/
OntheNumberofPentagonsinTriangle-FreeGraphsHamedHatamiJanHladkyyDani OntheNumberofPentagonsinTriangle-FreeGraphsHamedHatamiJanHladkyyDani

OntheNumberofPentagonsinTriangle-FreeGraphsHamedHatamiJanHladkyyDani - PDF document

kittie-lecroy
kittie-lecroy . @kittie-lecroy
Follow
361 views
Uploaded On 2015-09-21

OntheNumberofPentagonsinTriangle-FreeGraphsHamedHatamiJanHladkyyDani - PPT Presentation

SchoolofComputerScienceMcGillUniversityhatamicsmcgillcayMathematicsInstituteandDIMAPUniversityofWarwickhonzahladkygmailcomSupportedbyEPSRCawardEPD0631911zInstituteofMathematicsDIMAPand ID: 136330

SchoolofComputerScience McGillUniversity hatami@cs.mcgill.ca.yMathematicsInstituteandDIMAP UniversityofWarwick honzahladky@gmail.com.SupportedbyEPSRCawardEP/D063191/1.zInstituteofMathematics DIMAPand

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "OntheNumberofPentagonsinTriangle-FreeGra..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

OntheNumberofPentagonsinTriangle-FreeGraphsHamedHatamiJanHladkyyDanielKral'zSergueiNorinexAlexanderRazborov{AbstractUsingtheformalismof\ragalgebras,weprovethateverytriangle-freegraphGwithnverticescontainsatmost(n=5)5cyclesoflength ve.Moreover,theequalityisattainedonlywhennisdivisibleby veandGisthebalancedblow-upofthepentagon.Wealsocomputethemaximalnumberofpentagonsandcharacterizeextremalgraphsinthenon-divisiblecaseprovidednissucientlylarge.ThissettlesaconjecturemadebyErd}osin1984.1.IntroductionTriangle-freegraphsneednotbebipartite.Buthowexactlyfarfrombeingbipartitecantheybe?In1984,Erd}os[Erd84,Questions1and2]consideredthreequantitativere nementsofthisquestion.Moreprecisely,heproposedtomeasure\non-bipartiteness"by: SchoolofComputerScience,McGillUniversity,hatami@cs.mcgill.ca.yMathematicsInstituteandDIMAP,UniversityofWarwick,honzahladky@gmail.com.SupportedbyEPSRCawardEP/D063191/1.zInstituteofMathematics,DIMAPandDepartmentofComputerScience,Univer-sityofWarwick,CoventryCV47AL,UnitedKingdom.Previousaliation:InstituteofComputerScience(IUUK),FacultyofMathematicsandPhysics,CharlesUniversity,Mal-ostranskenamest25,11800Prague1,CzechRepublic.E-mail:D.Kral@warwick.ac.uk.TheworkofthisauthorleadingtothisinventionhasreceivedfundingfromtheEu-ropeanResearchCouncilundertheEuropeanUnion'sSeventhFrameworkProgramme(FP7/2007-2013)/ERCgrantagreementno.259385.xDepartmentofMathematics&Statistics,McGillUniversity,snorin@math.mcgill.ca.{UniversityofChicago,razborov@cs.uchicago.edu.PartofthisworkwasdonewhiletheauthorwasatSteklovMathematicalInstitute,supportedbytheRussianFoundationforBasicResearch,andatToyotaTechnologicalInstitute,Chicago.1 (i)theminimalpossiblenumberofedgesinasubgraphspannedbyhalfofthevertices;(ii)theminimalpossiblenumberofedgesthathavetoberemovedtomakethegraphbipartite;(iii)thenumberofcopiesofpentagons(cyclesoflength5)inthegraph.Alltheseparametersvanishonbipartitegraphs,andErd}osconjecturedthatintheclassoftriangle-freegraphseveryoneofthemismaximizedbybalancedblow-upsofthepentagon.Simonovits(referredtoin[Erd84])ob-servedthatanotherexamplewhichattainstheconjecturedextremumfor(i)isprovidedbybalancedblow-upsofthePetersengraph.For(iii),Michael[Mic11]noticedthatthecycleoflengtheightwithfourchordsjoiningtheop-positeverticeshaseightpentagons,thusmatchingthenumberofpentagonsintheeight-vertex(almostbalanced)blow-upsofthepentagon.The rsttwoofErd}os'squestionshavebeeninvestigatedin[EFPS88,Kri95,KS06].Gy}oriinvestigatedthethirdquestionin[Gy}o89].Intermsofdensities,Erd}os'sconjectureregarding(iii)statesthatthedensityofpen-tagonsinanytriangle-freegraphsisatmost5! 55.Gy}oriprovedanupperboundof335! 5214thatiswithinafactor1.03oftheoptimal.Furedi(personalcommunication)re nedGy}ori'sapproachandobtainedanupperboundwithinafactor1.001oftheoptimal.Inthispaperwesettle(iii)inthedensitysense(Theorem3.1),whichalsoimpliestheexactsolutionwhennisdivisibleby5(Corollary3.3).Theproofofthisresultisacalculationin\ragalgebras(introducedin[Raz07]).Furthermore,weobtaintheasymptoticuniqueness(that,again,turnsintotheuniquenessintheordinarysensewhen5jn)byarelativelysimpleargu-mentinTheorem3.2.InSection4weuseamoretechnicalapproachto ndtheexactsolutionfornsucientlylarge.Weleaveitasanopenquestiontoproveanexactboundonthemaximumnumberofpentagonsinann-vertextriangle-freegraphforallvaluesofn.Weassumeacertainfamiliaritywiththetheoryof\ragalgebrasfrom[Raz07].FortheproofofthecentralTheorem3.1onlythemostbasicnotionswhichdealwithCauchy-Schwarztypecalculationsarerequired.Thus,insteadoftryingtoduplicatede nitions,weoccasionallygivepointerstorelevantplacesin[Raz07]andsomesubsequentpapers.ForourproofofTheorem3.2weneedalittlebitmorethanthesebasics.WerecallthecorrespondingbitsinSection2.2.2 C5 M4 C5  Figure1:Models 2.Preliminaries2.1.NotationWedenotevectorswithboldfont,e.g.a=(a(1);a(2);a(3))isavectorwiththreecoordinates.Foreverypositiveintegerk,let[k]denotethesetf1;:::;kg.Following[Raz07,De nition1],fortwographsHandG,thedensityofHinGasaninducedsubgraphisdenotedbyp(H;G).Thatisp(H;G)istheprobabilitythatthesubgraphinducedonj(H)jrandomlychosenverticesofGisisomorphictoH.Exceptforthestand-aloneSection2.3,weexclusivelywork[Raz07,x2]inthetheoryTTFGraphoftriangle-freegraphs.Recallfrom[Raz07]thatforatheoryTandapositiveintegern,thesetofallmodelsofTonnelementsuptoanisomorphismisdenotedbyMn[T].Weworkwiththenotionoftypes,\rags,and\ragalgebras,andusethesamenotationasin[Raz07,x2.1]wherethisterminologyisintroduced.Letuslistthosemodels,typesand\ragsthatwillbeneededinthispaper.Let2M2[TTFGraph]andC52M5[TTFGraph]respectivelydenotetheedgeandthepentagon.ThesetwographsalongwithtwoothergraphsthatwillbeneededforprovingtheuniquenessandtheexactresultareillustratedinFigure1.Wedenotethetrivialtypeofsize0by0.LetPdenotethetypeofsize5basedonC5(seeFigure2).Fori=0;1;2,letidenotethetypeofsize3withiedgeswherethelabelingischoseninsuchawaythatthepermutationof1and2isanautomorphism(seeFigure2).Foratypeofsizekandanindependentsetofvertices[k]in,letFVdenotethe\rag(G;)2Fk+1inwhichtheonlyunlabeledvertexisconnectedtothesetf(i)ji2g.Notethatsinceweareworkinginthetheoryoftriangle-freegraphs,wehaveFk+1=fFVj[k]isanindependentseting: 3 01 2 111222333 P 12345 Figure2:Types 2.2.Operator,andextensionmeasuresAsusual,thealgebrageneratedby-\ragsisdenotedA.Wethende nethefollowing\upwardoperator":A0!Aasintroducedin[Raz07,x2.3,x2.3.1].Foratriangle-freegraphG2F0k(=Mk),welet(G)bethesumofallthoseF=(H;)2Fk+jjforwhichtheunlabeledverticesformacopyofG,i.e.,Him()isisomorphictoG.WethenextendlinearlytoA0.Itturnsout[Raz07,Theorem2.6]that:A0!Aisanalgebrahomomorphism.Thenextnotionweshallneedisthatofextensionmeasure,asintroducedin[Raz07,De nition8].Supposethat2Hom+(A0[TTFGraph];R)issuchthat()�0(1)foratype(in(1)weviewasanunlabeledgraph).Then,thereexistsauniqueprobabilitymeasurePonBorelsetsofHom+(ATFGraph];R)withthepropertythatZHom+(ATFGraph];R) (f)P(d )=(JfK) (J1K);(2)foranyf2A.See[Raz07,Theorem3.5].WesaythatPextends.S()isthesupportofthismeasure,i.e.theminimalclosedsubsetAsuchthatP]=1[Raz11,Section2.1.1].Notethattheintegrationin(2)canberestrictedtoS().ObservethatcanbereconstructedfromitsextensionPsimplybypickinganarbitrary 2S()andletting(g)= ((g))(g2A0)(3)(cf.[Raz07,Corollary3.19]). 4 2.3.In niteblow-upsandHom+(A00TGraphR)Inordertoconverttheasymptoticresultintotheexactone,weneedtoexplorealittlebitmoretheconnectionbetweenblow-upsofagraphandthecorrespondingalgebrahomomorphismfromHom+(A0[TGraph];R)alreadyusedinasimilarcontextin[Raz08,Theorem4.1].Fora nitegraphGandapositiveintegervectork=(k()j2(G)),wede netheblow-upG(k)ofGasthegraphwith(G(k))def=[v2V(G)fg[k()]E(G(k))def=f((v;i);(w;j))j=^(v;w)2E(G)g:Whenallk()areequaltosomepositiveintegerk,thecorrespondingblow-upiscalledbalancedanddenotedsimplybyG(k).ForeverygraphH,itiseasytoseethatthesequencefp(H;G(k))gk2Nisconvergent.Itfollows[Raz07,x3]thatthereexistsahomomorphismG2Hom+(A0[TGraph];R)suchthatforeverygraphH,wehavelimk!1p(H;G(k))=G(H).Notethatsincetheblow-upofatriangle-freegraphisalsotriangle-free,ifGistriangle-free,thenactuallyG2Hom+(A0[TTFGraph];R).LetusnowgiveacombinatorialdescriptionofG.Fora nitegraphH,letusdenotebys(H;G)thenumberofstronghomomorphismsfromHtoGthatwede neasthosemappings :(H)!(G)forwhich( (); ())2E(G)ifandonlyif(v;w)2E(H).Thisnotionisanaturalhybridofinducedembeddingsandgraphhomomorphisms,anditisaveryspecialcaseofthenotionoftrigraphhomomorphisms(seee.g.[HN04]).ItiseasytocheckthatG(H)=m! jAut(H)js(H;G) nm;(4)wheremandnrespectivelydenotej(H)jandj(G)j,andAut(H)isthegroupofautomorphismsofH.LetussaythatHistwin-freeifnotwoverticesinHhavethesamesetofneighbors.Everystronghomomorphismofatwin-freegraphintoanyothergraphisnecessarilyaninducedembedding.Therefore,fortwin-freeH,wehaves(H;G)=p(H;G)nmjAut(H)jand(4)considerablysimpli estoG(H)=p(H;G)n(n1):::(nm+1) nm:(5) 5 ForthespecialcaseH=Kr,thisformulawasalreadyusedin[Raz08,Section4.1]),andinthispaperweareinterestedinanothercase,C5(C5)=5! 55:OurapproachtoextractingexactresultsfromasymptoticonesheavilyreliesonthefactthatGisagraphinvariant.Thiswas rstprovenbyLovasz[Lov67].Asimpleproofofasimilarstatementinthecontextofgraphlimitsisgivenin[Lov12,Theorem5.32]. Theorem2.1 LetG1andG2be nitegraphswiththesamenumberofverticesandsuchthatG1=G2.ThenG1andG2areisomorphic.3.MainresultsRecall[Raz07,De nitions5and6]thatforanon-degeneratetypeinatheoryT,andf;g2A],theinequalityfqmeansthat(f)(g)forevery2Hom+(A];R):thisistheclassofallinequalitiesthatholdasymptoticallyon\ragsofthegiventheory[Raz07,Corollary3.4].Weabbreviatefgtofgwhenisclearfromthecontext.Our rsttheorem,whichanswersthequestionofErd}os,saysthatinthetheoryoftriangle-freegraphs,wehaveC55! 55.Notethatwhileinthetheoryofgeneralgraphs,the\ragC5correspondstoinducedpentagons,inthetheoryoftriangle-freegraphs,everypentagonisinduced. Theorem3.1 InthetheoryTTFGraph,wehaveC55! 55:Proof.Theproofisbyadirectcomputationinthe\ragalgebraA0[TTFGraph](cf.[Raz10,HKN09]and[Raz11,Section4.1]).Weclaimthat62500C5+1097 12M4+68 3C5+ 2Xi=0JQ+i(g+i)Ki!+2002 52+JQ1(g1)K1+158266J(F2f1gF2f2g)2K22400: (6) ThegraphsM4andC5areillustratedonFigure1.Forthede nitionofthealgebraoperationssee[Raz07,Eq.(5)],andforthede nitionofthe 6 averagingoperatorJKsee[Raz07,x2.2].Letusnowde nethenotationsg+=iandQ+=iin(6).Foratypeofsizekandaninteger0jk,weletfjdef=XfFVj[k]anindependentsetofsizejing;whereFVareasde nedinSection2.1.Thevectorsg+=iarethefollowingtuplesofelementsfromAi4:g+0def=(f01f02;f012f00+3f03);g+1def=(2f10f11;f11f12;F1f3g);g+2def=(6f20+f214f22;2f202f22+F2f3g);g1def=(F1f1gF1f2g;F1f2;3gF1f1;3g);andQ+=iarepositive-de nitequadraticformsrepresentedbythefollowingpositive-de nitematrices:M+0def= 976022522252592!M+1def=0BB@139006711280767131334511361280751136981571CCAM+2def= 22708407884078878132!M1def= 14161645216452256488!:Theinequality(6)canbecheckedbyexpandingtheleft-handsideasalinearcombinationofelementsfromM5(thatis,triangle-freegraphson5vertices{thereare14ofthem)andcheckingthatallcoecientsarelessorequalthan2400.Weveri edtheinequalityusingaMaplesheetandaCprogramwhichwereindependentlyprepared.TheCprogramisavailableasanancillary leonthearXiv(arXiv:1102.1634).Itfollowsfrom[Raz07,Theorem3.14]thatallthesummandsontheleft-handsideof(6)arenonnegativeaselementsofA0[TTFGraph]whichinturnimpliesthatC52400 62500=5!=55. Remark1 Anexplanationofourusageofthe+=superscriptsintheproofofTheorem3.1canbefoundin[Raz10,Section4].Here,theparticularchoiceofsubspacesspannedbythevectorsg+=iisdictatedbythesameprinciplesasin[Raz10,Section4]. 7 Therearetwopossibleandratherstraightforwardgeneralizationsoftheaboveproblem,neitherofwhichwecould ndintheliterature.OnecanaskforthemaximumnumberofcopiesofoddcyclesC2`+1,orforthemaximumnumberofinducedcopiesofoddcyclesC2`+1inatriangle-freegraphofa xedorder.Inourpentagoncase`=2thetwoquestionsarethesame.EmilVaughancommunicatedtousthatusingthe\ragalgebrasmethodhecanprovethattheblow-upsofthepentagonandoftheheptagon,respectivelyareasymptoticallyextremalforthetwoproblemsfor`=3.Letusnowturntothequestionofuniquenessoftheoriginalproblem. Theorem3.2 ThehomomorphismC5istheuniqueelementinHom+(A0[TTFGraph];R)thatful lls(C5)=5! 55:(7)Proof.Fix2Hom+(A0[TTFGraph];R)suchthat(7)holds.RecallthatPisthetypeofsize5basedonC5(seeFigure2).Insteadofprovingdirectlythat=C5,wewillargueabouttheextensionPPofandthenutilize(3).Observethat(6)impliesthat(M4)=(C5)=0:(8)Trivially,JFP;KPC5.AsM4isaninducedsubgraphofeachofthegraphsFPf1g;:::;FPf5g(viewedasunlabelledgraphs),thereexistsaconstant �0suchthatJFPfigKP M4foreveryi2Z5.Hence(8)impliesthat(JFP;KP)=(JFPfigKP)=0:(9)LetYbethesetofthoseelements 2Hom+(AP[TTFGraph];R)forwhich (FP;)=0,or (FPfig)=0forsomei2Z5;notethatYisopen.WeclaimthatY\SP()=;:(10)Indeed,letusconsidertheP-\ragf=FP;+PiFPfig.By(9)wehave(JfKP)=0.Pluggingthisin(2),wehaveZSP() (f)PP(d )=0:Further,asfP0,theintegrand (f)isnon-negative.Therefore, (f)=0forPP-almostallelements and,sinceYisopen,(10)follows. 8 PickanarbitraryP2SP().LetusexamineP(FPV)for\ragsFPV2FP6.SinceisanindependentsetinC5,wehavejj2,andmoreover,ifjj=2,then=fi1;i+1gforsomei2Z5.AsP62Y,wehaveP(FP;)=P(FPfig)=0.Inotherwords,P(FPV)canbenon-zeroonlywhen=fi1;i+1gforsomei2Z5.De neHPidef=FPfi1;i+1g.WehavePi2Z5(HPi)=1,andthustheinequalityofaritmeticandgeometricmeansgivesthatYi2Z5(HPi)55;(11)withequalityonlywhen(HP1)=:::=(HP5)=1=5.RecallthatP(C5)canberepresentedasthesumofthoseF=(G;)2FP10forwhichtheunlabeledverticesformacopyofC5,say(G)nim()=f1;v2;:::;v5gwherejisadjacenttoj1andj+1.Bytheabovediscus-sion,non-zerocontributionstoP(P(C5))canbemadeonlybythoseFforwhicheveryjisadjacentto(i(j)1)and(i(j)+1)forsomechoiceofi(j)2Z5.SinceGistriangle-free,themappingj7!i(j)de nesagraphhomomorphismofthepentagonintoitself,andsincetherearenosuchgraphhomomorphismsotherthanisomorphisms,wemayassumewithoutlossofgeneralitythateveryjisadjacentto(j1)and(j+1).Inotherwords,P(P(C5))=P((C(2)5)P),where(C(2)5)Pistheuniquelyde nedP-\ragbasedonC(2)5,theblow-upofthepentagon.Observethat(C(2)5)PP5!Yi2Z5HPi;(12)andthusby(3)and(11)wehavethefollowingchainofinequalities5! 55=(C5)=P(P(C5))=P((C(2)5)P)5!Yi2Z5P(HPi)5! 55:Consequently,(11)mustactuallybeanequality,andthereforeP(HP1)=:::=P(HP5)=1=5.Further,thereisnoslacknessin(12),i.e.,P0@5!Yi2Z5HPi(C(2)5)P1A=0:(13)ThisequalityallowsustocompletelydescribethebehaviorofPalsoonFP7.Fori;j2Z5,letHPij2FP7bede nedbyaddingtwounlabelednon-adjacentverticestoPandconnectingoneofthemto(i1)and(i+1)and 9 theotherto(j1)and(j+1).Notethatifi=jor(i;j)62E(P),thentheproductHPiHPjisequaltoqijHPij,whereqij=1ifi=j,andqij=1=2otherwise(sinceaddinganedgebetweenthetwounlabeledverticeswouldhavecreatedatriangle).Hence,inthiscaseP(HPij)=1 25qij.Ontheotherhand,if(i;j)2E(P),then5!HPijYk2Z5nfi;jgHPkP5!Yi2Z5HPi(C(2)5)P;whichtogetherwith(13)impliesthatP(HPij)=0.ItfollowsthatP(GPij)=1 25qij,whereGPijisde nedsimilartoHPijwiththedi erencethatnowthereisanedgebetweentheunlabeledvertices.AsPP(HPij)+PP(GPij)=1,wehaveP(F)=0foreachF2FP7nSi;j2Z5fGPij;HPijg.(14)LetHbenowanarbitrarytriangle-freegraphonnvertices.SimilarlytotheabovewecanexpandP(H)inAP5+n.Forahomomorphism :H!Z5ofHtoC5(withitsverticeslabeledcyclically),wewriteFP fortheP-\rag(G;)2FP5+nwheretheunlabeledvertices0def=(G)nim()induceacopyofH,andeachvertex20isadjacentonlyto( ()1)and( ()+1).WeclaimthatPevaluatestozeroatanytermF2FP5+nintheexpansionofP(H),unlessF=FP forsomehomomorphism :H!P.Indeed,theparticularcasewhenHisanedgeisshownin(14),andthegeneralcasefollowsbythesamereasoning.Furthermore,asP(HPij)=0for(i;j)2E(P),weactuallyhavethat mustbeastronghomomorphisminthiscase.ObservethatP(FP ) c =P0@Yv2V(H)HPh(v)1A=5n(15)foreachstronghomomorphism :H!P,wherec isthemultinomialcoecient,c def= njh1(1)j;jh1(2)j;jh1(3)j;jh1(4)j;jh1(5)j!:Now,(H)=P(P(H))=P P(FP )=5nP c (thesummationistakenoverallstronghomomorphismsfromHtoC5)thatcanbeeasilyseentocoincidewiththevalueC5(H)asgivenby(4).This nishestheproof. 10 TheupperboundonthenumberofpentagonscanbederivedfromThe-orem3.1onthein niteblow-upG2Hom+(A0[TTFGraph];R).Further-more,Theorems2.1and3.2showthattheequalityinthestatementcanbeobtainedonlywhennisdivisibleby veandGisthebalancedblow-upofthepentagon. Corollary3.3 Everyn-vertextriangle-freegraphGcontainsatmost(n=5)5pentagons.Moreover,theequalityisattainedonlywhennisdivisibleby veandGisthebalancedblow-upofthepentagon.TheboundattainedbyCorollary3.3isnottightwhennisnotdivisibleby5.Morespeci cally,letn=5`+(04),thenthenumberofpentagonsinanalmostbalancedblow-upofC5withnvertices1isequalto(n)def=`5a(`+1)a. Conjecture1 Everytriangle-freegraphonnverticescontainsatmost(n)pentagons.TheoriginalversionofthispaperclaimedtoresolveConjecture1,buttheproofcontainedamistakethatwewerenotableto x.Aswenotedinintroduction,Michael[Mic11]observedthatforn=8thereexistsasporadicexamplewith(8)=8pentagons.Infact,[Mic11]alsoconjecturedthatthisistheonlysporadicexample,which,inparticular,wouldimplyConjecture1.WeuseastabilityargumenttosettleConjecture1forsucientlylargeninTheorem4.2below.4.ExactboundWede nethecutnormofannnmatrixAbykAk:=1 n2maxS;T[n] Xi2S;j2TAij :FortwographsG1andG2onthesamesetofvertices[n],wede netheircutdistanceasd(G1;G2)=kAG1AG2k; 1whena=2;3therearetwonon-isomorphicalmostbalancedblow-upsofC5withnvertices11 whereAG1andAG2denoterespectivelytheadjacencymatricesofG1andG2.IfG1andG2areunlabeledgraphsondi erentvertexsetsofthesamecardinalityn,thenwede netheirdistancebyb(G1;G2)=min~G1;~G2d(~G1;~G2);where~G1and~G2rangeoveralllabellingsofG1andG2by[n]respectively.Finally,letG1andG2begraphswithn1andn2vertices,respectively.Notethatforeverypositiveintegerk,theblow-upgraphsG(n2k)1andG(n1k)2havethesamenumberofvertices.Sowecande ne(G1;G2)=limk!1b(G(n2k)1;G(n1k)2):Thefunctionisonlyapseudometric,notatruemetric,because(G;G0)maybezerofordi erentgraphsGandG0.Infact,itisaneasyconsequenceofTheorem2.1andTheorem4.1belowthat(G;G0)=0ifandonlyifG(k)=G0(k0)forsomeintegersk;k0�0.Thefollowingtheoremshowstherelevanceofthisdistancetothecontextofthispaper. Theorem4.1([BCL+08,Theorem2.6]) Asequenceofgraphs(Gn)1n=1convergesinthedistanceifandonlyifthesequence(Gn)ni=1converges.WewillalsoneedthefollowingfactprovenbyAlon(see[Lov12,Theo-rem9.24]).IfG1andG2aretwographsonnvertices,thenb(G1;G2)(G1;G2)+17 p logn:(16) Theorem4.2 Thereexistsanintegern0suchthatanytriangle-freegraphwithnn0verticesandatleast(n)pentagonsmustbeanalmostbalancedblow-upofC5.Proof.Let1�0bea xedconstantchosentobesucientlysmalltosatisfytheinequalitiesthroughouttheproof.LetGbeatriangle-freegraphonnverticescontainingthemaximumnumberofpentagons.Throughouttheproof,wewillalwaysassumethatnissucientlylarge.Wewillusesomeadditionalnotationintheproofbelow.ForU;V(G),wewilldenotebyG[]thesubgraphofGinducedbyandwewilldenotebyG[U;V]theinducedbipartitesubgraphofGwithpartsand.For2(G)wedenotebydegU()thenumberofneighborsofin. 12 ByTheorem4.1andTheorem3.2,wehave(G;C5)1=4.LetkbesothatC(k)5isanalmostbalancedblow-upofC5onnvertices.Notethat(G;C(k)5)(G;C(5bn=5c)5)+(C(k)5;C(5bn=5c)5)=(G;C5)+O(1=n):Combiningthiswith(16),weconcludethatifnissucientlylarge,thenb(G;C(k)5)1=2:InparticularthereexistsapartitionA1;A2;:::;A5of(G)suchthatforeveryi2[5],itholdsthatjjAijn=5j1andjE(G[Ai;Ai+1])jjAijjAi+1j1n2=2:(17)Set2=3p 1,andforeveryi2[5],letBibethesetofvertices2AisuchthatdegAi1[Ai+1()jAi1[Ai+1j2n.By(17)wehavejE(G[Ai;Ai1[Ai+1])jjAijjAi1[Ai+1j1n2;whichimpliesjBij1 2n2 5n.LetA0i=AinBi.Weclaimthat (a) jjA0ijn=5j2 5n+12n. (b) degA0i1[A0i+1()jAi1[Ai+1j7 52n2n 522nforevery2A0i. (c) degA0i1()jAi1()j7 52nn 522nforevery2A0i. (d) E(G[A0i])=E(G[A0i;A0i+2])=;.Conditions(a)and(b)areimmediateconsequencesoftheboundonthesizeofBi.By(b),for2A0i,wehavedegA0i1()jAi1j7 52n,whichveri es(c).Toprove(d)notethatfor2sucientlysmall,everypairofverticesinA0ihave(many)commonneighbors.Hence,asGistriangle-free,E(G[A0i])=;.ItfollowssimilarlythatE(G[A0i;A0i+2])=;.InthenextstepweeliminatetheverticesinBdef=S5i=1Bi.Consideranarbitrary2B.WewouldeitheraddtooneofthepartsofA01;:::;A05maintainingtheconditionsonA0iestablishedabove(possiblywithaworseconstant)orshowthatisinfewpentagonsandcanbereplacedbyanothervertex,whilethenumberofpentagonsisincreased.Letp()denotethenumberofpentagonsinGcontainingv:Consider rstdeletingthevertexandaddinganewvertextoGjoinedtoeveryvertexinA01andA03.By(d)thegraphremainstriangle-free.By(a)and(c),thenewvertexisinatleastn 52nn 522n3n4 5472n4=:p1 13 pentagonsfor2sucientlysmall.AsthenumberofpentagonsinGismaximumamongallgraphsonnvertices,weconcludethatp()p1.Considerapentagoncontainingandfourverticesin(G)B,sothatatleasttwoofthemlieinthesameA0i.Itisnothardtoverifythatsuchapentagonmustcontainapairofnon-adjacentverticesoneinA0iandanotherinA0i+1forsomei2[5].Thusthereareatmost47 52n462n4suchpentagonsby(b).AlsosincejBj2n,thereareatmost82n4pentagonscontainingandanothervertexinB.Letxi=degA0i().Notethatifxi�22nforsomei,thenxi+1=xi1=0,asavertexinA0i1canhaveatmost22nnon-neighborsinA0iby(c)andGistriangle-free.Therefore,ifforeveryi2[5],wehavexi22norxi+222n,thenwegetacontradiction:p()142n4+102nn 5+2n3p1:Weconcludexi;xi+2&#x-279;22nforsomei2[5],andwehavexi1=xi+1=xi+3=0bytheobservationabove.Let3=53222.Supposethatxin 53norxi+2n 53n.Repeatingthecalculationabovewehavep()142n4+n 53nn 5+2n3142n4+n 53n n3 53+2n3!n4 543 53152n4=p1;wheretheintermediateinequalitiesholdfor2sucientlysmallandthelastidentityisbythechoiceof3.Thusxi;xi+2n 53nforsomei2[5].WeaddtoA0i+1.WerepeatthesameprocedureforeveryvertexofB.Asaresultoftheproceduredescribedintheprecedingparagraph,weobtainapartitionA001;A002;:::;A005of(G)suchthatjjA00ijn=5j22n3n,degA00i1()n=53nanddegA00i+1()n=53nforeveryi2[5]andevery2A00i.Asin(d)itfollowsthatE(G[A00i])=E(G[A00i;A00i+2])=;foreveryi2[5],if3issucientlysmall.ThuseverypentagoninGmustcontainavertexfromeachofthesetsA001;A002;:::;A005.Consequently,thenumberofpentagonsinGisupperboundedbyQ5i=1jA00ijandtheequalityholdsifandonlyifeveryvertexofA00iisjoinedtoeveryvertexinA00i+1foreveryi2[5].ItiseasytoseethattheaboveproductismaximizedwhenjjA00ijjA00jjj1foreveryi;j2[5].ThusGmustbeanalmostbalancedblow-upofC5,asdesired. 14 AcknowledgementWhenpreparingthe nalversionofthispaperwelearnedthatAndrzejGrzesik[Grz12]independentlyprovedTheorem3.1.WethankOlegPikhurkoforpointingouttheworkofZoltanFureditous.WealsothankT.S.MichaelandHumbertoNavesforpointingoutthe\rawintheoriginalversionofthemanuscript,andrefereesfortheircomments.References [BCL+08] ChristianBorgs,JenniferT.Chayes,LaszloLovasz,VeraT.Sos,andKatalinVesztergombi.Convergentsequencesofdensegraphs.I.Subgraphfrequencies,metricpropertiesandtesting.Adv.Math.,219(6):1801{1851,2008. [EFPS88] PaulErd}os,RalphFaudree,JanosPach,andJoelSpencer.Howtomakeagraphbipartite.J.Combin.TheorySer.B,45(1):86{98,1988. [Erd84] PaulErd}os.Onsomeproblemsingraphtheory,combinatorialanalysisandcombinatorialnumbertheory.InGraphtheoryandcombinatorics(Cambridge,1983),pages1{17.AcademicPress,London,1984. [Grz12] AndrzejGrzesik.Onthemaximumnumberof ve-cyclesinatriangle-freegraph.J.Combin.TheorySer.B,102(5):1061{1066,2012. [Gy}o89] ErvinGy}ori.OnthenumberofC5'sinatriangle-freegraph.Combinatorica,9(1):101{102,1989. [HKN09] JanHladky,DanielKral,andSergueiNorine.Counting\ragsintriangle-freedigraphs.arXiv:0908.2791,2009. [HN04] PavolHellandJaroslavNesetril.GraphsandHomomorphisms.OxfordUniversityPress,2004. [Kri95] MichaelKrivelevich.Ontheedgedistributionintriangle-freegraphs.J.Combin.TheorySer.B,63(2):245{260,1995. [KS06] PeterKeevashandBennySudakov.Sparsehalvesintriangle-freegraphs.J.Combin.TheorySer.B,96(4):614{620,2006. 15 [Lov67] LaszloLovasz.Operationswithstructures.ActaMath.Acad.Sci.Hungar.,18:321{328,1967. [Lov12] LaszloLovasz.Largenetworksandgraphlimits.AmericanMath-ematicalSociety,tobepublished2012. [Mic11] T.S.Michael.Cyclesoflength5intriangle-freegraphs:Asporadiccounterexampletoacharacterizationofequality.Manuscript,2011. [Raz07] AlexanderA.Razborov.Flagalgebras.J.SymbolicLogic,72(4):1239{1282,2007. [Raz08] AlexanderA.Razborov.Ontheminimaldensityoftrianglesingraphs.Combin.Probab.Comput.,17(4):603{618,2008. [Raz10] AlexanderA.Razborov.On3-hypergraphswithforbidden4-vertexcon gurations.SIAMJ.DiscreteMath.,24(3):946{963,2010. [Raz11] AlexanderA.Razborov.OntheFon-der-FlaassinterpretationofextremalexamplesforTuran's(3,4)-problem.ProceedingsoftheSteklovInstituteofMathematics,274:247{266,2011. 16

Related Contents


Next Show more