/
3.7J.A.Beachy13.7HomomorphismsfromAStudyGuideforBeginner'sbyJ.A.Beachy 3.7J.A.Beachy13.7HomomorphismsfromAStudyGuideforBeginner'sbyJ.A.Beachy

3.7J.A.Beachy13.7HomomorphismsfromAStudyGuideforBeginner'sbyJ.A.Beachy - PDF document

liane-varnes
liane-varnes . @liane-varnes
Follow
399 views
Uploaded On 2015-08-08

3.7J.A.Beachy13.7HomomorphismsfromAStudyGuideforBeginner'sbyJ.A.Beachy - PPT Presentation

37JABeachy224De neZ4Z6Z4Z3byx4y6x2y4y3aShowthatisawellde nedgrouphomomorphismSolutionIfy1y2mod6then2y12y2isdivisibleby12so2y12y2mod4andthenitfollowsquicklyth ID: 102819

3.7J.A.Beachy224.De ne:Z4Z6!Z4Z3by([x]4;[y]6)=([x+2y]4;[y]3).(a)Showthatisawell-de nedgrouphomomorphism.Solution:Ify1y2(mod6) then2y12y2isdivisibleby12 so2y12y2(mod4) andthenitfollowsquicklyth

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "3.7J.A.Beachy13.7HomomorphismsfromAStudy..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

3.7J.A.Beachy13.7HomomorphismsfromAStudyGuideforBeginner'sbyJ.A.Beachy,asupplementtoAbstractAlgebrabyBeachy/Blair21.FindallgrouphomomorphismsfromZ4intoZ10.Solution:AsnotedinExample3.7.7,anygrouphomomorphismfromZnintoZkmusthavetheform([x]n)=[mx]k,forall[x]n2Zn.Underanygrouphomomorphism:Z4!Z10,theorderof([1]4)mustbeadivisorof4andof10,sotheonlypossibilitiesare(([1]4)=1or(([1]4)=2.Thus([1]4)=[0]10,whichde nesthezerofunction,orelse([1]4)=[5]10,whichleadstotheformula([x]4)=[5x]10,forall[x]42Z4.22.(a)FindtheformulasforallgrouphomomorphismsfromZ18intoZ30.Solution:AsnotedinExample3.7.7,anygrouphomomorphismfromZ18intoZ30musthavetheform([x]18)=[mx]30,forall[x]182Z18.Sincegcd(18;30)=6,thepossibleordersof[m]30=([1]18)are1;2;3;6.Thecorrespondingchoicesfor[m]30are[0]30(order1),[15]30(order2),[10]30and[20]30(order3),and[5]30and[25]30(order6).(b)Chooseoneofthenonzeroformulasinpart(a),andnameit.Find(Z18)andker(),andshowhowelementsof(Z18)correspondtoequivalenceclassesof.Solution:Forexample,consider([x]18)=[5x]30.Theimageofconsistsofthemultiplesof5inZ30,whichare0;5;10;15;20;25.Wehaveker()=f0;6;12g,andusingProposition3.7.9to ndtheequivalenceclassesof,weadd1,2,3,4,and5,respectively,tothekernel.Wehavethefollowingcorrespondence:f[0]18;[6]18;[12]18g !([0]18)=[0]30,f[3]18;[9]18;[15]18g !([3]18)=[15]30,f[1]18;[7]18;[13]18g !([1]18)=[5]30,f[4]18;[10]18;[16]18g !([4]18)=[20]30,f[2]18;[8]18;[14]18g !([2]18)=[10]30,f[5]18;[11]18;[17]18g !([5]18)=[25]30.23.(a)ShowthatZ11iscyclic,withgenerator[2]11.Solution:AnelementofZ11canhaveorder1,2,5,or10.Since22461and251061,itfollowsthat[2]11cannothaveorder2or5,soitmusthaveorder10.(b)ShowthatZ19iscyclic,withgenerator[2]19.Solution:SinceZ19hasorder18,theorderof[2]is2,3,6,or18.Theelement[2]19isageneratorforZ19becauseithasorder18,since22=461,23=861,and26(23)2761.(c)CompletelydetermineallgrouphomomorphismsfromZ19intoZ11.Solution:Anygrouphomomorphism:Z19!Z11isdeterminedbyitsvalueonthegenerator[2]19,andtheorderof([2]19)mustbeacommondivisorof18and10.Thustheonlypossibleorderof([2]19)is1or2,soeither([2]19)=[1]11or([2]19)=[10]11=[1]11.Inthe rstcase,([x]19)=[1]11forall[x]192Z19,andinthesecondcase([2]n19)=[1]n11,forall[x]19=[2]n192Z19. 3.7J.A.Beachy224.De ne:Z4Z6!Z4Z3by([x]4;[y]6)=([x+2y]4;[y]3).(a)Showthatisawell-de nedgrouphomomorphism.Solution:Ify1y2(mod6),then2y12y2isdivisibleby12,so2y12y2(mod4),andthenitfollowsquicklythatisawell-de nedfunction.Itisalsoeasytocheckthatpreservesaddition.(b)Findthekernelandimageof,andapplyTheorem3.7.8.Solution:If([x]4;[y]6)belongstoker(),theny0(mod3),soy=0ory=3.Ify=0,thenx=0,andify=3,thenx=2.ThustheelementsofthekernelKare([0]4;[0]6)and([2]4;[3]6).Itfollowsthatthereare24=2=12equivalenceclassesdeterminedby.Theseareinone-to-onecorrespondencewiththeelementsoftheimage,somustmapZ4Z6ontoZ4Z3.Thus(Z4Z6)==Z4Z3:25.Letnandmbepositiveintegers,suchthatmisadivisorofn.Showthat:Zn!Zmde nedby([x]n)=[x]m,forall[x]n2Zn,isawell-de nedgrouphomomorphism.Solution:First,notethatisawell-de nedfunction,sinceif[x1]n=[x2]ninZn,thennj(x1x2),andthisimpliesthatmj(x1x2),sincemjn.Thus[x1]m=[x2]m,andso([x1]n)=([x2]n).Next,isahomomorphismsincefor[]n;[]n2Zn,wehave([]n[]n)=([]n)=[]m=[]m[]m=([]n)([]n).26.Forthegrouphomomorphism:Z36!Z12de nedby([x]36)=[x]12,forall[x]362Z36, ndthekernelandimageof,andapplyTheorem3.7.8.Solution:Thepreviousproblemshowsthatisagrouphomomorphism.Itisev-identthatmapsZ36ontoZ12,sinceifgcd(x;12)=1,thengcd(x;36)=1.ThekernelofconsistsoftheelementsinZ36thatarecongruentto1mod12,namely[1]36;[13]36;[25]36.ItfollowsthatZ36==Z12.27.ProvethatSLn(R)isanormalsubgroupofGLn(R).Solution:LetG=GLn(R)and=SLn(R).Theconditionweneedtocheck,thatgxg1foralln2andallg2G,translatesintotheconditionthatifPisanyinvertiblematrixanddet(A)=1,thenPAP1hasdeterminant1.Thisfollowsimmediatelyfromthefactthatdet(PAP1)=det(P)det(A)det(P1=det(P)det(A)1 det(P)=det(A);whichyoumayrememberfromyourlinearalgebracourseasthepropositionthatsimilarmatriceshavethesamedeterminant.Alternatesolution:Hereisaslightlymoresophisticatedproof.NotethatSLn(R)isthekernelofthedeterminanthomomorphismfromGLn()intoR(Example3.7.1inthetextshowsthatthedeterminantde nesagrouphomomorphism.)TheresultthenfollowsimmediatelyfromProposition3.7.4(a),whichshowsthatthekernelofanygrouphomomorphismisanormalsubgroup. 3.7J.A.Beachy3ANSWERSANDHINTS28.Proveordisproveeachofthefollowingassertions:(a)ThesetofallnonzeroscalarmatricesisanormalsubgroupofGLn(R).Answer:ThissetisthecenterofGLn(R),andsoitisanormalsubgroup.(b)ThesetofalldiagonalmatriceswithnonzerodeterminantisanormalsubgroupofGLn(R).Answer:Thissetisasubgroup,butitisnotnormal.31.De ne:Z15!Z15by([x]15)=[x]315,forall[x]152Z15.Findthekernelandimageof.Answer:Thefunctionisanisomorphism.32.De ne:Z15!Z5by([x]15)=[x]35.Showthatisagrouphomomorphism,and nditskernelandimage.Answer:Thefunctionisontowithker()=f[1]15;[11]15g.34.HowmanyhomomorphismsaretherefromZ12intoZ4Z3?Answer:Thereare12,since[1]12canbemappedtoanyelementofZ4Z3.36.De ne:R!Cbysetting(x)=eix,forallx2R.Showthatisagrouphomomorphism,and ndker()andtheimage(R).Answer:Theimageistheunitcircleinthecomplexplane,andker()=f2kjk2Zg.37.LetGbeagroup,withasubgroupHG.De ne(H)=fg2GjgHg1=Hg.(b)LetG=S4.Find(H)forthesubgroupHgeneratedby(1;2;3)and(1;2).Answer:Inthisexample,(H)=H.38.FindallnormalsubgroupsofA4.Answer:f(1)g,=f(1);(1;2)(3;4);(1;3)(2;4);(1;4)(2;3)g,andA4arethenormalsubgroupsofA4.