/
Multi-Scale Simulations of the Growth and Assembly of Collo Multi-Scale Simulations of the Growth and Assembly of Collo

Multi-Scale Simulations of the Growth and Assembly of Collo - PowerPoint Presentation

min-jolicoeur
min-jolicoeur . @min-jolicoeur
Follow
392 views
Uploaded On 2016-03-05

Multi-Scale Simulations of the Growth and Assembly of Collo - PPT Presentation

Kristen A Fichthorn Department of Chemical Engineering Department of Physics Penn State University DEFG0207ER46414 Complex Nanostructures in Colloidal Crystal Growth How Do They Form ID: 242390

111 100 solvent bridge 100 111 bridge solvent phys state chem top mesocrystal aggregation vdw hollow lett pvp crystal

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Multi-Scale Simulations of the Growth an..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Multi-Scale Simulations of the Growth and Assembly of Colloidal Nanoscale Materials

Kristen A. FichthornDepartment of Chemical EngineeringDepartment of PhysicsPenn State University

DE-FG0207ER46414Slide2

Complex Nanostructures in Colloidal Crystal Growth: How Do They Form?

Ostwald Ripening

Cluster-Cluster

Aggregation

Oriented

Attachment

How Does OA Happen?Slide3

Complex Nanostructures in Colloidal Crystal Growth: Oriented Attachment

Oriented Attachment of TiO

2

:

Intrinsic Crystal Forces

Oriented Attachment and

the Mesocrystal State:

The Role of Solvent

R

. Penn and J.

Banfield

,

Geochim

.Cosmochim. Acta

63

, 1549 (1999).

M. Alimohammadi and K. Fichthorn, Nano

Lett

. 9,

4198 (2009).

V.

Yuwano

, N. Burrows, J.

Soltis

, and R. Penn,

JACS

132

, 2163 (2010).Slide4

Complex Nanostructures in Colloidal Crystal Growth: Capping Agents

Y. Sun, B.

Mayers

, T.

Herricks

, and

Y. Xia,

Nano

Lett

.

3

, 955 (2003).Slide5

Polyol

Process

Solvent:

Ethylene Glycol

Salt:

AgNO

3

“Stabilizer”:

PVP

What Happens

in the Pot?

B. Wiley,…Y. Xia,

Chem. Eur. J.

11

, 454

(2005).

“One-Pot” Solution-Phase Synthesis of Nanostructured

Metal Materials

N,N

-DMF Reduction

Solvent:

N,N

-DMF

Salt:

AgNO

3

“Stabilizer”:

PVP

All Kinds of

Nano

-Shapes

Heat at ~400 KSlide6

B. Wiley,…Y. Xia,

Chem. Eur. J. 11, 454 (2005).Reduction

of Ag

Nucleation

Growth

Nanostructure Formation:

General Aspects

Determined by

Salt and…

Solvent or PVP?

Probably Determined

by PVP…

Seed

FormationSlide7

Does

PVP Prefer Ag(100) Over Ag(111)?

Nanowires from Multiply-

Twinned DecahedralSeeds

Nanocubes from Single-

Crystal

Cubo

-Octahedral

Seeds

One Possible Role of PVP: Surface-Sensitive Binding

G.

Grochola

, I. Snook, and S. Russo,

J. Chem. Phys. 127, 194707 (2007).

Y. Sun, B.

Mayers

, T.

Herricks

, and Y. Xia,

Nano

Lett

.

3

, 955 (2003).Slide8

Interaction of PVP with Ag(100) and Ag(111):First-Principles Challenges

Direct Bonding +van der Waals (vdW)

vdW

Historically DFT Described Direct Bonds,

Including vdW Interactions is

New…

S.

Grimme,

J.

Comput

. Chem.

27, 1787 (2006).M. Dion,…, D. C. Langreth, B. I.

Lundqvist, Phys. Rev. Lett

.

92, 246401 (2004).

A. Tkatchenko

and M. Scheffler,

Phys. Rev.

Lett.

102

, 073005 (2009).

K. Lee, …, D. C.

Langreth

, B. I.

Lundqvist

,

Phys. Rev. B

82

, 081101 (2010).

L.

Delle

Site, K. Kremer,

Int. J. Quant. Chem.

101

, 733 (2005).

n

Coarse-Grained

ModelSlide9

Interaction of PVP with Ag(100) and Ag(111): VASP 5.2.11

(4×4×14) Super Cell Slab: 6

layersVacuum

: 8 layers

PAW-PBE (GGA) ± DFT-D2 ± TS*

Assess the Influence of

vdW

Interactions

Cut-off

: 29.4

Ry

k-points: (4×4×1)

Ab-initio Molecular DynamicsStatic Total-Energy Calculations

*Implemented in VASP

by Wissam Al-SaidiSlide10

van der Waals Interactions in DFT: How Do We Describe Ag??

aS. Grimme, J.

Comput. Chem.

27, 1787 (2006).

b

A

. Tkatchenko and M. Scheffler,

Phys. Rev.

Lett.

102

, 073005 (2009) .

c

E. Zaremba and W. Kohn, Phys. Rev. B

13, 2279 (1976).dS

.

Eichenlaub, C. Chan, and S. P.

Beaudoin,

J. Coll. Int. Sci.

248

, 389 (2002).e

A.

Khein

, D. J. Singh, and C. J.

Umrigar

,

Phys. Rev. B

51

, 4105, (1995).

f

H

. Li,

et al.

,

Phys. Rev. B

43

, 7305 (1991).

g

F. R. De Boer, et al., Cohesion in Metals, Amsterdam, (1988).h

M. Chelvayohan and C.H.B. Mee,

J. Phys. C: Solid State Phys.15, 2305 (1982).

PBE

DFT-D2

a

TS+ZK

b+c

Experiment

C

6

(J nm6

mol-1)

---

24.67

6.89

6.25d

R

0(Å)

---

1.64

1.34

---

aAg (Å)

4.16

4.15

4.02

4.07

e

D12

Ag(100) (%)

-2.05

1.3

-1.75

±1.5

f,g

D

12 Ag(111) (%)

-0.3

1.61

-0.32

0.5 ± 0.8

hSlide11

Binding Conformations:

No vdW InteractionsExperimental IR and XPS:PVP Binds to Ag via the O and/or N Atom.

Ag(100)

Top

Hollow

Bridge

Ag(111)

Top

fcc

Hollow

hcp

Hollow

Bridge

Trial & Error:

Bonding with O Atom Down

F.

Bonet

et al

.,

Bull. Mater. Sci.

23

, 165 (2000).

Z. Zhang

et al

.,

J. Solid State Chem.

121

, 105 (

1996).

H. H. Huang

et al

.,

Langmuir

12

, 909 (1996).Slide12

Binding Energies: No vdW Interactions

Adsorption site

Ethane

2-Pyrrolidone

(100) Hollow

0.0

0.19

(100) Bridge

0.0

0.22

(100) Top

-

0.21

(111)

fcc

Hollow

0.0

0.19

(111)

hcp

Hollow

-

0.16

(111) Bridge

-

0.20

(111) Top

-

0.26

Bond Strength (

eV

)

P

redominantly

vdW

Ag(100)

Top

Hollow

Bridge

Ag(111)

Top

fcc

Hollow

hcp

Hollow

Bridge

Preference for Ag(111): Contrary to Expectations

Ethane Binds:

X.-L. Zhou and J. M. White,

J. Phys. Chem.

96

, 7703 (1992).Slide13

vdW

Interactions Support Structure-Directing Hypothesis

Site

PBE

PBE

DFT-D2

PBE

TS+ZK

(100) Hollow

0.19

1.05

0.59

(100) Bridge

0.22

1.34

0.77

(100) Top

0.21

1.05

0.60

(111)

fcc

0.19

0.61

0.58

(111)

hcp

0.16

0.80

0.58

(111) Bridge

0.20

0.70

0.62

(111) Top

0.26

0.79

0.64

Bond Strength (

eV

)

Why Such Big Differences Between Methods??Slide14

DFT-D2: Ag(100) Reconstructs

Ag(100) Reconstruction has not been Observed Experimentally…Slide15

TS+ZK:2-Pyrrolidone on Ag(100)

HollowEbind

= 0.59

Bridge

E

bind

=

0.77

Top

Ebind

= 0.60

Hollow ||

E

bind

=

0.77

Bridge ||

E

bind

=

0.81

Top ||

E

bind

=

0.78

Lots of Options!

Binding via O and N

F.

Bonet

et al

.,

Bull. Mater. Sci.

23 (2000).Z. Zhang et al.,

J. Solid State Chem.

121 (1996).H. H. Huang et al

., Langmuir 12 (1996).Slide16

PVP ~139 Times More Likely to Bind to

Ag(100) “Sides” than Ag(111) “Ends”Slide17

TS+ZK Energies

TS+ZK Geometries

PBE Energies

TS+ZK Geometries

D

Site

E

bind

E

Pauli

+E

direct

bond

E

vdW

(100) Hollow ||

0.78

0.36

0.42

(100) Bridge ||

0.81

0.32

0.48

(100) Top ||

0.77

0.30

0.47

(111) Top

0.64

0.12

0.51

(111) Bridge

0.62

0.09

0.53

(111) Bridge ||

0.63

-0.19

0.82

TS+ZK Method: Break-Down

of Binding EnergySlide18

TS+ZK Energies

TS+ZK Geometries

PBE Energies

TS+ZK Geometries

D

Site

E

bind

E

Pauli

+E

direct

bond

E

vdW

(100) Hollow ||

0.78

0.36

0.42

(100) Bridge ||

0.81

0.32

0.48

(100) Top ||

0.77

0.30

0.47

(111) Top

0.64

0.12

0.51

(111) Bridge

0.62

0.09

0.53

(111) Bridge ||

0.63

-0.19

0.82

TS+ZK Method: Break-Down

of Binding Energy

Ag(100):

vdW

and Direct Bonding SynergizeSlide19

TS+ZK Energies

TS+ZK Geometries

PBE Energies

TS+ZK Geometries

D

Site

E

bind

E

Pauli

+E

direct

bond

E

vdW

(100) Hollow ||

0.78

0.36

0.42

(100) Bridge ||

0.81

0.32

0.48

(100) Top||

0.77

0.30

0.47

(111) Top

0.64

0.12

0.51

(111) Bridge

0.62

0.09

0.53

(111) Bridge ||

0.63

-0.19

0.82

TS+ZK Method: Break-Down

of Binding Energy

Ag(111):

vdW

is the Dominant Attractive Force

Sometimes the

only

Attractive ForceSlide20

We Observed Stronger Binding to

Ag(100) when we Include vdW As Inferred by Experiment

Conclusions

We Studied

Surface-Sensitivity

of

PVP Binding to Ag(111) and Ag(100)

DFT-D2 Reconstructs Ag(100)

Ag(100) Preference from Synergy Between

vdW

Attraction and Direct Bonding Slide21

Oriented Attachment

in Crystal Growth:Role of Intrinsic Crystal ForcesSee Also:M. Niederberger and H. Cölfen, Phys. Chem. Chem. Phys. 8

, 3271 (2006). Q. Zhang, S. Liu, and S. Yu, J. Mater. Chem. 19, 191 (2009).

HRTEM:

Oriented Attachment

of

TiO2 Nanoparticles

R. Penn and J. Banfield

, Geochim. Cosmochim.Acta

63, 1549 (1999).Slide22

Dipole-Dipole Interactions May

Assemble NanoparticlesT. Zhang, N. Kotov, and S. Glotzer, Nano Lett.

7, 1670 (2007).

Z. Tang and N. Kotov

,

Adv. Mater. 17, 951 (2005);

Z. Tang, N. Kotov, M.

Giersig

, Science 297, 237 (2002).

CdTe

Nanoparticle Chains

+ -

+ -Slide23

Two Wulff

Nanocrystals

(001) Truncated

Nanocrystals

(112) Truncated

Nanocrystals

m

=35 D

m

=0

m

=250 D

m

=75 D

TiO

2

(Anatase) Nanocrystals

Matsui-

Akaogi

Force Field

Mol.

Sim

. 6, 239, 1991.

*Slide24

Aggregation of Wulff NanocrystalsSlide25

Nanocrystal Aggregation:The Hinge Mechanism

Initial Contact of Edges:The “Hinge”Rotation About the “Hinge”Slide26

Nanocrystal Aggregation:

Driven by Electrostatic ForcesM. Alimohammadi and K. Fichthorn,

Nano Lett

. 9,

4198 (2009).Slide27

Nanocrystal Aggregation: Driven by Multipoles from Under-Coordinated

Surface AtomsM. Alimohammadi and K. Fichthorn, Nano Lett. 9,

4198 (2009).Slide28

HRTEM Image Showing Oriented Attachment of 5 TiO

2 NanoparticlesR. Penn and J. Banfield, Geochim. Cosmochim. Acta 63, 1549 (1999).

Simulation vs. Experiment:

Still Have a Way to Go

Aqueous Environment

Hour (or longer) Times

Vacuum Environment

Nanosecond TimesSlide29

Nanocrystal Aggregation is Driven by Local Interactions.We Should Re-Think the Dipole Idea…

ConclusionsP. Schapotschnikow

et al.,

Nano Lett

.

10, 3966 (2010).

Also found this for capped and uncapped PbSe…Slide30

1D Nanostructures form via

Mesocrystals and Oriented Attachment

M. Giersig, I.

Pastoriza-Santos, L. Liz-Marzan,J. Mater. Chem.

14, 607 (2004).

Ag Nanowires

V.

Yuwano

, …, and R. Penn,

JACS

132

, 2163 (2010).

Goethite NanowiresSlide31

Solvent Ordering and

Solvation ForcesSolvent Density ProfileSolvent ordering around solvophilic

nanoparticles

Y. Qin and K. A. Fichthorn,

J. Chem. Phys

.

119

, 9745 (2003).

Y. Qin and K. A. Fichthorn,

Phys. Rev. E

7

3

, 020401 (2006).Slide32

MD: Aggregation of a Small, Isotropic*Crystal with a Larger, Anisotropic Crystal

*Relatively

Rectangular

Cuboid

Square

Plate

2

1

3

2

1

Generic Anisotropic

fcc

Nanoparticles

Solvophilic

Nanoparticles

Strong

vdW

Attraction (Ag)

Isotropic Organic SolventSlide33

Aggregation of Small and Large Nanocrystals: Mesocrystal

States

Mesocrystal

State 1One Solvent Layer

Mesocrystal

State 1One Solvent Layer

Mesocrystal State 2Two Solvent LayersSlide34

Mesocrystal

States: Free-Energy Minima

Escape-Time Distribution

Aggregation Probability

Aggregation of Small and Large Nanocrystals:

Mesocrystal

States

Mesocrystal

State 1

One Solvent Layer

Mesocrystal

State 1

One Solvent Layer

Mesocrystal

State 2

Two Solvent LayersSlide35

Aggregation:

Fastest at End of RectangleSlowest on Face of SquareEven on Sides

Mesocrystal State 1Most Frequent

Mesocrystal State 2Occurs on Square

Mesocrystal

State 3

DissociationNot Typically Frequent

Dissociation

Nanocrystal Encounters:

Frequency of Outcomes

3

1

2

1

2

Aggregation is the Most Frequent

On the Smallest Facets,

Perpetuating 1D GrowthSlide36

Disruption Solvent Ordering at EdgesLeads to Fast Aggregation on Small Facets

Square PlateRectangle

7.2

6.6

6.0

5.4

4.8

4.23.6

3.02.41.81.2

0.60

r/

r

b

RectangleSlide37

Conclusions

Solvent Ordering Around Nanocrystal SurfacesPromotes Growth of 1D NanostructuresLeads to Mesocrystal

States

Faster Aggregation on Smaller FacetsSlide38

Collaborators

FundingNSF DMR-1006452, NIRT CCR-0303976, CBET-0730987DOE

DE-FG0207ER46414ACS, EPA, NCSA

Mozhgan

Alimohammadi

Haijun FengAzar Shahraz

Jin Pyo HongDr. Ya Zhou

Dr. Yangzheng Lin

Alums

Dr. Yong

Qin

Dr. Rajesh SathiyanarayananDr. Leonidas

GergidisFritz Haber InstituteAlexander TkatchenkoVictor Gonzalo Ruiz Lopez

Matthias SchefflerUniv. of PittsburghDr. Wissam Al-Saidi