcomplexes,J.PureAppl.Algebra,32(1984),pp.1{10.[23]G.CarlssonandE.K.Pedersen,ControlledalgebraandtheNovikovconjecturesforK-andL-theory,Topology,34(1995),pp.731{758.[24]R.M.Charney,HomologystabilityofGLnofaDedekinddomain,Bull.Amer.Math.Soc.(N.S.),1(1979),pp.428{431.[25]J.ConantandK.Vogtmann,TheMoritaclassesarestablytrivial.preprint,2006.[26] ,Moritaclassesinthehomologyofautomorphismgroupsoffreegroups,Geom.Topol.,8(2004),pp.1471{1499(electronic).[27]M.CullerandK.Vogtmann,Moduliofgraphsandautomorphismsoffreegroups,Invent.Math.,84(1986),pp.91{119.[28] ,Agroup-theoreticcriterionforpropertyFA,Proc.Amer.Math.Soc.,124(1996),pp.677{683.[29]C.Drutu,Fillinginsolvablegroupsandinlatticesinsemisimplegroups,Topology,43(2004),pp.983{1033.[30]P.Elbaz-Vincent,H.Gangl,andC.Soule,QuelquescalculsdelacohomologiedeGLN(Z)etdelaK-theoriedeZ,C.R.Math.Acad.Sci.Paris,335(2002),pp.321{324.[31]D.B.A.Epstein,J.W.Cannon,D.F.Holt,S.V.F.Levy,M.S.Paterson,andW.P.Thurston,Wordprocessingingroups,JonesandBartlettPublishers,Boston,MA,1992.20 [32]B.FarbandH.Masur,Superrigidityandmappingclassgroups,Topology,37(1998),pp.1169{1176.[33]E.FormanekandC.Procesi,Theautomorphismgroupofafreegroupisnotlinear,J.Algebra,149(1992),pp.494{499.[34]S.Galatius.inpreparation.[35]S.M.Gersten,Apresentationforthespecialautomorphismgroupofafreegroup,J.PureAppl.Algebra,33(1984),pp.269{279.[36] ,TheautomorphismgroupofafreegroupisnotaCAT(0)group,Proc.Amer.Math.Soc.,121(1994),pp.999{1002.[37]M.Gromov,Asymptoticinvariantsofin nitegroups,inGeometricgrouptheory,Vol.2(Sussex,1991),vol.182ofLondonMath.Soc.LectureNoteSer.,CambridgeUniv.Press,Cambridge,1993,pp.1{295.[38]M.Gromov,MetricstructuresforRiemannianandnon-Riemannianspaces,vol.152ofProgressinMathematics,BirkhauserBostonInc.,Boston,MA,1999.Basedonthe1981Frenchoriginal[MR0682063(85e:53051)],WithappendicesbyM.Katz,P.PansuandS.Semmes,TranslatedfromtheFrenchbySeanMichaelBates.[39]F.J.Grunewald,Solutionoftheconjugacyproblemincertainarith-meticgroups,inWordproblems,II(Conf.onDecisionProblemsinAl-gebra,Oxford,1976),vol.95ofStud.LogicFoundationsMath.,North-Holland,Amsterdam,1980,pp.101{139.[40]E.Guentner,N.Higson,andS.Weinburger,TheNovikovcon-jectureforlineargroups.preprint,2003.[41]U.Hammenstadt,TraintracksandmappingclassgroupsI.preprint,availableathttp://www.math.uni-bonn.de/people/ursula/papers.html.[42]M.HandelandL.Mosher,AxesinOuterSpace.arXiv:math.GR/0605355.[43] ,Theexpansionfactorsofanouterautomorphismanditsinverse.arXiv:math.GR/0410015.21 [44]J.L.Harer,Thecohomologyofthemodulispaceofcurves,inTheoryofmoduli(MontecatiniTerme,1985),vol.1337ofLectureNotesinMath.,Springer,Berlin,1988,pp.138{221.[45] ,StabilityofthehomologyofthemodulispacesofRiemannsurfaceswithspinstructure,Math.Ann.,287(1990),pp.323{334.[46]W.J.Harvey,Boundarystructureofthemodulargroup,inRiemannsurfacesandrelatedtopics:Proceedingsofthe1978StonyBrookCon-ference(StateUniv.NewYork,StonyBrook,N.Y.,1978),vol.97ofAnn.ofMath.Stud.,Princeton,N.J.,1981,PrincetonUniv.Press,pp.245{251.[47]A.HatcherandK.Vogtmann,Isoperimetricinequalitiesforauto-morphismgroupsoffreegroups,Paci cJ.Math.,173(1996),pp.425{441.[48] ,Cerftheoryforgraphs,J.LondonMath.Soc.(2),58(1998),pp.633{655.[49] ,RationalhomologyofAut(Fn),Math.Res.Lett.,5(1998),pp.759{780.[50] ,Homologystabilityforouterautomorphismgroupsoffreegroups,Algebr.Geom.Topol.,4(2004),pp.1253{1272(electronic).[51]A.Hatcher,K.Vogtmann,andN.Wahl,Erratumto:Homologystabilityforouterautomorphismgroupsoffreegroups,2006.arXivmath.GR/0603577.[52]G.Hemion,Ontheclassi cationofhomeomorphismsof2-manifoldsandtheclassi cationof3-manifolds,ActaMath.,142(1979),pp.123{155.[53]N.V.Ivanov,ComplexesofcurvesandTeichmullermodulargroups,UspekhiMat.Nauk,42(1987),pp.49{91,255.[54] ,Mappingclassgroups,inHandbookofgeometrictopology,North-Holland,Amsterdam,2002,pp.523{633.[55]H.IzekiandS.Nayatani,Combinatorialharmonicmapsanddiscrete-groupactionsonHadamardspaces.[56]V.A.KaimanovichandH.Masur,ThePoissonboundaryofthemappingclassgroup,Invent.Math.,125(1996),pp.221{264.22 [57]G.G.Kasparov,Equivariantkk-theoryandthenovikovconjecture,Invent.Math.,91(1988),pp.147{201.[58]M.Kassabov,GeneratingMappingClassGroupsbyInvolutions.arXiv:math.GT/0311455.[59]T.Kato,AsymptoticLipschitzmaps,combablegroupsandhighersig-natures,Geom.Funct.Anal.,10(2000),pp.51{110.[60]S.KrsticandJ.McCool,Thenon- nitepresentabilityofIA(F3)andGL2(Z[t;t1]),Invent.Math.,129(1997),pp.595{606.[61]V.Lafforgue,UnedemonstrationdelaconjecturedeBaum-Connespourlesgroupesreductifssuruncorpsp-adiqueetpourcertainsgroupesdiscretspossedantlapropriete(T),C.R.Acad.Sci.ParisSer.IMath.,327(1998),pp.439{444.[62]G.LevittandM.Lustig,IrreducibleautomorphismsofFnhavenorth-southdynamicsoncompacti edouterspace,J.Inst.Math.Jussieu,2(2003),pp.59{72.[63]J.LosandM.Lustig,Thesetoftraintrackrepresentativesofanirreduciblefreegroupautomorphismiscontractible.preprint,December2004.[64]A.LubotzkyandI.Pak,TheproductreplacementalgorithmandKazhdan'sproperty(T),J.Amer.Math.Soc.,14(2001),pp.347{363(electronic).[65]M.Lustig,Structureandconjugacyforautomorphismsoffreegroups.availableathttp://junon.u-3mrs.fr/lustig/.[66]I.MadsenandM.S.Weiss,ThestablemodulispaceofRiemannsurfaces:Mumford'sconjecture.arXiv:math.AT/0212321.[67]J.McCool,AfaithfulpolynomialrepresentationofOutF3,Math.Proc.CambridgePhilos.Soc.,106(1989),pp.207{213.[68]G.Mislin,AnEG forthemappingclassgroup.Workshoponmodulispaces,Munster2004.[69]S.Morita,Structureofthemappingclassgroupsofsurfaces:asurveyandaprospect,inProceedingsoftheKirbyfest(Berkeley,CA,1998),vol.2ofGeom.Topol.Monogr.,Geom.Topol.Publ.,Coventry,1999,pp.349{406(electronic).23 [70]L.Mosher,Theclassi cationofpseudo-Anosovs,inLow-dimensionaltopologyandKleiniangroups(Coventry/Durham,1984),vol.112ofLondonMath.Soc.LectureNoteSer.,CambridgeUniv.Press,Cam-bridge,1986,pp.13{75.[71] ,Mappingclassgroupsareautomatic,Ann.ofMath.(2),142(1995),pp.303{384.[72]B.Neumann,Dieautomorphismengruppederfreiengruppen,Math.Ann.,107(1932),pp.367{386.[73]A.Y.Ol0shanski,Geometryofde ningrelationsingroups,vol.70ofMathematicsanditsApplications(SovietSeries),KluwerAcademicPublishersGroup,Dordrecht,1991.Translatedfromthe1989RussianoriginalbyYu.A.Bakhturin.[74]A.Piggott,Detectingthegrowthoffreegroupautomorphismsbytheiractiononthehomologyofsubgroupsof niteindex.arXiv:math.GR/0409319.[75]D.Rosenthal,SplitInjectivityoftheBaum-ConnesAssemblyMap.arXiv:math.AT/0312047.[76]Z.Sela,Theisomorphismproblemforhyperbolicgroups.I,Ann.ofMath.(2),141(1995),pp.217{283.[77]J.SmillieandK.Vogtmann,AgeneratingfunctionfortheEulercharacteristicofOut(Fn),J.PureAppl.Algebra,44(1987),pp.329{348.[78]C.Soule,Anintroductiontoarithmeticgroups,2004.coursauxHouches2003,"Numbertheory,PhysicsandGeometry",PreprintIHES,arxiv:math.math.GR/0403390.[79]P.Storm,TheNovikovconjectureformappingclassgroupsasacorol-laryofHamenstadt'stheorem'.arXiv:math.GT/0504248.[80]K.Vogtmann,LocalstructureofsomeOut(Fn)-complexes,Proc.Ed-inburghMath.Soc.(2),33(1990),pp.367{379.[81] ,Thecohomologyofautomorphismgroupsoffreegroups,inPro-ceedingsoftheInternationalCongressofMathematicians(Madrid,2006),2006.24 [82]B.Wajnryb,Asimplepresentationforthemappingclassgroupofanorientablesurface,IsraelJ.Math.,45(1983),pp.157{174.[83] ,Mappingclassgroupofasurfaceisgeneratedbytwoelements,Topology,35(1996),pp.377{383.[84]P.Zucca,Onthe(2;22)-generationoftheautomorphismgroupsoffreegroups,Istit.LombardoAccad.Sci.Lett.Rend.A,131(1997),pp.179{188(1998).[85]A._Zuk,Lapropriete(T)deKazhdanpourlesgroupesagissantsurlespolyedres,C.R.Acad.Sci.ParisSer.IMath.,323(1996),pp.453{458.MRB:Mathematics.HuxleyBuilding,ImperialCollegeLondon,LondonSW72AZ,m.bridson@imperial.ac.ukKV:MathematicsDepartment,555MalottHall,CornellUniversity,Ithaca,NY14850,vogtmann@math.cornell.edu25