/
UsingnowastandardBorelspaceXasourvertexset,wesayagraphGonXisBorelifiti UsingnowastandardBorelspaceXasourvertexset,wesayagraphGonXisBorelifiti

UsingnowastandardBorelspaceXasourvertexset,wesayagraphGonXisBorelifiti - PDF document

mitsue-stanley
mitsue-stanley . @mitsue-stanley
Follow
374 views
Uploaded On 2015-11-25

UsingnowastandardBorelspaceXasourvertexset,wesayagraphGonXisBorelifiti - PPT Presentation

coloringc0X2de nedbyc0xcxifx2XnY0dxifx2Y0satis esFriendc0Friendc2Y0FriendcFriendGcontradictingthede nitionofFriendG Remark22Whiletheminimizationof2friendlinessissucien ID: 205344

coloringc0:X!2de nedbyc0(x)=(c(x)ifx2XnY0d(x)ifx2Y0satis esFriend(c0)Friend(c)2(Y0)Friend(c)=Friend(G) contra-dictingthede nitionofFriend(G). Remark2.2.Whiletheminimizationof2-friendlinessissucien

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "UsingnowastandardBorelspaceXasourvertexs..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

UsingnowastandardBorelspaceXasourvertexset,wesayagraphGonXisBorelifitisBorelasa(symmetric,irre exive)subsetofX2.Itwillbemoreconvenienttousethelanguageofcoloringsratherthanthatofpartitions.Towardsthatend,givenn2N+and 2[0;1]wesaythatc:X!nisan(n; )-coloringofalocally nitegraphGonXifforallx2Xwehavejc�1(c(x))\Gxj jGxj,whereGxdenotesthesetofneighborsofx.Soan(n;0)-coloringiswhatisnormallycalledapropern-coloring,i.e.,notwoadjacentverticesreceivethesamecolor.Furthermore,cisa(2;1=2)-coloringi c�1(0)tc�1(1)formsanunfriendlypartition.IfmoreoverisaBorelprobabilitymeasureonX,wede ne(n; ;)-coloringstobethosefunctionssatisfyingtheconditionjc�1(c(x))\Gxj jGxjona-conullsetofx2X.OurfocusinthispaperisontheexistenceofBorel(n; ;)-coloringsforvariousclassesofBorelgraphsonX.Inparticular,supposethat�isagroupwith nite,symmetricgeneratingsetS(whichwealwaysassumedoesnotcontaintheidentity).Associatedwithanyfree,-preservingBorelactionof�on(X;)isagraphrelatingdisctinctpointsofXifandonlyifanelementofSsendsonetotheother.Wethenhave(seesection3forade nitionofweakequivalence)Theorem1.1.Supposethat(X;)isastandardprobabilityspace,n2N+,and�isagroupwith nite,symmetricgeneratingsetS.Thenanyfree,-preservingactionBorelactionof�on(X;)isweaklyequivalenttoonewhoseassociatedgraphadmitsaBorel(n;1=n;)-coloring.Recallthatthe(right)Cayleygraph,Cay(�;S)ofagroup�withdes-ignatedgeneratingsetShasvertexset�andedges( ; s)for 2�ands2S.Wemayviewthespaceof(n; )-coloringsofCay(�;S)asasubsetofn�whichisclosedintheproducttopology,soacompactPolishspaceinitsownright.Then�actsby(left)translationsonthespaceof(n; )-coloringsby( c)()=c( �1).Theorem1.2.Supposethat�isagroupwith nite,symmetricgeneratingsetS.Thenthereisatranslation-invariantBorelprobabilitymeasureonthespaceof(n;1=n)-coloringsoftheCayleygraphCay(�;S).Suchameasuremaybeviewedasa(translation-invariant)random(n;1=n)-coloringofCay(�;S).Inparticular,inthecasen=2weobtainarandomunfriendlypartitionoftheCayleygraph.2 coloringc0:X!2de nedbyc0(x)=(c(x)ifx2XnY0d(x)ifx2Y0satis esFriend(c0)Friend(c)�2(Y0)Friend(c)=Friend(G),contra-dictingthede nitionofFriend(G). Remark2.2.Whiletheminimizationof2-friendlinessissucientforacol-oringtoinduceanunfriendlypartition,itisfarfromnecessary.Forinstance,considerfor xedirrational 2(0;1)thegraphG on[0;1)wherexG yi x�y= mod1.ThenFriend2(G )=0,butitisnothardtoshowthatFriend2(c)�0foreachBorelc:[0;1)!2.Nevertheless,the2-regularityofG makesitstraightforwardto ndaBorelunfriendlypartitionforG :in-deed,by[5,Proposition4.2]thereisamaximalG independentsetwhichisBorel,soitanditscomplementformanunfriendlypartition.Intheinterestoffulldisclosure,weactuallydon'tknowwhethereverylocally niteBorelgraphadmitsaBorelunfriendlypartition.Question2.3.SupposethatGisalocally nite,-preservinggraphon(X;)andn2N+.DoesGadmitaBorel(n;1=n)-coloring,oratleastaBorel(n;1=n;)-coloring?Theresultsofthenextsectionruleoutcertainpossiblecounterexamplesarisingfromcombinatorialinformationinvariantunderweakequivalenceofgroupactions.3GroupactionsWenextnarrowourfocustographsarisingfromgraphsarisingfromcount-ablegroupsactingbyfree-preservingautomorphismson(X;).Givenacountablegroup�withsymmetricgeneratingsetSandsuchanactionaof�on(X;),wede nethegraphG(S;a)onthevertexsetXwithedge(x;y)i x6=yand9s2S(y=sx).Byfreenessoftheaction(andassumingthatSdoesnotcontaintheidentityelementofthegroup),eachvertexhasdegreejSj,soifSisa nitegeneratingsetthegraphislocally nite(andinfacthasboundeddegree).CombinatorialparametersassociatedwithG(S;a)re ectvariousdynamicalpropertiesoftheactiona;formoresee[2].4 inwesee(G(S;b)d�1(i))=Xs2S(d�1(i)\sbd�1(i))Xs2S((Bi\sbBi)+2")Xs2S((Ai\saAi)+3")=(G(S;a)Ai)+3jSj":Consequently,Friendn(d)=Xi(G(S;b)d�1(i))Xi(G(S;a)Ai)+3jSj"=Friendn(c)+3njSj"Friendn(G(S;a))+(3njSj+1)":As"maybechosentobearbitrarilysmall,weseethatFriendn(G(S;a))Friendn(G(S;b))asdesired. Corollary3.2.Supposethat�isagroupwith nite,symmetricgenerat-ingsetS,anda;b2FR(�;X;)withab.ThenFriendn(G(S;a))=Friendn(G(S;b)).Next,werecordaversionof[3,Theorem5.2]allowingustorealizethein muminthede nitionoffriendlinesswithinanyweakequivalenceclass.Proposition3.3.Supposethat�isagroupwith nite,symmetricgenerat-ingsetS.Foranya2FR(�;X;)thereisanactionb2FR(�;X;)withbaanda-measurablefunctionc:X!nsuchthatFriendn(G(S;b))=Friendn(c).Proof.Weusethenotationof[3].LetUbeanonprincipalultra lteronN.WeobtaintheactionbasanappropriatelychosenfactoroftheultrapoweractionaUon(XU;U).Putf=Friendn(G(S;a))and xfork2NBorelfunctionsck:X!nsatisfyingFriendn(ck)j+1=k.Putforeachin,Ci=[c�1k(i)]U.ThenfCi:ingformaU-a.e.partitionofXU.De ning6 Inparticular,atranslation-invariantrandom(2;1=2)-coloringmaybeviewedasarandomunfriendlypartitionoftheCayleygraph,wherethetranslationinvariancemeansthatthelikelihoodofchoosingapartitionisindependentoftheselectionofavertexoftheCayleygraphastheidentity.Corollary4.1.Supposethat�isagroupwith nite,symmetricgeneratingsetSandn2N+.Thenthereisatranslation-invariantrandom(n;1=n)-coloringofCay(�;S).Proof.Fixanonatomicstandardprobabilityspace(X;).ByTheorem3.4thereissomeb2FR(�;X;)suchthatG(S;b)admitsaBorel(n;1=n;)-coloringc:X!n(infactbmaybechosenfromanyweakequivalenceclass).De ne:X!Col(�;S;n;1=n)by((x))( )=c( �1x).Thenisatranslation-invariantrandom(n;1=n)-coloring,whereasusual(A)=(�1(A)). WeclosewithaquestionwhichisessentiallyaprobabilisticversionofQuestion3.5.Question4.2.Cansuchatranslation-invariantrandom(n;1=n)-coloringbefoundasafactorofIID?Acknowledgments.TheauthorwouldliketothankAlekosKechris,RussLyons,AndrewMarks,BenMiller,JustinMoore,andRobinTucker-Drobforusefulconversations.SpecialthanksgotoSimonThomaswhorelayedthequestionaboutde nableunfriendlypartitionsduringMAMLS2012atRutgers.References[1]R.Aharoni,E.C.Milner,andK.Prikry.Unfriendlypartitionsofagraph.J.Combin.TheorySer.B,50(1):1{10,1990.[2]C.T.ConleyandA.S.Kechris.Measurablechromaticandindependencenumbersforergodicgraphsandgroupactions.GroupsGeom.Dyn.,7(1):127{180,2013.[3]C.T.Conley,A.S.Kechris,andR.D.Tucker-Drob.Ultraproductsofmea-surepreservingactionsandgraphcombinatorics.Erg.TheoryandDy-nam.Systems.Toappear.8

Related Contents


Next Show more