/
oftheagentstoacommonvalue.Inparticular,weprovethatallagentshavethesame oftheagentstoacommonvalue.Inparticular,weprovethatallagentshavethesame

oftheagentstoacommonvalue.Inparticular,weprovethatallagentshavethesame - PDF document

kittie-lecroy
kittie-lecroy . @kittie-lecroy
Follow
388 views
Uploaded On 2016-10-11

oftheagentstoacommonvalue.Inparticular,weprovethatallagentshavethesame - PPT Presentation

includingselfedgessuchthatAteachtimethenodes ID: 474311

includingself-edges suchthat.Ateachtime thenodes

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "oftheagentstoacommonvalue.Inparticular,w..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

oftheagentstoacommonvalue.Inparticular,weprovethatallagentshavethesamevalueaftertimesteps,whereisthenumberofquantizationlevelsperunitvalue.Duetotherounding-downfeatureofthequantizer,thisalgorithmdoesnotpreservetheaverageofthevaluesateachiteration.However,weprovideboundsontheerrorbetweentheÞnalconsensusvalueandtheinitialaverage,asafunctionofthenumberofavailablequantizationlevels.Inparticular,weshowthattheerrorgoesto0atarateof,asthenumberofquantizationlevelsincreasestoinÞnity.Otherthanthepaperscitedabove,ourworkisalsorelatedto[11]and[5],[6],whichstudiedtheeffectsofquantizationontheperformanceofaveragingalgorithms.In[11],Kashyapetal.proposedrandomizedgossip-typequantizedaveragingal-gorithmsundertheassumptionthateachagentvalueisanin-teger.Theyshowedthatthesealgorithmspreservetheaverageofthevaluesateachiterationandconvergetoapproximatecon-sensus.TheyalsoprovidedboundsontheconvergencetimeofthesealgorithmsforspeciÞcstatictopologies(fullyconnectedandlinearnetworks).Intherecentwork[5],Carlietal.proposedadistributedalgorithmthatusesquantizedvaluesandpreservestheaverageateachiteration.Theyshowedfavorableconver-gencepropertiesusingsimulationsonsomestatictopologies,andprovidedperformanceboundsforthelimitpointsofthegen- ,includingself-edges,suchthat.Ateachtime,thenodesÕconnectivitycanberepresentedbythedirectedgraph.Ourgoalistostudytheconvergenceoftheiteratestotheaverageoftheinitialvalues,,asproachesinÞnity.Inordertoestablishsuchconvergence,weimposesomeassumptionsontheweightsandthegraphsequence.Assumption1:Foreach,theweightmatrixisadoublystochasticmatrix1withpositivediagonalentries.Additionally,thereexistsaconstantsuchthatif,then analysis.Inparticular,inthenextsubsection,weexploresev-eralimplicationsofthedoublestochasticityassumptionontheweightmatrix.A.PreliminariesonDoublyStochasticMatricesWebeginbyanalyzinghowthesamplevariancechangeswhenthevectorismultipliedbyadoublystochasticmatrix.Thenextlemmashowsthat.Thus,underAssumption1,thesamplevarianceisnonin-creasingin,andcanbeusedasaLyapunovfunction.Lemma4:Letbeadoublystochasticmatrix.Then,forallwhereisthethentryofthematrix.Proof:Letdenotethevectorinwithallentriesequalto1.Thedoublestochasticityofimplies2Inthesequel,thenotationwillbeusedtodenotethedoublesum.Notethatmultiplicationbyadoublystochasticmatrixpre-servestheaverageoftheentriesofavector,i.e.,forany,thereholdsWenowwritethequadraticformexplicitly,asfollows:bethethentryof.Notethatissymmetricandstochastic,sothatand.Then,itcanbeveriÞedthat(3)whereisaunitvectorwiththethentryequalto1,andallotherentriesequalto0(seealso[22]whereasimilardecompo-sitionwasused).Bycombining(2)and(3),weobtainNotethattheentriesofarenonnegative,becausetheweightmatrixhasnonnegativeentries.Inview stepinasthesecondstepin.ratheronallassociatedwithedgesthatcrossapar-ticularcutinthegraph.Forsuchgroupsof,weprovealowerboundwhichislinearin,asseeninthefol-lowing.Lemma5:Letbearow-stochasticmatrixwithpositivediagonalentries,andassumethatthesmallestpositiveentryinisatleast.Also,letbeapartitionofthesetintotwodisjointsets.If weseethatthereexistsanedgeinthesetthatcrossesthecut.Letbesuchanedge.Withoutlossofgenerality,weassumethatand.WedeÞneSeeFig.1(a)foranillustration.Sinceisarow-stochasticma- e)Tosimplifynotation,let.Byassumption,wehave.Wemaketwoobservations,asfollows:1)Supposethat.Then,forsome,wehaveeitheror.Becauseisnonnegativewithpositivediagonalentries,wehaveandbyLemma5,weobtain(10)2)Fixsome,with Wenextestablishaboundonthevariancedecreasethatplaysakeyroleinourconvergenceanalysis.Lemma9:LetAssumptions1and6hold,andsupposethat.ThenProof:Withoutlossofgenerality,weassumethatthecom-ponentsofhavebeensortedinnonincreasingorder.ByLemma8,wehaveThisimpliesthatObservethattheright-handsidedoesnotchangewhenweadd Considerthebalancingalgorithm,andsupposethatisasequenceofundirectedgraphssuchthatisconnected,forallintegers.ThereexistsanabsoluteconstantsuchthatwehaveProof:Notethatwiththisalgorithm,thenewvalueatsomeisaconvexcombinationofthepreviousvaluesofitselfanditsneighbors.Furthermore,thealgorithmkeepsthesumofthenodesÕvaluesconstant,becauseeveryacceptedofferin-volvesanincreaseatthereceivingnodeequaltothedecreaseattheofferingnode.Thesetwopropertiesimplythatthealgorithmcanbewrittenintheformisadoublystochasticmatrix,determinedbyand.Itcanbeseenthatthediagonalentriesofarepositiveand,furthermore,allnonzeroentriesofarelargerthanorequalto1/3;thus,.Weclaimthatthealgorithm[inparticular,thesequence]satisÞesAssumption6.Indeed,supposethatattime,thenodesarereorderedsothatthevaluesarenonincreasingin.Fixsome,andsupposethat.Let smallest.Since,wehaveLet.Clearly,forall,and.Moreover,themonotonicityofimpliesthemonotonicityofThusNext,wesimplyrepeatthestepsofLemma9.Wecanassumewithoutlossofgeneralitythat.DeÞneforand.Wehavethatareallnonnegativeand.ThereforeTheminimizationproblemontheright-handsidehasanoptimalvalueofatleast,andthedesiredresultfollows.C.ExtensionsandModiÞcationsInthissubsection,wecommentbrießyonsomecorollariesofTheorem17.First,wenotethattheresultsofSectionIVimmediatelycarryovertothequantizedcase.Indeed,inSectionIV,weshowedhowtopicktheweightsinadecentralizedmanner,basedonlyonlocalinformation,sothatAssumptions1and6aresat-isÞed,with.Whenusingaquantizedversionofthebal-ancingalgorithm,weonceagainmanagetoremovethefactoroffromourupperbound.Proposition18:Forthequantizedversionofthebalancingalgorithm,andunderthesameassumptionsasinTheorem12,if,then thefollowingproperty.Foranynonnegativeinteger,,,andand,thereexistasequenceofweightmatricessatisfyingAssumptions1and2,andaninitialvaluesatisfyingAssumption13,andanumberquantizationlevels(dependingon)suchthatunderthedynamicsof(14),if,thenProof: thecommonlimitofthevaluesgeneratedbythequan-tizedalgorithm(14),wehaveProof:ByProposition19,afteriterations,allnodeswillhavethesamevalue.Sinceandtheaveragedecreasesbyatmostateachiteration,theresultfollows.Letusassumethattheparameters,,andareÞxed.Proposition21impliesthatasincreases,thenumberofbitsusedforeachcommunication,whichisproportionalto,needstogrowonlyastomaketheerrornegligible.Furthermore,thisistrueeveniftheparameters,,and itisbepossibletopickaveragingalgorithmsthatlearnthegraphandmakeoptimaluseofitsinformationdiffusionproperties.REFERENCES[1]D.P.BertsekasandJ.N.Tsitsiklis,ParallelandDistributedComputa-tion:NumericalMethods.EnglewoodCliffs,NJ:PrenticeHall,1989.[2]P.A.BlimanandG.Ferrari-Trecate,ÒAverageconsensusproblemsinnetworksofagentswithdelayedcommunications,ÓinProc.Joint44thIEEEConf.DecisionControlEur.ControlConf.,2005,pp.7066Ð7071.[3]V.D.Blondel,J.M.Hendrickx,A.Olshevsky,andJ.N.Tsitsiklis,ÒConvergenceinmultiagentcoordination,consensus,andßocking,ÓinProc.Joint44thIEEEConf.DecisionControlEur.ControlConf.,2005,pp.2996Ð3000.[4]S.Boyd,A.Ghosh,B.Prabhakar,andD.Shah,ÒGossipalgorithms:Design,analysisandapplications,ÓinProc.IEEEINFOCOM,2005, IEEETrans.Autom.Control,vol.50,no.2,pp.169Ð182,Feb.2005.[15]R.Olfati-SaberandR.M.Murray,ÒConsensusproblemsinnetworksofagentswithswitchingtopologyandtime-delays,ÓIEEETrans.Autom.Control,vol.49,no.9,pp.1520Ð1533,Sep.2004.[16]A.OlshevskyandJ.N.Tsitsiklis,ÒConvergenceratesindistributedconsensusaveraging,ÓinProc.45thIEEEConf.DecisionControl,2006,pp.3387Ð3392.[17]W.RenandR.W.Beard,ÒConsensusseekinginmulti-agentsystemsunderdynamicallychanginginteractiontopologies,ÓIEEETrans.Autom.Control,vol.50,no.5,pp.655Ð661,May2005.[18]J.N.Tsitsiklis,ÒProblemsinDecentralizedDecisionMakingandComputation,ÓPh.D.dissertation,Dept.Elect.Eng.Comput.Sci.,MIT,Cambridge,1984.[19]J.N.Tsitsiklis,D.P.Bertsekas,andM.Athans,ÒDistributedasynchronousdeterministicandstochasticgradientoptimizationalgo-rithms,ÓIEEETrans.Autom.Control,vol.AC-31,no.9,pp.803Ð812,Sep.1986.[20]T.Vicsek,A.Czirok,E.Ben-Jacob,I.Cohen,andO.Schochet,ÒNoveltypeofphasetransitionsinasystemofself-drivenparticles,ÓPhys.Rev.Lett.,vol.75,no.6,pp.1226Ð1229,1995.[21]L.XiaoandS.Boyd,ÒFastlineariterationsfordistributedaveraging,ÓSyst.ControlLett.,vol.53,pp.65Ð78,2004.[22]L.Xiao,S.Boyd,andS.J.Kim,ÒDistributedaverageconsensuswithleast-mean-squaredeviation,ÓJ.ParallelDistrib.Comput.,vol.67,pp.33Ð46,2007.AngeliaNedic