/
A radiobiological database produced by the BIANCA model to predict the biological effectiveness A radiobiological database produced by the BIANCA model to predict the biological effectiveness

A radiobiological database produced by the BIANCA model to predict the biological effectiveness - PowerPoint Presentation

lydia
lydia . @lydia
Follow
347 views
Uploaded On 2022-06-07

A radiobiological database produced by the BIANCA model to predict the biological effectiveness - PPT Presentation

hadrontherapy beams Mario Carante John Tello and Francesca Ballarini mariopietrocarante01ateneopvit 15th NRM Varenna 2018 University of Pavia and INFN Italy Healthy tissue Healthy ID: 914124

kev µm fit dose µm kev dose fit values ions cell alpha beta v79 protons carbon cells biological fits

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "A radiobiological database produced by t..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

A radiobiological database produced by the BIANCA model to predict the biological effectiveness of

hadrontherapy

beams

Mario Carante

, John Telloand Francesca Ballarini

mariopietro.carante01@ateneopv.it

15th NRM, Varenna 2018

University of Pavia and INFN, Italy

Slide2

Healthy

tissue

Healthy

tissue

Tumour

Spread Out

Bragg

Peak

Slide3

Physical

dose (

Gy)Biological dose

(GyRBE*)Depth (mm)Dose (Gy)

0 50 100 150 200 250

0.5 1 1.5 2 2.5 3 3.5 4

Carbon

 

Physical

dose and

biological

dose

Slide4

Energy

depositions

D N A

Chromosome

Nucleus

Cell

DNA Cluster

Lesions

(CL)

Lethal

chromosome

aberrations

Cell

death

The BIANCA model

BI

ophysical

AN

alysis

of

C

ell

death

and

chromosome

A

berrations

Version

developed

within

the INFN

"

ETHICS"

project

Slide5

Yield

of DNA Cluster

Lesions (CL)

Mainly dependent on particle

type

and energy

(

tuned for each

radiation

quality

and

kept

unvaried

with

varying dose)

Only two adjustable

parameters:

Model

parameters

Chromosome

fragment

un-

rejoining

probability

(f)

Mainly

dependent

on the target

cell

features

(

fixed

by

comparison

with

photon

data

and

kept

unvaried

with

varying

LET)

Slide6

Protons

Increasing

CLs

Dose (

Gy

)

Surviving

fraction

LET

(

keV

/µm)

7.7

11.0

17.8

27.6

(Carante and Ballarini 2016,

Frontiers

in

Oncology

)

Exp

data from Belli et al 1998,

Folkard

et al 1996

V79

cells

Slide7

He

ions

V79

cells

Increasing

CLs

Dose (

Gy

)

Surviving

fraction

LET

(

keV

/µm)

18.6

29.9

50.0

73.9

90.8

Exp

. data

fits

from

Furusawa

et al 2000

Simulations

Exp

. data

fits

16 LET

values

:

18.6

-

90.8

keV

/µm

(Carante et al. 2018,

Physics

in Medicine and

Biology

)

Slide8

C

ions

V79

cells

Increasing

CLs

Surviving

fraction

Dose (

Gy

)

LET

(

keV

/µm)

22.5

102

137

360

Exp

. d

ata

fits

from

Furusawa

et al 2000

Surviving

fraction

Dose (

Gy

)

LET

(

keV

/µm)

31

78.5

206

Simulations

Exp

.

data fits

28 LET

values

: 22.5 – 502

keV

/µm

(Carante et al. 2018,

Physics

in Medicine and

Biology

)

Slide9

LET (

keV

/µm)

CL/

µm

Protons

He

ions

CL/

µm

LET (

keV

/µm)

CL/

µm

LET (

keV

/µm)

Carbon

ions

CL/µm

yield

well

fitted

by a 2

parameter

linear-

quadratic

function

(y=aL+bL

2

)

before

the over-

killing

region

CLs

as

a

function

of LET (V79

cells

)

Slide10

LQ

fits

of simulated

survival curves

Surviving

fraction

Dose (

Gy

)

Protons

(

example

at

15

keV

/µm)

Simulations

LQ

fit

We

perform

simulations

for the

different

particles

(up to

now

: p, He, C)

at

many

LET

values

, and

we

fit

them

with a Linear-

Quadratic

function

S=

exp

(

-

α

D-

β

D

2) (

α, β

)

Slide11

α

and

β

for protonsLET (

keV/µm)

Alpha Beta

LET (

keV

/µm)

Alpha Beta

We

obtain

a set of

many

α

and

β

points

as

a

function

of LET

β

values

β

fit

α

values

α

fit

Unpublished

Slide12

α

and

β for

helium ions

LET (keV

/µm)

Alpha Beta

LET (

keV

/µm)

Alpha Beta

We

obtain

a set of

many

α

and

β

points

as

a

function

of LET

β

values

β

fit

α

values

α

fit

Unpublished

Slide13

α

and

β

for carbon ionsLET (

keV/µm)

Alpha Beta

LET (

keV

/µm)

Alpha Beta

For

every

LET

value

we

have

α

and

β

β

values

β

fit

α

values

α

fit

Unpublished

Slide14

Interface with FLUKA

 

 

Fluka

3D dose

profile

Particle

LET

Dose

For

mixed

fields

We

provide

tables

of

α

and

β

values

for

different

ions

within

a wide

energy

range

Slide15

Biological

profile

for protons

Depth (cm)

Relative

quantities

Dose

Cell

death

V79

cells

(

low

α

/

β

ratio)

Preliminary,

unpublished

Slide16

α

and

β for

chromosome aberrations

LET (

keV

/µm)

Alpha Beta

β

values

β

fit

α

values

α

fit

These

kind

of

aberrations

may

induce

secondary

tumors

(

healty

tissue

damage

)

Protons

Dose (

Gy

)

Aberrations

/

cell

Preliminary,

unpublished

Slide17

Biological

profile

for protons

Depth (cm)

Relative

quantities

Dose

Aberrations

V79

cells

(

low

α

/

β

ratio)

Preliminary,

unpublished

Slide18

AG

cells

(high α/β

ratio)

Dose

Cell

death

Biological

profile

for

protons

Depth (cm)

Relative

quantities

Preliminary,

unpublished

Slide19

Acknowledgments

Funding:

INFN

(projects “ETHICS” and “MC-INFN/FLUKA”)FLUKA collaboration

A.

Ferrari, A.

Mairani e G.

Aricò for cooperation and useful discussions

Slide20

Backup

Slide21

Physical

dose (

Gy)

Biological dose(GyRBE*)Depth (mm)Dose (Gy)

0 50 100 150 200 250

0.5 1 1.5 2 2.5 3 3.5 4

Carbon

Which

biological

effect

?

Dose (

Gy

)

Fraction

of

surviving

cells

 

Slide22

Protons

Normal

cells (AG) ->

normal

tissue

Increasing

CLs

Surviving

fraction

Dose (

Gy

)

LET

(

keV

/µm)

1.1

4.0

7.0

11.9

18.0

22.6

(Carante and Ballarini 2016,

Frontiers

in

Oncology

)

Exp

data from

Chaudary

et al 2014

Slide23

LET (

keV

/µm)

CL/µm

All

Protons

Helium

ions

Moving

from

one

particle

to

another

?

Carbon

ions

Slide24

LET (

keV

/µm)

CL/µm

Carbon

ions

T

he

overkilling

region

A

function

of the

form

: y=

c·arctg

(aL+bL

2

)

works

better

Slide25

α

and

β

for protonsLET (

keV/µm)

Alpha Beta

LET (

keV

/µm)

Alpha Beta

We

obtain

a set of

many

α

and

β

points

and

we

fit

them

β

values

β

fit

α

values

α

fit

Slide26

α

and

β for

helium ions

LET (

keV/µm)

Alpha Beta

β

values

β

fit

α

values

α

fit

We

use a+bx

+

cx

2

for

α

and a+bx

-

cx

2

for

β

Slide27

α

and

β

for carbon ions

LET (keV

/µm)

Alpha Beta

For

every

LET

value

we

have

α

and

β

β

values

β

fit

α

values

α

fit

Slide28

LET (

keV

/µm)

CL/µm

Protons

CL/µm V79

LQ

fit V79

Moving

from

one

cell

line to

another

CL/µm AG

X 2.9

Slide29

LET (

keV

/µm)

CL/µm

Helium

ions

CL/µm V79

LQ

fit

V79

Moving

from

one

cell

line to

another

CL/µm AG

X 1.5

Slide30

LET (

keV

/µm)

CL/µm

Carbon

ions

CL/µm V79

LQ

fit V79

Moving

from

one

cell

line to

another

CL/µm AG

X 1.3

Slide31

Goal 2:

predictions

for other

cell

lines

LET (

keV

/µm)

CL/

µm

Protons

Helium

ions

LET (

keV

/µm)

CL/

µm

Carbon

ions

LET (

keV

/µm)

CL/

µm

May

the

multiplying

factors

be

derived

from the

differences

in

radiosensitivity

to

photon

exposure

?

 

With the

calibration

curves

for V79

cells

and the

photon

survival

curve for

another

cell

line

, BIANCA

could

predict

the

response

of

that

line to

charged

particles

at

any

LET

Slide32

Proton

fits

LET (

keV

/µm)

CL/

µm

Linear

CL/

µ

m

LQ

fit

LET (

keV

/µm)

Quadratic

Slide33

Helium

fits

LET (

keV

/µm)

CL/

µm

Linear

CL/

µ

m

LQ

fit

LET (

keV

/µm)

Quadratic

Slide34

Carbon

fits

LET (

keV

/µm)

CL/

µm

Linear

CL/

µ

m

LQ

fit

LET (

keV

/µm)

Quadratic

Slide35

Biological

profile

for protonsDepth (cm)

Dose (

Gy

)

Dose*RBE

Dose*1.1

Dose

Slide36

α

and

β

for protonsLET (

keV/µm)

Alpha Beta

LET (

keV

/µm)

Alpha Beta

We

obtain

a set of

many

α

and

β

points

and

we

fit

them

β

values

β

fit

α

values

α

fit

α

β

Giovannini et al 2015

Slide37

FLUKA input

Slide38

Bolzer

et al 2015

Reality

Simulations

Photons

:

CLs

distributed

uniformly

in the

cell

nucleus

S

L

ight

ions

(

like

p

and He

of

low

energy

):

CLs

distributed

along

the

particle

traversals

<n> = D

S/(0.16

LET)

h

S

> S

H

eavier

ions

(

like

C):

Delta

rays

Targets and

irradiation

Cell

nucleus

with the

various

chromosomes

Slide39

R

max [

μm]=0.05E[MeV

/u]1.7(Scholz and Kraft, 1992; Kiefer and Straatch, 1986)

Radial

shift

r

(nm)

p

(r)