/
Changesintheroot-associatedfungalcommunitiesalong Changesintheroot-associatedfungalcommunitiesalong

Changesintheroot-associatedfungalcommunitiesalong - PDF document

min-jolicoeur
min-jolicoeur . @min-jolicoeur
Follow
408 views
Uploaded On 2016-10-06

Changesintheroot-associatedfungalcommunitiesalong - PPT Presentation

aprimarysuccessiongradientanalysedby454 pyrosequencing RAKELBLAALIDTORCARLSENSURENDRAKUMARRUNEHALVORSEN ID: 472058

aprimarysuccessiongradientanalysedby454 pyrosequencing RAKELBLAALID *TORCARLSEN *SURENDRAKUMAR *RUNEHALVORSEN

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Changesintheroot-associatedfungalcommuni..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Changesintheroot-associatedfungalcommunitiesalong aprimarysuccessiongradientanalysedby454 pyrosequencing RAKELBLAALID,*TORCARLSEN,*SURENDRAKUMAR,*RUNEHALVORSEN,† KARLINNEUGLAND,‡GIOVANNIFONTANA§andHA  VARDKAUSERUD* *MicrobialEvolutionResearchGroup(MERG),DepartmentofBiology,UniversityofOslo,POBox1066Blindern,N-0316 Oslo,Norway, NaturalHistoryMuseum,UniversityofOslo,Oslo,Norway, ‡ MarineBiology,DepartmentofBiology, UniversityofOslo,POBox1066Blindern,N-0316Oslo,Norway,§EcologyGroup,DepartmentofBiology,Universityof Bologna,ViaS.Alberto163,I-48123Ravenna,Italy Abstract Weinvestigatedchangesintheroot-associatedfungalcommunitiesassociatedwiththe ectomycorrhizalherb Bistortavivipara ampliconsequencing.Ourmainobjectivewastoassessthedegreeofvariationinfungal richnessandcommunitycompositionasvegetationcoverincreasesalongthechronose- quence.Sixtyrootsystemsof B.vivipara weresampledinvegetationzonesdelimitedby datedmorainesinfrontofaretreatingglacierinNorway.WeextractedDNAfromrinsed rootsystems,amplifiedtheITS1regionusingfungal-specificprimersandanalysedthe patchinessindistributionoffungalOTUsacrossrootsystems,indicatingthatstochastic processestoalargeextentstructurethefungalcommunities.However,timesince deglaciationhadimpactonthefungalcommunitystructure,asasystematicshiftinthe communitycompositionwasobservedalongthechronosequence.Ectomycorrhizal basidiomyceteswerethedominantfungiintherootsof B.vivipara, whenitcomesto  vardKauserud, Fax:+4722856339;E-mails:rakel.blaalid@bio.uio.noand haavarka@bio.uio.no  2011BlackwellPublishingLtd MolecularEcology(2012) 21 ,1897–1908doi:10.1111/j.1365-294X.2011.05214.x (Nesje&Dahl1991).Althoughcriticalremarkshavebeenmadeontheuseofchronosequenceasasubstitutefortime(Johnson&Miyanishi2008;Walkeretal.thestudybyNesje&Dahl(1991)indicatesthatthestudyareahasfollowedthesametrajectory.Theridgesaretheresultofglacierretreatsince1750,whichisknownasthepeakof‘thelittleiceage’.Thisenabledustoindirectlystudyfungalcolonizationovera250-yeartimespan.Theglacierforelandwasdividedintofourzonesbasedonthedatedmoraines(Fig.1).Weestablishedthreeparalleltransectsintheglacierfore-landacrossthedatedmorainesfromtheglacierfore-front(zone1)tothefullyestablishedalpinevegetationoutsidethe1750moraine(zone4).Thedeglaciationofzone4mighthavehappenedlongbeforethelittleiceage,becausethemorainewasdepositedwhenthegla-cierreacheditsmaximumextent.Hence,zone4canprobablybeconsideredasrepresentingtheclimaxvege-tationinthearea.Alongeachtransect,wesampledveplants(includingtheirrootsystemsembeddedinsoil)atrandomwithineachzone,totallingto60plants.SoilwassampledapproximatelyonemetreawayfromeachsampledplantfordeterminationofpHandorganicsoilcontent(measuredaslossonignition;TableS1,Sup-portinginformation).Morphometricdata,suchasshootheightandrootsize,wereobtainedfromeachsampledplant(TableS1,Supportinginformation).TopreventdegradationoffungalDNAwithintheplantrootsbeforeDNAextrac-tion,plantswerestoredat4Candtreatedwithin36haftersampling.Werstrinsedtheplantrootsystemsintapwatertoremovevisiblesoilandplantdebrisandremovedrootsnotattachedtotheplantrhizome.Subse-quently,theplantrootswererinsedthoroughlyindis-tilledautoclavedwateronetimeforatleast5min.AllrootswerethencutoffandtransferredtoEppendorftubescontainingcetyltrimethylammoniumbromide(CTAB)lysisbufferforDNAextraction.FreshrootweightswereobtainedbyweighingtheEppendorftubesbeforeandafteraddingtherootsystems.EntirerootsystemswerestoredinCTABbufferat–20CuntilDNAextraction.MolecularanalysesWeextractedtheDNAfromtheentireplantrootsys-temsusingCTABextraction(Murray&Thompson1980;Gardes&Bruns1993).Sampleswerepreparedfor454pyrosequencingbyperformingnestedPCRampli-cationusingthefungal-specicprimersITS1FandITS4etal.1990;Gardes&Bruns1993)intherststepandfusionprimersincludingITS5andITS2(Whiteetal.1990)inthenestedstep.Fusionprimerswerecon-structedbyaddingvedifferent6bpuniquetagsand454pyrosequencingadaptorsAandBtobothITS5andITS2,respectively.Tagswereatleast3bpdifferentfromeachotherinbothdirections.PCRwasperformedin20Lreactionvolumescontaining2LtemplateDNAand18Lreactionmix.FinalconcentrationsinthePCRwere0.16mdNTPmix,0.2ofeachprimerand0.4unitsFinnzymesPhusionpolymerase.TheamplicationprogrammeforbothstepsofthenestedPCRwasasfollows:30sat98C,followedby30cyclesof10sat98C,20sat55C,20sat72Candanalextensionstepat72Cfor7minbeforestorageat4PCRproductswerecleanedwithWizardSVGelandPCRClean-UpSystem(Promega,Madison,WI,USA),quantiedusingabioanalyzer(Algilent2100)andpooledinto12equimolarampliconlibraries.Notably,samplesfromdifferentzoneswereincludedinthedif-ferentlibraries.GSFLXsequencingofthetaggedampli-conswasperformedattheUltra-highThroughputSequencingPlatformattheUniversityofOslousing12lanesofone454plate.WeincludedtwonegativecontrolsduringtheentireanalysesfromtheDNAextractionstep.TherawdatahavebeenaccessionedintheEuropeanNucleotideArchive,accessionno.BioinformaticsandstatisticalanalysesWeanalysedtherawdata,including119054reads,etal.anewlydeveloped Transect 1Transect 2Zone1Zone2Zone3Zone4Transect 3 glacier Fig.1Schematicillustrationoftheglacierforelandinfrontofisenglacierdisplayingthethreetransectsalongthechrono-sequence.Themoraineridgesindicatetheboundariesbetweenthefouridentiedzones.Alongeachtransect,vereplicaterootsystemswerecollectedfromeachzone,yieldingatotalof60samples.PRIMARYSUCCESSIONOFROOT-ASSOCIATEDFUNGI2011BlackwellPublishingLtd 60rootsystems.Usinga98.5similaritycut-offforclustering,thereadsgroupedinto1663OTUsofwhichahighnumber(1193)weresingletons.However,the1193singletonsonlymadeup1.6ofthetotalnumberofreads.Clusteringusing97sequenceidentityreturnedalsoahighnumberofsingletons�(50).Afterallsingletonshadbeendiscarded,470OTUsremainedandwereusedinthefurtheranalyses.AfewOTUsaccountedforalargefractionofreads.ThetenmostcommonOTUsmadeup58ofthereads,whilemanyOTUswererepresentedbyfewreads(Fig.2a).Thefre-quencyofthe470OTUsacrossthe60rootsystemsvar-iedbetween1and47(Fig.2b).Notably,wefoundnosignicantrelationshipbetweenthenumberofOTUsandthenumberofreadsperrootsystem(�0.05).TaxonomiccoverageAllsequenceshadbestmatchestofungi,indicat-ingthattheimplementedprimerpairswerehighlyfun-galspecic.Seventy-onepercentageofthe470OTUsbelongedtoBasidiomycotaand19toAscomycota(Fig.3).ThenumberofOTUsdetectedfromZygomy-cota,ChytridiomycotaandGlomeromycotaconstitutedeach.Avastmajority()ofthereadsrepre-sentedBasidiomycota,asdidalsomostoftheabundantOTUs,bothinnumbersofsequencesandoccurrencesacrossrootsystems.Agaricales,ThelephoralesandSeb-acinaleswerethemostfrequentordersencompassing,17and9oftheOTUs,respectively.Theabun-danceofthetwelvemostcommonfungalgroupsatafamilylevelinthefourzonesisshowninFig.S2(Supportinginformation).Mostgroupsweredetectedinallzones,butespecially,werefarmoreabundantinzone1comparedtotheotherzones.Ontheotherhand,werealmostabsentinzone1.Atotalof28OTUswerewidespreadbydenitionofbeingpresentinmorethan10rootsys-tems(Table1).ThemostwidespreadOTU,detectedin47of60rootsystemsandaccountingforatotalof27776reads,had95pairwisesimilaritytoaGenBankaccession(AY669673)ofCortinariusrubricosus.ThesecondmostwidespreadOTU,detectedin32of60rootsystemsandrepresentedby4601reads,showed96pairwisesimilaritytoanaccessionofHebelomamesophaeum Number of OTUsNumber of sequencesNumber of occurrences 100–11473221191716141312119876543211100 1007550 Fig.2(a)Distributionofnumberofreadswithinthe1663identiedoperationaltaxonomicunits(OTUs),singletonsincluded.(b)Numberofoccurrencesofthe470OTUsacrossthe60rootsystems. PezizalesMitosporicascomycotaOtherascomycetesAgaricalesThelephoralesSebacinalesRussulalesCantharellalesOtherbasidiomycetesGlomeromycotaZygomycotaFungiincertaesedisChytridiomycota Chaetothyriales Fig.3Taxonomicdistributionofthe470operationaltaxo-nomicunitsmainlyattheorderlevel,accordingtothetopBLASThitsagainsttheNCBIdatabase.PRIMARYSUCCESSIONOFROOT-ASSOCIATEDFUNGI2011BlackwellPublishingLtd (FJ845404).AlthoughmostECMfungiweredetected,someputativerootpathogensappeared.Forexample,onefrequentlyoccurringOTUdetectedinallzoneswithtaxonomicafnityto(Table1)couldrepre-sentasystemicpathogen.FungaldiversityalongtheprimarysuccessiongradientThenumberofOTUsincreasedsignicantlyalongtheprimarysuccessiongradientfrom163inzone1closesttotheglacierto179,205and213inzones2,3and4(chi-squaretest,=0.038),respectively.Speciesaccu-mulationcurveswerecalculatedforthefourvegetationzones,separately(datanotshown)andcombined(Fig.4).Whenthenumberofanalysedrootsystemswasextrapolatedto1000,weestimated596OTUstoappearinzone4,followedby557,489and452inzones3,2and1,respectively.RegardingaveragenumberofobservedOTUsperrootsystem,nosignicantdiffer-encewasobservedacrossthezones(=0.36).VariationinthenumberofOTUsperrootsystemswasnotexplainedeitherbyzone,pH,organicsoilcontentorrootsize(GLM,�0.05).ChangesincommunitystructurealongtheprimarysuccessiongradientOnaverage,2.8OTUsweresharedbetweenpairsofrootsystems(TableS2,Supportinginformation).How-ever,therewasasignicantdifferenceinaveragenum-berofsharedOTUsbetweenpairsofrootsystemswithinandacrossvegetationzones(0.0001).Withinthefourzones,theaveragenumberofOTUssharedbetweenpairsofrootsystemswas3.1–4.2,whilethecorrespondingnumberbetweenpairsindifferentzoneswas2.0–3.8.InspiteofthegenerallowoverlapinOTUsbetweenrootsystems,theGNMDSandDCAordinationanalyses Table1The28mostfrequentlydetectedoperationaltaxonomicunitsintermofnumberofrootsystems,theirtaxonomicafliationanddistributionTophitTaxonomicgroupCov.*Sim.Zone1Zone2Zone3Zone4CortinariusrubricosusAgaricales(B)989578.346.786.7100.080.0HebelomamesophaeumAgaricales(B)1009653.340.053.353.366.7sp.Mitosp.Asco.(A)959835.026.753.340.020.0Zygomycota(Z)939831.733.333.320.040.0SpadicoidesbinaSordariomycetes(A)998028.333.326.733.320.0HydnumrufescensChantarellales(B)279426.720.020.06.760.0LactiuusgriseusRussulales(B)1009323.326.720.013.333.3TilletiabarclayanaTilletiales(B)2110023.326.76.720.040.0InocybeegenulaAgaricales(B)1009423.320.013.313.346.7Sebacinaceaesp.Sebacinales(B)998723.320.026.733.313.3Thelephoraceaesp.Thelephorales(B)1009623.320.033.320.020.0TetracladiumfurcatumMitosp.Asco.959823.313.326.720.033.3GeoporacervinaPezizales(A)839121.713.326.740.06.7LaccariamontanaAgaricales(B)1009621.720.033.36.726.7RussulapascuaRussulales(B)999921.720.06.733.326.7XenostigminazilleriCapnodiales(A)949321.720.046.713.36.7sp.Mucoromycotina909821.720.020.020.026.7TomentellabadiaThelephorales(B)999420.026.76.713.333.3TomentellaatromentariaThelephorales(B)999620.026.720.026.76.7InocybecurvipesAgaricales(B)969020.026.713.320.020.0PhialocephalafortiniiHelotiales(A)1009820.013.326.726.713.3LeohumicolaminimaLeotiomycetes(A)959420.033.333.36.76.7TyphulavariabilisAgaricales(B)1009420.013.333.320.013.3InocybeegenulaAgaricales(B)1009218.320.013.313.326.7MycenaamabilissimaAgaricales(B)359218.313.320.013.326.7ThelephoraamericanaThelephorales(B)1009618.313.36.733.320.0CladophialophoraminutissimaChaetothyriales(A)959618.36.713.313.340.0Cortinariussp.Agaricales(B)1009916.713.313.326.713.3*SequencecoverageinBLASTnsearch.SequencesimilarityinBLASTnsearch.Percentoccurrenceacrossthe60rootsystems.Percentoccurrenceacrossthe15rootsystemsineachvegetationzone.R.BLAALIDETAL.2011BlackwellPublishingLtd ingeneral,afarhighernumberofreadsperOTUcom-paredtotheascomycetesthatmightindicatethatbasid-iomycetesaredominantintermsofmycelialbiomassaswell.Thisspeculationrestsontheassumptionthatthereisacorrelationbetweennumbersofsequencereadsandtheinitialmycelialbiomasspresentinthesamples.Althoughthisrelationshipwasnottested,weconsidersuchacorrelationplausible,althoughtaxo-nomicbiasescertainlyareintroducedduringextraction,PCRand454sequencing(Feinsteinetal.2009;Belle-etal.2010;Tedersooetal.2010).AlownumberofOTUshadbestBLASTnmatchagainstZygomycota,GlomeromycotaandChytridiomycota,suggestingthatnon-dikaryafungiarepresentinlowfrequenciesintherootsystems.Freemanetal.(2009)founddominanceofchytridsinthefungalcommunitiesinhighelevatedandrecentlyde-glaciatedsoils,incontrasttothetaxo-nomicdistributionobservedinourstudy.However,etal.(2009)obtainedtheirsamplesfrompuresoil,wherechytridsmaybemoredominant.Intheory,someofthechytridsdetectedinourstudycouldbelooselyassociatedwiththeroots.TheemployedITSprimersmightalsomismatchagainstchytridfungilead-ingtoalowerrepresentationofthesefungi.AsjudgedbytheBLASTnmatches,mostofthefre-quentOTUs,intermsofbothnumberofsequencesandnumberofoccurrencesinthe60rootsystems,hadafn-itywithwell-knownectomycorrhizalfungiintheordersAgaricales,Thelephorales,SebacinalesandRussulales.TheseECMgroupshavealsoearlierbeendemonstratedtobeassociatedwithB.vivipara(e.g.Sønstebø2002;etal.2008).Amongtheascomycetes,wedetectedsomewidespreadOTUswithputativeectomy-corrhizalecology,suchas.Fur-thermore,OTUswithafnitytowidelydistributeddarkseptateendophyteslikePhialocephalafortiniidetectedfrequently.Thesefungimightalsohaveamycorrhizalandbenecialfunctionforthehostplantinthesehabitats(Jumpponen2001;Newshametal.Newsham2011).Notably,OTUswithafnitytoaquatichyphomycetes(Ingoldianfungi)likeArticulosporatetracladialadiumfurcatumwerewidespread,appearingin21and14rootsystems,respectively.Ithasearlierbeenshownthataquatichyphomycetesmighthaveaplantendo-phyticstageduringtheirlifecycle(Sridhar&Ba1992).Hence,theremightbeapossibilitythattheseIn-goldianfungihaveanendophyticstageintheB.vivi-ChangesindiversityMoststudiesondiversitypatternsalongprimarysuc-cessiongradientshavefocusedonabovegroundplantspeciesrichness(Matthews1978;Vetaas1994;Freynotetal.1998;Rafetal.2006)oranimals(Kaufmann2001;Hodkinsonetal.2004;Hagvar2010).Inseveralofthesestudies,thehighestspeciesrichnesshasbeenobservedatintermediatestagesofsuccession(Mat-thews1978;Vetaas1994;Rafetal.2006).Ageneraltrendobservedinthesestudiesisthecolonizationofnewlyexposedareasbyafewopportunisticspecies,fol-lowedbyanincreaseinspeciesrichnessassociatedwithanincreaseinaccumulatedresources(biomass),numberoftrophiclevelsandintensityofbioticinteractions.Atlaterstages,whentheecosystemapproachesamaturestage,strongcompetitorsmaydominate,resultinginadeclineinspeciesrichness.Therichnessofroot-associ-atedfungi,asobservedinthisstudy,doesnotfollowthispattern.Fungalrichnessisrelativelyhighalreadyintherecentlyexposedareas,followedbyaweak,butsignicantincreaseintotalrichnesstowardsmoreestablishedecosystems.Thisresultissimilartothend-ingsofSchuetal.(2010)wheretheyobservedthatdiversityofsoil-inhabitingbacteriainanarcticglacierforefrontwasgenerallyhighandincreasedsignicantlyalongthegradient.Competitionmightbealessimpor-tantfactorforlimitingtherichnessofmicro-organismsinaclimaxsystemcomparedtomacro-organisms,asmorenichescouldbeavailable.Ourresultsdonotsup-portearlierproposedmodelsoffungalprimarysucces-sion(Jumpponenetal.2002;Naraetal.2003a,b),whichpostulatethatonlyfewruderalandr-selectedspeciesareabletocolonizerootsystemsinthenewlyexposedareasbysporesandthatwithtime,theyarejoinedandsometimesreplacedbyadditional,morecompetitivespecies.However,thesestudieswereconductedusingfruitbodysurveys,whichgivelimitedinformationabouttheextantfungaldiversity.Moreover,ourresultssuggestthatthespeciesrichnesspatternsoffungalcom-munitiesaremoresimilartothoseofbacteria,andprobablyothermicrobes,comparedtothoseofthemac-robiota,i.e.plantsandanimals.CommunitystructureAhighpatchinessinthedistributionoffungalOTUswasobserved,whichcouldindicatethatthecoloniza-tionprocesshasastrongstochasticelement.Highpatchinessseemstobeacommonfeatureinmostinves-tigatedfungalcommunities(Horton&Bruns2001;etal.2002;Lilleskovetal.2004;Stuken-brock&Rosendahl2005;Tayloretal.2010).However,inseveralofthesestudies,itisarguedthatthepatchi-nessmaybeduetounder-sampling(Lilleskovetal.2004;Tayloretal.2010).Ourresults,includingahighnumberofsequencesperrootsystem,aswellasafairlyhighnumberofsamples(60),indicatethatthispatternR.BLAALIDETAL.2011BlackwellPublishingLtd EriksenM,BjurekeKE,DhillionSS(2002)MycorrhizalplantsoftraditionallymanagedborealgrasslandsinNorway.Mycorrhiza,117–123.FeinsteinLM,SulWJ,BlackwoodCB(2009)AssessmentofbiasassociatedwithincompleteextractionofmicrobialDNAfromsoil.AppliedandEnvironmentalMicrobiology,5428–FiererN,NemergutD,KnightR,CraineJM(2010)Changesthroughtime:integratingmicroorganismsintothestudyofsuccession.ResearchinMicrobiology,635–642.FreemanKR,MartinAP,KarkiDetal.(2009)Evidencethatchytridsdominatefungalcommunitiesinhigh-elevationProceedingsoftheNationalAcademyofSciences18315–18320.FreynotY,GloaguenJC,CannvacciuoloM,BellidoA(1998)PrimarysuccessiononglacierforelandsinthesubantarcticKerguelenIslands.JournalofVegetationScience,75–84.GardesM,BrunsTD(1993)ITSprimerswithenhancedspecicityforbasidiomycetes—applicationtotheidenticationofmycorrhizaeandrusts.MolecularEcology113–118.gvarS(2010)PrimarysuccessionofSpringtales(Collembola)inaNorwegianGlacierForeland.AntarcticandAlpineResearch,422–429.HelmDJ,AllenEB,TrappeJM(1996)MycorrhizalchronosequencenearExitGlacier,Alaska.CanadianJournalof,1496–1506.HesselmannH(1900)OmmycorrhizabildingarhosartiskaBihangtillKongligaSvenskaVetenskaps-AkademiensHandlingar,1–46.HillMO(1979)DECORANA—AFORTRANProgramforDetrendedCorrespondenceAnalysisandReciprocalAveragingCornellEcologyProgramSeriesCEP-40.EcologyProgram,CornellUniversity,NewYork.Availableat:http://gbic.tamug.edu/request.htm.HillMO,GauchHGJ(1980)Detrendedcorrespondenceanalysis:animprovedordinationtechnique.HodkinsonID,CoulsonSJ,WebbNR(2004)Invertebratecommunityassemblagealongproglacialchronosequenceinthehigharctic.JournalofAnimalEcology,556–568.HortonTR,BrunsTD(2001)Themolecularrevolutioninectomycorrhizalecology:peekingintotheblack-box.MolecularEcology,1855–1871.IshidaTA,NaraK,TanakaM,KinoshitaA,HogetsuT(2008)Germinationandinfectivityofectomycorrhizalfungalsporesinrelationtotheirecologicaltraitsduringprimarysuccession.NewPhytologist,491–500.JohnsonEA,MiyanishiK(2008)Testingtheassumptionsofchronosequencesinsuccession.EcologyLetters,419–431.JumpponenA(2001)Darkseptateendophytes—aretheymycorrhizal?,207–211.JumpponenA(2003)SoilfungalcommunityassemblyinaprimarysuccessionalglacierforefrontecosystemasinferredfromrDNAsequenceanalyses.NewPhytologist,569–578.JumpponenA(2004)Soilfungalcommunitiesunderneathwillowcanopiesonaprimarysuccessionalglacierforefront:rDNAsequenceresultscanbeaffectedbyprimerselectionandchimericdata.MicrobialEcology,233–246.JumpponenA,JonesKL(2009)Massivelyparallel454sequencingindicateshyperdiversefungalcommunitiesintemperateQuercusmacrocarpaphylloshere.NewPhytologist,438–448.JumpponenA,VareH,MattsonKG,OhtonenR,TrappeJM(1999)Characterizationof‘‘safesites’’forpioneersinprimarysuccessionofrecentlydeglaciatedterrain.Journalof,98–105.JumpponenA,TrappeJM,CazaresE(2002)OccurenceofectomycorrhizalfungiontheforefrontofretreatingLymanGlacier(Washington,USA)inrelationtotimesincedeglaciation.,43–49.KaufmannR(2001)Invertebratesuccessiononanalpineglacierforeland.,2261–2278.KauserudH,KumarS,BrystingA,NordenJ,CarlsenT(2011)Highconsistencybetweenreplicate454pyrosequencinganalysesofectomycorrhizalplantrootsamples.inpressDOI:10.1007/s00572-011-0403-1.KruskalJB(1964a)Multidimensionalscalingbyoptimizinggoodnessofttoanonmetrichypothesis.KruskalJB(1964b)Nonmetricmultidimensionalscaling:anumericalmethod.Psykometrika,115–129.KumarS,CarlsenT,MevikBetal.(2011)CLOTU:anonlinepipelineforprocessingandclusteringof454ampliconreadsintoOTUsfollowedbytaxonomicannotation.Bioinformatics,182.LesicaP,AntibusRK(1986)Mycorrhizaeofalpinefell-eldcommunitiesonsoilsderivedfromcrystallineandcalcareousparentmaterials.CanadianJournalofBotany1691–1697.LilleskovEA,BrunsTD,HortonTR,TaylorDL,GroganP(2004)Detectionofforeststand-levelspatialstructureinectomycorrhizalfungalcommunities.FEMSMicrobiology,319–332.MassicotteHB,MelvilleLH,PetersonRL,LuomaDL(1998)Anatomicalaspectsofeldectomycorrhizason(Polygonaceae)andKobresiabellardii(Cyperaceae).Mycorrhiza,287–292.MatthewsJA(1978)Plantcolonizationpatternsonagletschervorfeld,southernNorway:ameso-scalegeographicalapproachtovegetationchangeandphytometric,155–178.McArdleBH,AndersonMJ(2001)Fittingmultivariatemodelstocommunitydata:acommentondistance-basedredundancyanalysis.,290–297.MinchinPR(1987)Anevaluationoftherelativerobustnessoftechniquesforecologicalordination.,89–107.MohamedDJ,MartinyJBH(2010)Patternsoffungaldiversityandcompositionalongasalinitygradient.TheISMEJournal,379–388.hlmannO,BacherM,PeintnerU(2008)mycobiontsonanalpineprimarysuccessionalglacierforefront.Mycorrhiza,87–95.MurrayMG,ThompsonWF(1980)RapidisolationofhighweightplantDNA.NucleicAcidsResearch,4321–4325.NaraK(2006a)Ectomycorrhizalnetworkandseedlingestablishmentduringearlyprimarysuccession.Phytologist,169–178.NaraK(2006b)PioneerdwarfwillowmayfacilitatetreesuccessionbyprovidinglatecolonizerswithcompatibleectomycorrhizalfungiinaprimarysuccessionalvolcanicNewPhytologist,187–198.R.BLAALIDETAL.2011BlackwellPublishingLtd DataaccessibilityTheraw454datahavebeenaccessionedintheEuropeanNucleotideArchive,accessionno.SRP006836.1.Therepresenta-tivesequencesofthe470non-singletonOTUsareavailableinthesupportinginformationinfastaformat.SupportinginformationAdditionalsupportinginformationmaybefoundintheonlineversionofthisarticle.Fig.S1Therelationshipbetweennumbersofclustersobtainedandsequencesimilaritylevel(80-100)usedduringclusteringofsequences.Fig.S2Theabundanceofthe12mostabundantgeneraliesacrosszones,asmeasuredbypresenceabsenceofOTUsinrootsystemsandbestblasthit.Fig.S3GNMDSordinationdiagram(axes1and2)forthecompositionoffungalOTUsinthe60rootsystems,includingonlyOTUswithbestblastmatchtoectomycorrhizaltaxa.Fig.S4Frequencydistributionsofthe36mostabundantOTUsasmeasuredbypresenceabsenceinrootsystems.TableS1Characteristicsforthe60rootsamples.TableS2NumberofsharedOTUsacrossrootsystems.TableS3Representativesequencesofthe470non-singletonPleasenote:Wiley-Blackwellarenotresponsibleforthecontentorfunctionalityofanysupportinginformationsuppliedbytheauthors.Anyqueries(otherthanmissingmaterial)shouldbedirectedtothecorrespondingauthorforthearticle.R.BLAALIDETAL.2011BlackwellPublishingLtd

Related Contents


Next Show more