/
9212011pp2532602011bytheEcologicalSocietyofAmericaQualityofbasicdataan 9212011pp2532602011bytheEcologicalSocietyofAmericaQualityofbasicdataan

9212011pp2532602011bytheEcologicalSocietyofAmericaQualityofbasicdataan - PDF document

madison
madison . @madison
Follow
342 views
Uploaded On 2021-08-22

9212011pp2532602011bytheEcologicalSocietyofAmericaQualityofbasicdataan - PPT Presentation

NotestendencyforHSHtobemostfrequentlyfoundintheNearcticandPalearcticregionswhichcomplicatedinterpretationNonethelesswhereasHSHrepresentedoutofthetotalPalearcticNearctictakentogetherSRArelationshipsi ID: 869045

2009 fig shaped dec fig 2009 dec shaped rahbek newyork whittaker 2008 usa notes analysis shape ecology siteresolution 1998

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "9212011pp2532602011bytheEcologicalSociet..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 Notes ,92(1),2011,pp.253…2602011bytheEco
Notes ,92(1),2011,pp.253…2602011bytheEcologicalSocietyofAmericaQualityofbasicdataandmethodtoidentifyshapeaffectrichness–altituderelationshipsinmeta-analysis tendencyforH-SHtobemostfrequentlyfoundintheNearcticandPalearcticregions,whichcomplicatedinterpretation.Nonetheless,whereasH-SHrepresentedoutofthetotalPalearcticNearctic(takentogether)SRArelationshipsinthewholedataset,itsrepresentationroseto77inthestringentsubset.Also,theproportionalrepresentationofNearticregionsincreasedbyafactorof1.25inthestringentsubset,whereastheproportionalrepresentationofH-SHpatternsincreasedbyafactorof3.Thus,inspiteofthebiogeographicassociation,thesubstantialchangeintheproportionalrepresentationofdifferentshapesshowninthestringentsubsetcanbehardlyconsideredasmerelytheconsequenceofthepresenceofNearcticandPalearcticSRArelationships.OneeffectofrelaxingtheselectioncriteriaofinclusionofSRArelationships,fromstringenttointermediateandlax,wastoincreasetheproportionalrepresentationofmonotonicdecreasingpatterns.Thissuggestedthatreducingthesamplingeffortinindivid-ualstudies,i.e.,eitherbyloweringthenumberofsamplingpoints,orbyreducingtheproportionofthegradientsampled,mayfavortheperceptionofmono-tonicdecreasingpatterns,andthiscouldaltertherelativedistributionofdifferentSRApatterns.Varia-tioninsamplingefforthasbeenpreviouslyfoundtoaffectothermacroecologicalrelationships(e.g.,bodysize…abundancerelationships;Grif“ths1998).Exam-inedwithinthecontextofSRArelationships,thereductionofthenumberofsamplingpoints,ortheproportionofgradientsampled,maybeassociatedwitheffectsofspatialscaleknowntoaffecttheanalysisofspeciesdiversitypatterns(LyonsandWillig1999,2002,RahbekandGraves2000,Whittakeretal.2001),andspeci“cally,ofaltitudinalrichnessgradients(e.g.,Rahbek2005,JankowskiandWeyhenmeyer2006,Nogues-Bravoetal.2008,Sandersetal.2009).Weshowedthehigherfrequencyofoccurrenceofhump-shapedpatternsinthestringentsubsetofdata,whichencompassedstudiesthatinvolvedgreatersamplingeffort,andspannedoverlongeraltitudinalextentsthantheintermediateandlaxsubsets.Ontheotherhand,allhump-shapedpatternsinthestringentsubsetcameupfromstudiesperformedatlandscapescalewithinthePalearcticandNearcticregions.Giventhelownumberofobservationsinourstringentdataset,alltheseeffectsdeservefurtherattentioninfuturestudies.Anotherconsequenceofourdatamanipulationwasincreasinguncertaintyintheidenti“cationofpatternusingtheintermediateandlaxsubsetsofdata,andalso,aftercontrollingfordifferencesinsamplesize,uncer-taintyoverestimationofthemagnitudeofSRArelationshipsincreasedwiththerelaxationofcriteriaofinclusionofdata.Theoccurrenceofnopattern(NP)wasgreaterintheintermediateandlaxsubsetsofdataratherthaninthestringentsubset,especiallyforthestatisticalmethod.Forthelaxandintermediatesubsets,thestatisticalmethodwasmoreconservativeinthedetectionofpattern,andsuggestedahigherproportionofNPratherthanthevisualmethod.ThevisualmethodandtheconsensushelpedinsortingoutNPdatasetsintorecognizableshapes;however,aconsiderableproportionofdatasetssuggestingnopatternorcontradictoryinformationremained.Thestringentsubsethadlessaverageinter-siteresolution,whichimpliesthatagreatereffectofspatialautocor-relationinthisdatasetmightcontributetodecreaseuncertaintyaboutdetectionofshape.Thereareanumberofattributesinthedesignofstudiesthatcomposedtheintermediateandlaxsubsetsthatmaycomplicatethedetectionofp

2 attern,includinglessand/orunstandardized
attern,includinglessand/orunstandardizedsamplingeffort,andincreasedinter-siteresolutionthatpromotesanincreaseinthescatteringofdata.However,aproportion()ofdatasetsinthestringentsubsetalsoshowednopattern.ThissuggeststhatthepresenceofidiosyncraticvariationintheSRArelationshipsmightberathercommoninarthropods.OurstudyshowedthattheuseofdifferentmethodstoidentifySRAshapesindeedinteractswiththequalityofbasicdatatoin”uencetherelativedistributionofpatterns.OnlythestringentsubsetofdatarevealedaconsistentorderintherelativeimportanceofdifferentSRAshapesthatwasrobusttovariationinmethodofanalysis.ToofewSRArelationshipsremainedinthestringentsubsetastoinfergeneralconclusionsontheextremelyhighlydiversearthropods.However,theconsistencyintheoutcomeinthestringentsubsetmakesreasonabletoinfertheexistenceofmultipleSRAforms,withthepredominanceofhump-shapedpatternsovermonotonicdecreasingones,alongwiththepresenceofconsiderableidiosyncraticvariation.Hadwebasedourinterpretationonthewholedatasetthiswouldhaveledtoadifferentconclusionaboutthepredominantpatternsinarthropods.WeconcludethatdecisionsfollowedtogatherthedataandthemethodweusetoinferSRArelationships(visuallyorstatistically)bothmayin”uenceourperceptionoftherelativefrequencyofpredominantshapes,andnotnecessarilythelargestdatasetisthebestformeta-analysis.J.Gurevitch,K,MergensenandJ.M.Moralesgaveususefulstatisticaladvice.A.F.SilberingandR.J.Whittakercontributedusefulbibliographies.D.J.Currieprovidedinsightfulcomments.V.WerenkrautandA.RuggieroaresupportedbyCONICET(PIP5113)andUniversidadNacionaldelComahue.ITERATUREBrown,J.H.,andM.V.Lomolino.1998.Biogeography.Secondedition.Sinauer,Sunderland,Massachusetts,USA.Burnham,K.P.,andD.R.Anderson.2002.Modelselectionandmultimodelinference.Secondedition.Springer,NewYork,NewYork,USA. January2011 R ESULTS Thetotalof109SRArelationshipstakentogether showeddifferencesintheproportionalrepresentationof differentformsbetweenthetwomethodsofanalysis, andconsensus(Fig.1a…c).Thestatisticalmethod suggestedlackofpatternin ; 40 % ofthedatasets (NP;Fig.1a).DECandL-PLhadasimilar( ; 20 % ) proportionalrepresentation,followedbyH-SH( ; 13) (Fig.1a).Thevisualmethodhalf-decreasedthepropor- tionalrepresentationofNPandL-PL,andincreased considerablytheproportionalrepresentationofH-SH andDEC(Fig.1b).TheconsensussuggestedDECwas themostabundantSRArelationship,followedbyH- SH,andL-PLbecamerarer; ; 20 % outofthetotaldata setsremainedasNP,and ; 25 % showednoconsensus (CONT;Fig.1c). F IG .1.RelativefrequencydistributionsofSRA(speciesrichness…altitude)patternsobservedinsubsetsoftheworldwide arthropoddata:(a…c)wholedataset;(d…f)stringentsubset;(g…i)intermediatesubset;and(j…l)laxsubset.Thepatternswere analyzedbystatisticalandvisualmethodsandbyconsensus.Abbreviationsare:H-SH,hump-shaped;DEC,monotonicdecreasing; L-PL,low-plateau;INC,monotonicincreasing;U-SH,U-shaped;NP,nopattern;OTH,otherpatterns;andCONT,contradictory. Numbersabovebarsaresamplesizes.Studieswithalownumberofsamplingpoints( N ¼ 5)werenotanalyzedbythestatistical method. January2011 257 NOTES patternthathasarichnesspeakatintermediatealtitudes with25 % ormorespeciesthanatthebaseortopofthe mountain(i.e.,thesocalledmid-elevationpeakby McCain2009).AL-PLpatternhad . 300mof consecutivelyhighrichnessatthemountainbaseand thereafterdecreasingspeciesrichness(seeMcCain2009 forfurtherdeta

3 ilsandotherpossibleforms).Datasets thats
ilsandotherpossibleforms).Datasets thatsuggestednoclearSRArelationshipwereassigned toNP,andotherdifferentformswereincludedinOTH. Welookedforaconsensusbetweenthevisualand statisticalmethodstoidentifythe“nalshapeofeach dataset;datasetsshowinglackofconsensuswere labeledascontradictory(CONT). Tofurtherevaluateuncertaintyoveridenti“cationof shape,wesquareroot-transformedthecoef“cientsof determination( R 2 )fromtheordinaryleastsquares (OLS)regressionstoobtaincorrelationcoef“cients( r ) (e.g.Hillebrand2004),whichweretransformedtoan effectsize( z r ,Fishers z -transformation;Hedgesand Olkin1985).Weestimatedacommonmeasureofeffect sizeforthestringent,intermediate,andlaxsubsetsof data,takingintoaccountthatthenonsystematic varianceofestimatesofeffectsizewasinversely proportionaltothesamplesizeofthegradientson whichestimateswerebased(HedgesandOlkin1985). Combinationoflinearandquadratictermsinmeta- analysisrequiresthatallthestudy-speci“cregressions havebeen“ttedwiththesamenumberofterms(K. MergensenandJ.Gurevitch, personalcommunication ). Hence,weconductedthisanalysisseparatelyforeach SRApattern(H-SH,DEC,andL-PL).Weperformed alltheanalysesusingRsoftware(RDevelopmentCore Team2009). Closeexaminationofpatternsinourwholedataset, afterconsensus,showedthat,althoughtherelative frequencyofthemostabundantpatterns(H-SH, DEC,L-PL)wasindependentoftaxonomy(permuta- tion-basedFisher-FreemanHaltontestforsmall-sample categoricaldata[FI] ¼ 20.16,df ¼ 18, P ¼ 0.19),there wasanassociationwithclimate(FI ¼ 30.87,df ¼ 24, P ¼ 0.02),andbiogeography(FI ¼ 23.03,df ¼ 12, P ¼ 0.003) (seealsoAppendixB:Fig.B1).Wetestedthese associationsinthethreesubsetsofdatatoelucidate theextenttowhichtaxonomy,climate,andbiogeogra- phymightin”uencechangesintherelativeproportions ofSRApatternsafterourdatamanipulation.These analyseswereconductedusingStatXact-6(2003). P LATE 1.PanoramicviewofatemperatemountainregioninnorthernPatagonia,showinganexampleofthekindof environmentalchangesthatoccurwithaltitude.Photocredit:V.Werenkraut. NOTES 256 Ecology,Vol.92,No.1 toin”uencetheSRApatterns(Rahbek2005).(3)Numberofsamplingpoints.Whittaker(2010)adopteda10-datapointminimumassuitabletodiscriminatebetweenlinearandunimodalforminthespeciesrichness…productivityrelationship.(4)WerecordedthepresenceofanthropogenicdisturbanceasapotentialconfoundingvariableoftheSRArelation-ship.Whittaker(2010)arguedthatthestudydesignshouldnotinvolvepotentialconfoundingvariablesofthetestedecologicalrelationship.Weassignedeachgradienttoadifferentsubsetofdataaccordingtothefollowingcriteria:(1)stringent(ofthegradientsampled,standardizedorequalsamplingeffortacrossdifferentaltitudes,and10samplingpoints);(2)intermediate(standardizedorequalsam-plingeffortalongwithoneoftwootherpossibleconditions[eithertheproportionofgradientsampledandthenumberofsamplingpointswasorthenumberofsamplingpointswas10,buttheproportionofgradientsampledwas]);and(3)lax(studiesthatinvolvedunstandardizedorunequalsamplingeffortacrossdifferentaltitudesand/orshowedevidenceofanthropogenicdisturbanceasapotentialconfoundingvariable;ifstandardizedsamplingeffortwasapplied,thentheyhad10samplingpointsandofgradientsampled).Mostofthestudiesincludedinouranalysiswere“eldstudiesthatsampledarthropodsatverylocalgrainsizesusingdifferentsamplingmethods;therewereonlyafewstudiesthatusedcollectiondatafrommuseumsordist

4 ributionalinformationfrommaps(seeAppendi
ributionalinformationfrommaps(seeAppendixA:TableA1).Afterclassi“cationofstudiesintothethreesubsets,wecon“rmedthatthestringentsubsetofdataencompassedgradientsof760mofmeanaltitudeextent(meanSD)and45mofmeaninter-siteresolution(i.e.,meandistancebetweensam-plingpoints),withagreaterproportionofstudiesatthelandscapescale(i.e.,lineardistancebetweenthetwomostextremepoints30km)ratherthanatlocalscales(i.e.,distancebetweenthetwomostextremepointskm):62vs.38,respectively.Theintermediatesubsetofdataencompassedgradientsof668mofmeanaltitudeextent,134mofmeaninter-siteresolution,andagreaterpercentageofstudiesatlocal)thanatlandscapescale(29).Thelaxsubsetofdataencompassedgradientsof808mofmeanaltitudeextent,137mofmeaninter-siteresolution,andsimilarpercentageofstudiesatland-scapeandlocalscale.Identi“cationofpatternsWeanalyzed109altituderichnessgradientsbytwomethods:(1)astandardprotocolthatallowedthestatisticaldescriptionofpattern(hereafterreferredasstatisticalmethod)and(2)visualexaminationofshape(visualmethod).Ourpurposeherewasprimarydescriptive,andweusedstandardstatisticalorvisualmethodstoaccountfortheshapeofaltitudinalrichnessgradients(e.g.,RoweandLidgard2009forasimilarStatisticalmethod.„Foreachdataset,weregresseddataofrichness()onaltitude()toevaluatethelikelihoodofthedatagivenfourdifferentmodels.Model1:asimplelinearSRArelationship(istheinterceptandistheslope)thatdescribedamonotonicdecreasing(DEC)orincreasingpattern(INC),dependingonthesignoftheslope.Model2:anonlinearSRArelationshipoftheformwhichdescribedalow-plateaupattern(L-PL;ratherconstanthighrichnessatlowaltitudesfollowedbyadecreaseinrichness)when0.Model3:oftheform,withistheintercept,andregressioncoef“cients,which,dependinguponthesigncoef“cient,describedahump-shapedpattern(H-0),orU-shapedpattern(U-SH;0).Model4:theonly-interceptmodel()thatevaluatedthelackofaltitudinalpattern(NP).ForeachdatasetassignedtoH-SH,wefurthercheckedthatthemaximumrichnessfellwithintherangeofaltitudesencompassedbythedata.ThestatisticalmethodallowedthedetectionofotherformsintheSRArelationship(e.g.,J-shapedorL-shapedpatterns)thatwemaintainedinasinglecategory(OTH).To“ndthebestexplanatorymodel,i.e.,forassign-mentofeachdatasettoadifferentpattern,weusedtheAkaikesinformationcriterioncorrectedforsmallsamples(AIC;BurnhamandAnderson2002,Diniz-Filhoetal.2008),whichallowedorderingthefourmodels“ttedtoeachdatasetfrombesttoworst.WeconsideredthemodelhavingtheminimumAICasthebestmodelsupportedbythedata.Weestimatedthesizeoftheincrementsofinformationloss()foreachmodelcomparedtotheestimatedbestmodel();modelshaving2ofthebestmodelwereconsideredtohaveconsiderablelesssupport(BurnhamandAnderson2002,Diniz-Filhoetal.2008).Modelsthathada2ofthebestmodelwereconsideredequallylikelyforaparticulardataset;inthiscase,weassignedsupporttoeachSRApatterninvolved,inequalproportions,dividing1bythetotalnumberofSRApatternssupported.Visualmethod.„Foreachdataset,weelaboratedascatterplotofthevariationofrichnessasafunctionofaltitudeforvisualidenti“cationofshape:monotonicdecreasing(DEC),monotonicincreasing(INC),hump-shaped(H-SH),U-shaped(U-SH),andlow-plateau(L-PL).Tominimizetheinherentsubjectivityofthismethod,wefollowedMcCain(2009)scriteriaforassignmentofSRArelationshipsintodifferentpatterns.Wede“nedDECandINCasthosepatternsinwhichspeciesrichness,respectively,declinedorincreasedmonotonicallywithelev

5 ation.H-SHwasaunimodal January2011 shape
ation.H-SHwasaunimodal January2011 shape(Ribeiroetal.1998).SuchmultipleformsintheSRArelationshipquestiontheuniversalityofthealtitudinaldiversitygradient.Here,wecompiledSRArelationshipsfromdifferentpartsoftheworldtotestthehypothesisthatidenti“cationofSRApatternsdependsuponthequalityoforiginalstudiesincludedinmeta-analysisandthemethodusedtoidentifyshape.Wetestedthepredictionsthat(1)uncertaintyoveridenti“-cationofshapeincreasesasthecriteriausedtoincludeastudyintotheanalysisbecomesmorelax,and(2)studiesthatconformtostringentselectioncriteriashowrobustaltitudinalrichnesspatternswithrespecttovariationinmethodusedtoidentifyshape.Theselectionofpublishedstudiesusedtocreatedifferentsubsetsofdatahasbeenusefultoexaminetheeffectsofscale,sampling,andarealstandardizationonSRApatterns(Rahbek2005).OurstudywillshowthattheuseofdifferentmethodstoidentifySRAshapesinteractswiththequalityofbasicdatatoin”uencetherelativedistributionofpatterns.Acaveatisneededabouttheapproachadoptedinthepresentstudy,whichuseddatafrommountainsindifferentpartsoftheworldtocomparetherelativefrequencyofSRApatterns,butwithoutdisentanglingtheroleofdifferentenvironmentaldriversonshape.Datacollectedalongaltitudinalgradientsre”ectthecombinedeffectofgeneralclimaticandgeophysicalchangeswithaltitudeandregionalphenomena(e.g.,historyandisolationofmountainbiota;seePlate1);hence,ithasbeensuggestedthatthelackofastandardmountaincomplicatestheinterpretationofdiscrepancybetween“ndingsfromdifferentaltitudinalgradientsbydifferentresearchersifonlyaltitudeistakenintoaccountasexplanatoryvariable(Korner2007).None-theless,throughoutthepresentstudyaltitudewasnotconsideredthedrivingfactorforspeciesrichness,butjustthetemplateforourmeta-analysis.Ourpurposeherewastoevaluatetheextenttowhichdecisionstakenbyresearchersatthetimeofdatacompilationandassignmentofgradientstodifferentshapesmaycomplicatedetectionofrobustpatternsinmeta-analysis;con“denceintheidenti“cationofshapeisneededbeforeanyattempttoidentifyunderlyingdriversofSRArelationshipsismade.SelectionofdataWecarriedoutaliteraturesearchthroughZoologicalRecordandScopus(availableonlineWeusedaltitud*orelevation*richnessordiversityaskeywords.Asterisksareusedtosubstituteforanyothercharacterorcharactersinthesearchstring.Forinstance,searchtermssuchasaltitud*wouldreturnanywordthatbeginswithaltitud,suchasaltitudeandaltitudinal.Wesearchedforpaperswithanyofthe“rsttwowords[altitud*orelevation*]anyofthesecondtwowords[richnessordiversity].Additionalpaperswereobtainedbyexaminingthereferencesoforiginalarticles.Weselectedallpapersthatreporteddataontherichnessofarthropodspeciesforatleast“vedifferentelevations.Toreducetheso-called“ledrawerprob-lem(Rosenthal1979,Csadaetal.1996),weselectedstudiesthatwereoriginallydesignedtotesttheSRArelationshipalongwithothersthatwerenotspeci“callydesignedforthispurpose.Weincludedgradientsprovidedtheyreporteddataonrawspeciesrichness(neitherrare“ednortransformed)foreachaltitude.Forafewstudieswheredataonrichnesswerenotavailable,weestimatedlocalrichnessateachaltitudebasedoncon“rmed(i.e.,notinterpolated)presenceofspecies.Toovercometheproblemofpseudo-replication,weselectedpapersfromthesameauthor/sprovidedtheyworkedwithdifferentdatasets,andweanalyzedrichnessdatafromdifferentyearsinthesamelocationonlyiftheywerefromdifferentsamplingpoints.Whenastudycombineddataonlocalric

6 hnessestimationsfromseveralmountainstode
hnessestimationsfromseveralmountainstodescribearegionalaltitude…richnessrelationship,weselecteddataonthelocalaltitudinalgradientsanddiscardedvaluesatregionalscale.Whenastudyreportedrichness…altitudedataofsubordinatetaxa(e.g.,subfamilies)withinahighertaxonomiclevel(e.g.,family),weseparatelyanalyzedthedataoneachsubordinatetaxonanddiscardedthevaluesreportedathighertaxonomiclevel.Ourselectionprocessresultedinaworkinglistof75studieswithaltitude…richnessdataon109altitudinalgradients(seeAppendixA).DataonlypublishedingraphicformweredigitizedusingDataThiefII1.1.0(Tummers2006;availableonlineOurlastsearchwasinDecember2007,andpaperspublishedsincethenwerenotincludedinourstudy.CriteriausedtoclassifygradientsintodifferentsubsetsofdataWeclassi“edeachaltitudinalgradientwithrespecttofourvariablesthatallowedtheirsubsequentinclusionintodifferentsubsetsofdata(seeAppendixA:TableA1).Foreachstudy,werecordedthreefactorsinvolvingsamplingdesign(points1…3)andoneinvolvingtheimpactsofhumanpresence(point4):(1)Proportionofgradientsampled.McCain(2009)proposedthatanalysisofSRArelationshipsshouldbebasedonstudiesthatcoveratleast70ofthetotalmountainrange.(2)Samplingstandardization.Werecordedthepresenceofstandardizedorequalsam-plingeffortacrossdifferentaltitudes,whichareknownhttp://thomsonreuters.com/products_services/science/science_products/a-z/zoological_recordhttp://www.scopus.com/home.urlhttp://datathief.org/ Ecology,Vol.92,No.1 Csada,R.,P.James,andR.Espie.1996.The“ledrawerproblemofnon-signi“cantresults:doesitapplytobiologicalresearch?Oikos76:591…593.Diniz-Filho,J.A.F.,T.F.L.V.B.Rangel,andL.M.Bini.2008.Modelselectionandinformationtheoryingeograph-icalecology.GlobalEcologyandBiogeography17:479…488.Grif“ths,D.1998.Samplingeffort,regressionmethod,andtheshapeandslopeofsize-abundancerelations.JournalofAnimalEcology67:795…804.Hedges,L.V.,andI.Olkin.1985.Statisticalmethodsformeta-analysis.AcademicPress,NewYork,NewYork,USA.Hillebrand,H.2004.Onthegeneralityofthelatitudinaldiversitygradient.TheAmericanNaturalist163:192…211.Jankowski,T.,andG.A.Weyhenmeyer.2006.Theroleofspatialscaleandareaindeterminingrichness-altitudegradientsinSwedishlakephytoplanktoncommunities.Oikos115:433…442.Janzen,D.H.,M.Ataroff,M.Farinas,S.Reyes,N.Rincon,A.Soler,P.Soriano,andM.Vera.1976.ChangesinthearthropodcommunityalonganelevationaltransectintheVenezuelanAndes.Biotropica8:193…203.rner,C.2007.Theuseofaltitudeinecologicalresearch.TrendsinEcologyandEvolution22:569…574.Lawton,J.H.,M.MacGarvin,andP.A.Heads.1987.EffectsofaltitudeontheabundanceandspeciesrichnessofinsectherbivoresonBracken.JournalofAnimalEcology56:147…Lods-Crozet,B.,E.Castella,D.Cambin,C.Ilg,S.Knispel,andH.Mayor-Simeant.2001.MacroinvertebratecommunitystructureinrelationtoenvironmentalvariablesinaSwissglacialstream.FreshwaterBiology46:1641…1661.Lyons,S.K.,andM.R.Willig.1999.Ahemisphericassessmentofscale-dependenceinlatitudinalgradientsofspeciesrichness.Ecology80:2483…2491.Lyons,S.K.,andM.R.Willig.2002.Speciesrichness,latitude,andscale-sensitivity.Ecology83:47…58.MacArthur,R.H.1972.Geographicalecology.HarperandRowe,NewYork,NewYork,USA.McCain,C.M.2007.Couldtemperatureandwateravailabilitydriveelevationalspeciesrichnesspatterns?Aglobalcasestudyforbats.GlobalEcologyandBiogeography16:1…13.McCain,C.M.2009.Globalanalysisofbirdelevationaldiversity.GlobalEcologyandBiogeography18

7 :346…360.s-Bravo,D.,M.B.Araujo,T.S.Romda
:346…360.s-Bravo,D.,M.B.Araujo,T.S.Romdal,andC.Rahbek.2008.Scaleeffectsandhumanimpactontheelevationalspeciesrichnessgradients.Nature453:216…219.RDevelopmentCoreTeam.2009.R:alanguageandenvironmentforstatisticalcomputing.RFoundationforStatisticalComputing,Vienna,Austria.http://www.Rahbek,C.1995.Theelevationalgradientofspeciesrichness:auniformpattern?Ecography18:200…205.Rahbek,C.1997.Therelationshipamongarea,elevation,andregionalspeciesrichnessinneotropicalbirds.TheAmericanNaturalist149:875…902.Rahbek,C.2005.Therolofspatialscaleandtheperceptionoflarge-scalespecies-richnesspatterns.EcologyLetters8:224…Rahbek,C.,andG.R.Graves.2000.Detectionofmacro-ecologicalpatternsinSouthAmericanhummingbirdsisaffectedbyspatialscale.ProceedingsoftheRoyalSocietyofLondonB267:2259…2265.Ribeiro,S.P.,M.A.A.Carneiro,andG.W.Fernandes.1998.Free-feedinginsectherbivoresalongenvironmentalgradientsinSerradoCipo:basisforamanagementplan.JournalofInsectConservation2:107…118.Rosenthal,R.1979.The“ledrawerproblemandtolerancefornullresults.PsychologicalBulletin86:638…641.Rowe,R.J.,andS.Lidgard.2009.Elevationalgradientsandspeciesrichness:domethodschangepatternperception?GlobalEcologyandBiogeography18:163…177.Sanders,N.J.,R.R.Dunn,M.C.Fitzpatrick,C.E.Carlton,M.R.Pogue,C.R.Parker,andT.R.Simons.2009.Adiversityofelevationaldiversitygradients.Pages75…87rnerandE.Spehn,editors.Dataminingforglobaltrendsinmountainbiodiversity.CRCPress,BocaRaton,Florida,Sanders,N.J.,J.Moss,andD.Wagner.2003.Patternsofantspeciesrichnessalongelevationalgradientsinanaridecosystem.GlobalEcologyandBiogeography12:93…102.StatXact-6.2003.Astatisticalpackageforexactnonparametricinference.CytelSoftwareCorporation,Cambridge,Massa-chusetts,USA.Turner,B.D.,andE.Broadhead.1974.ThediversityanddistributionofpsocidpopulationsonMangiferaindicaL.inJamaicaandtheirrelationshiptoaltitudeandmicro-epiphytediversity.JournalofAnimalEcology43:173…190.Whittaker,R.J.2010.Meta-analysisandmega-mistakes:callingtimeonmeta-analysisofthespeciesrichness…productivityrelationship.Ecology91:2522…2533.Whittaker,R.J.,andE.Heegaard.2003.Whatistheobservedrelationshipbetweenspeciesrichnessandproductivity?Ecology84:3384…3390.Whittaker,R.J.,K.J.Willis,andR.Field.2001.Scaleandspeciesrichness:towardsageneral,hierarchicaltheoryofspeciesdiversity.JournalofBiogeography28:453…470.APPENDIXADetailsofthepapersusedasbasicdata(EcologicalArchivesE092-021-A1).APPENDIXBRelativefrequenciesdistributionsofSRArelationshipsobservedindifferenttaxaandindifferentclimaticandbiogeographicregions(EcologicalArchivesE092-021-A2). Ecology,Vol.92,No.1 ThestringentcriteriaofinclusionofSRAdatacame upwithasubsetof21datasetsthatshowedaconsistent orderintherelativeimportanceofthemostabundant SRApatternsthroughoutbothmethodsofanalysisand consensus(HS-H . DEC . L-PL;Fig.1d…f).The percentagerepresentationofH-SHratherincreased,and L-PLdecreasedwiththevisualmethodandconsensus, comparedtothestatisticalmethod(Fig.1d…f).The percentagerepresentationofNP,andmoreoverof CONT,waslowerthaninthewholedataset(compare Fig.1c,f). RelaxingtheselectionofSRAdata,cameupwithtwo datasubsetsof42(intermediatesubset)and46(lax subset)SRArelationships.Therelativefrequency distributionofdifferentSRApatternsinbothsubsets largelyfollowedtheobservedinthewholedatasetbyall methodsofanalysis(compareFig.1a…candg…l).The statisticalmethodshowedthe

8 highestpercentageofNP (Fig.1j,k).Thevisu
highestpercentageofNP (Fig.1j,k).Thevisualmethodsomewhatdecreasedthe percentageofL-PLandNP,whichincreasedthe percentageofH-SHandofDEC(Fig.1h,k).The consensuscon“rmedthepredominanceofDEC,al- thoughtherewasahighpercentageofNPandCONT (Fig.1l).INCandU-SHpatternswererarethroughout (Fig.1j…l). Aftercontrollingfordifferencesinsamplesize,we furthercon“rmedthatrelaxingtheselectionofSRA dataincreaseduncertaintyintheestimationofthe magnitudeofSRArelationships(Fig.2). Therewasnoassociationofshapewithtaxonomyor climateafterourdatamanipulation(Table1,Appendix B:Figs.B2andB3),butasigni“cantbiogeographical relationshipwasevidentinthestringentsubset(Table 1),whichsuggestedthatH-SHpatternswererecorded onlyintheNearcticandPalearticregions,whereasDEC weremorefrequentintheNeotropics(AppendixB:Fig. B4). D ISCUSSION OurmanipulationofSRArelationshipsintodifferent subsetsofdatashowedthatthequalityofbasicdata selectedformeta-analysisiscrucialtoreliableidentify shape(seeWhittaker2010fordiscussion).Wecon“rmed thetwopredictionsproposedattheoutsetofthepresent study.Ingeneral,uncertaintyoveridenti“cationof shapeincreasedasthecriteriaofinclusionofstudiesinto theanalysisbecamemorelax;studiesthatconformedto stringentselectioncriteriashowedrobustnessinthe SRApatternstovariationinmethodusedtoidentify shape.Rahbek(2005)demonstratedthatdecisions concerningtheanalyticaldesignofindividualstudies cancompletelyturnaroundthestatisticaloutcome relatedtotheshapeoftheSRApattern(butseeRowe andLidgard2009).Ourstudyshowedhowtheseeffects couldalsointeractwithtwomethods(statisticaland visual)usedtoidentifyshapetoaffecttheoverall relativefrequencydistributionsofSRApatterns. ThetotalSRArelationshipstakentogethersuggested thepredominanceofmonotonicdecreasingpatterns afterconsensus.However,theapplicationofstringent selectioncriteriacon“rmedthepredominanceofhump- shapedpatternsovermonotonicdecreasingones.In general,therelativefrequencyofpatternsinthewhole datasetparalleledthosefoundintheintermediateand laxsubsets,whichtakentogetherrepresented . 80 % of theSRArelationshipsinourstudy.Changesinthe proportionalrepresentationofshapesafterdatamanip- ulationwerenotassociatedwithclimateandtaxonomy, althoughwefoundanassociationwithbiogeographyin thestringentsubset.Thisassociationsuggesteda F IG .2.Effectofrelaxingtheselectioncriteriaofstudies, fromstringent(triangles),tointermediate(circles),andlax (squares),overuncertainty(shownas95 % con“denceintervals) intheestimationofacommoneffectsize( z r ,Fishers z - transformation)forH-SH(hump-shaped),DEC(monotonic decreasing),andL-PL(low-plateau)patterns. T ABLE 1.Testsofassociationbetweentherelativedistributionoffrequenciesofthethreemostabundantpatterns(hump-shaped, monotonicdecreasing,andlow-plateau)ofarthropoddistributionafterconsensusandtaxonomy,climate,andbiogeography. Testofassociation StringentIntermediateLax FIdf P FIdf P FIdf P Taxa 3 SRApattern13.648100.11711.086120.82614.080140.706 Climaticregion 3 SRApattern15.425120.17915.534140.15714.333160.987 Biogeographicregion 3 SRApattern13.81060.0039.35680.27111.346120.818 Notes: Abbreviationsare:FI,permutation-basedFisher-Freeman-Haltonstatistic;df,degreesoffreedom; P ,probabilitylevel; SRA,speciesrichness…altituderelationship.See Methods fordescriptionsofthestringent,intermediate,andlaxselectioncriteria. NOTES 258 Ecology,Vol.92,N

Related Contents


Next Show more