/
thatf[C]=andfD=P%ixiisarelativestablemap.Thespaceofsuchmorphismswas thatf[C]=andfD=P%ixiisarelativestablemap.Thespaceofsuchmorphismswas

thatf[C]= andfD=P%ixiisarelativestablemap.Thespaceofsuchmorphismswas - PDF document

myesha-ticknor
myesha-ticknor . @myesha-ticknor
Follow
367 views
Uploaded On 2017-01-11

thatf[C]= andfD=P%ixiisarelativestablemap.Thespaceofsuchmorphismswas - PPT Presentation

ForintuitionitmayhelptoviewamorphismXA1GmnotasaprincipalGmbundleoverXtogetherwithaGmequivariantmaptoA1butinsteadasaprincipalGmbundleoverXtogetherwithasectionoftheassociatedA1bundleThenthele ID: 508566

Forintuition itmayhelptoviewamorphismX![A1=Gm]notasaprincipalGm-bundleoverXtogetherwithaGm-equivariantmaptoA1 butinsteadasaprincipalGm-bundleoverXtogetherwithasectionoftheassociatedA1-bundle.Thenthele

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "thatf[C]= andfD=P%ixiisarelativestable..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

thatf[C]= andfD=P%ixiisarelativestablemap.Thespaceofsuchmorphismswascompacti edby[Ga]and[Li]andtheyusedthistode nerelativeGromov-Witteninvariants.Inthegenus0case,Gathmannde nedthespaceofrelativestablemapsbytakingtheclosureinMg;n(X; )ofthemapsf:C!Xabove.Inthispaper,weshowthatthestackoftwistedstablemapsintoXD;rhasanopensubstackUg;n(XD;r; ;~%)Kg;n(XD;r; )mappingisomorphicallyontothelocallyclosedsubstackofMg;n(X; )consistingofthosemaps.Hererisanyintegerlargerthanevery%i.Thisprovidesanalternatecompacti cationofthespaceofrelativestablemaps.Oneadvantagetothisapproachisthatitworksingreatergenerality.WeonlyassumethatXisprojectiveovera eldandthatDXisane ectiveCartierdivisor.Itisalsonecessarythatrisinvertibleinthebase eld,butthisdoesnotconstraintheinitialdata.Sincerisnot xed,thismethoddoesnotproduceauniquecompacti cation.However,thecompacti cationsformaninversesysteminlightof[AV,9.1.2].Thisrequiresfurtherinvestigation.Oneapplicationofthisideaistocountcurvesintheplanehavingcertaintangencyconditionswithrespecttoasmoothcubic.IfDP2Cisthecubic,thentheGromov-WitteninvariantsofP2D;2canbecomputedusingtheWDVVequations,asin[Ca1].Theinvariantscanthenbeusedtocountrationalcurveshavingacertainnumberoforder1and2contactswithDatbothspeci edandunspeci edpoints[Ca2].Insection2.2wede netherthrootconstruction.Whilewearemostlyinterestedinapplyingittodivisors,itisjustaseasytoapplyittoapair(L;s)consistingofaninvertiblesheafLandaglobalsectionsofL.Inall,therearefournotationsusedforvariousrthrootconstructions:X(L;s;r),XD;~r,X(L;r),andXD;r.ThesearefoundinDe nitions2.2.1,2.2.4,2.2.6,andjustbelowDe nition2.2.4respectively.Insection2.3wegiveconditionsforX(L;s;r)tobeaDeligne-Mumfordstackanddiscusspresentationsandcoarsemodulispaces.Insection2.4,wegiveseveralexamples.ThemostimportanttheoremasidefromthemainresultisTheorem3.3.6.ForsmoothcurvesnotmappingintoD,itexhibitsabijectivecorrespondencebetweenordinarystablemapswithspeci edtangenciesatthemarkedpointsandtwistedstablemapshavingspeci edcontacttypesatthemarkedpoints.Thecontacttypeisafundamentalconceptforthiscorrespondence,andisintroducedaftertheproofofProposition3.3.3.Priortothis,weprovetwokeyresultsabouthowtherthrootconstructiona ectsthePicardgroup,Corollaries3.1.2and3.1.3.Themainresult,whichprovestheisomorphismofstacksdescribedabove,isTheorem4.2.The nalsectioncontainssomeimportantlemmaswhichareusedthroughout.NotationandconventionsWeworkoverSpecZ.Somebackgroundonstacksisrequired,andourreferenceis[LMB].Unfortunately,thisrequiresustoassumethatallschemesarequasi-separatedsothattherthrootconstructionproducesanalgebraicstackinthesenseof[LMB,4.1].Section3.1requiressomefamiliaritywithgroupschemes,notbeyondwhatisfoundinChapter2of[Ja].IfthereaderisonlyinterestedinapplicationsoverC,thenthisisunnecessary.Weusethefollowinggroupschemes.2 Forintuition,itmayhelptoviewamorphismX![A1=Gm]notasaprincipalGm-bundleoverXtogetherwithaGm-equivariantmaptoA1,butinsteadasaprincipalGm-bundleoverXtogetherwithasectionoftheassociatedA1-bundle.Thenthelemmafollowseasily.Notethatthesectionis0ifandonlyifthemorphismfactorsX!BGm[A1=Gm],whichrecoverstheequivalencebetweeninvertiblesheavesandmorphismsX!BGm.TheidentitymorphismBGm!BGmcorrespondstoaninvertiblesheafonBGmwhosepullbackunderanarbitrarymorphismX!BGmisisomorphictothecorrespondingin-vertiblesheafonX.WecallthisthetautologicalsheafonBGm.Notethatthetotalspaceofthecorrespondinggeometriclinebundleis[A1=Gm].2.2De nitionsLetXbeanalgebraicstack,letLbeaninvertiblesheafonX,lets2�(X;L),andletrbeapositiveinteger.Thepair(L;s)de nesamorphismX![A1=Gm]asabove.Letr:[A1=Gm]![A1=Gm]bethemorphisminducedbyrthpowermapsonbothA1andGm.UndertheequivalenceofcategoriesinLemma2.1.1,rsendsapair(L;s)toitsrthtensorpower(Lr;sr).Recallthatthe2-categoryofalgebraicstacksisclosedunder berproducts[LMB,4.5].De nition2.2.1Wede neX(L;s;r)tobethe berproductX[A1=Gm];r[A1=Gm];andsaythatX(L;s;r)isobtainedfromXbytherthrootconstruction.Remark2.2.2Explicitly,ifXisascheme,thentheobjectsofX(L;s;r)overaschemeSarequadruples(f;M;t;');wheref:S!Xisamorphism,MisaninvertiblesheafonS,t2�(S;M),and':Mr!fLisanisomorphismsuchthat'(tr)=fs.Amorphismfrom(f;M;t;')(overS)to(g;N;u; )(overT)isapair(h;),whereh:S!Tisamorphismsuchthatgh=f,and:M!hNisanisomorphismsuchthat(t)=huandthefollowingdiagramcommutes.Mr' r// hNrh  fL=can:// hgLItiseasytogeneralizethiswhenXisastack.Remark2.2.3Fromthede nitionitisclearthatforanymorphismf:Y!X,wehaveanaturalisomorphismY(fL;fs;r)=X(L;s;r)XY.4 where':Lr!OSisanisomorphismofinvertiblesheaves,andwhosemorphisms(L;')!(M; )overSareisomorphismsL!Msothatthefollowingdiagramcommutes.Lr// ' Mr  OS OSOnBrwehaveaninvertiblesheafinducedbytheprojectionontothesecondfactorBr=SpecZBGmBGm!BGm:Thisisequivalenttothemorphisminducedbythenaturalinclusionr!Gm.AsthePicardgroupofBriscanonicallyidenti edwiththegroupofcharactersr!Gm[LMB,13.3.7],itfollowsthatthisinvertiblesheafisageneratorofthePicardgroupofBr.2.3BasicPropertiesWebeginourinvestigationoftherthrootconstructionwithaneasyspecialcase.Lemma2.3.1LetX=A1withcoordinatex.ThenX(OX;x;r)=[A1=r].Proof:ByRemark2.2.2,theobjectsofX(OX;x;r)onaschemeSareequivalenttotriples(M;t;'),whereMisaninvertiblesheafonS,tisaglobalsectionofM,and':Mr!OSisanisomorphism.Themorphismf:S!X(whichisthesameasasectionofOS)isdeterminedbythecondition'(tr)=f.Anobjectof[A1=r]overaschemeSisapairconsistingofaprincipalr-bundleandasectionoftheassociatedA1-bundle.FromExample2.2.7,thisisequivalenttosuchatriple(M;t;').Itiseasilyveri edthatmorphismsinthetwocategoriesarethesame.2ThefollowingtheoremshowsthatX(L;s;r)has nitediagonaloverSpecZwheneverXdoes.Theorem2.3.2ThediagonalX(L;s;r)!X(L;s;r)XX(L;s;r)is nite.Proof:ThestatementislocalonX.Indeed,ifV!Xisasmooth,surjectivemorphismandifU=X(L;s;r)XV,thenweobtainthefollowing bersquarewhoseverticalarrowsaresmoothandsurjective.U // 2UVU // 2V X(L;s;r)// X(L;s;r)XX(L;s;r)// XSowemayassumethatXisaschemeandthatListrivial.ThenthemorphismX![A1=Gm]factorsthroughA1,soitsucestoassumeX=A1ands=x.ByLemma2.3.1,wehavereducedtoshowingthat[A1=r]!A1has nitediagonal.Notethatthis6 Proof:Weusethefollowingdiagram,whichshouldbeviewedasacubewithonevertexmissing.X(L;s;r)//  2X [A1=Gm]r// 2[A1=Gm]PccHHHHHHHHHHH 2A1x7!xr// ::vvvvvvvvvA1ddIIIIIIIIIThemorphismsA1![A1=Gm]andP!XareprincipalGm-bundles.FillingintheremainingvertexwithA1[A1=Gm][A1=Gm][A1=Gm]Xmakeseveryfacea2-cartesiansquare,whichprovesthe rststatement.Thesecondstatementfollowssimilarly,replacing[A1=Gm]withBGmandA1withSpecZ.2RemarkItfollowsthatX(L;s;r)=[PA1A1=Gm]andX(L;r)=[P=Gm].ThisallowsonetoconstructsmoothpresentationsofX(L;s;r)andX(L;r)givenoneforX.Corollary2.3.6TheprojectionX(L;s;r)!Xisfaithfully atandquasi-compact.Proof:SincethisislocalonX,weassumeX=SpecAandListrivial,sos2A.WehaveapresentationSpecB!X(L;s;r),whereB=A[x;y;y�1]=(xr�sy),soitsucestoshowthatBisfaithfully atoverA.ClearlyA[y;y�1]isfaithfully atoverA,andBisafreeA[y;y�1]-moduleof niterank,hencefaithfully at.2RecallthatacoarsemodulispaceforanalgebraicstackXisanalgebraicspaceYtogetherwithamorphismX!YwhichisuniversalformorphismsfromXtoalgebraicspacesandinducesbijectionsX(k)=isom!Y(k)foranyalgebraicallyclosed eldk[AV,x2.2].Corollary2.3.7LetXbeaschemeandletL;s;rbeasusual.ThenXisacoarsemodulispaceforbothX(L;s;r)andX(L;r)undertheprojectionstoX.Proof:LetPbeasintheproposition.ItiseasytocheckthatXisageometricquotientofPA1A1byGm,andhenceacategoricalquotient.Likewise,XisageometricquotientofPbyGm.Apriori,thisonlymakesXacoarsemodulischeme.SinceX(L;s;r)!Xhas nitediagonal,itfollowsthatX(L;s;r)hasacoarsemodulispacewhichisseparatedoverX[LMB,19.1].By[LMB,A.2],itfollowsthatthecoarsemodulispaceisascheme,henceisomorphictoX.22.4ExamplesThroughoutthissubsectionweusethefollowingnotation.LetXbeascheme,letLbeaninvertiblesheafonX,letsbeaglobalsectionofLandletrbeapositiveinteger.8 Sincetherthrootconstructionbehaveswellunderbasechange,itfollowsthatXD;risthe atlimitofXC;rwhereCisasmoothconicapproachingD.SinceXC;randXD;(r;r)arebothsmoothstacks,theirGromov-Wittentheoriesarewell-de ned,butoneshouldnotexpectthetheoriestoagree.Example2.4.6Any(smooth)complexorbicurvecanbeobtainedfromtherthrootcon-struction.LetXbeasmoothcurve,letD1;:::;DnbedistinctpointsofX,andletr1;:::;rnbeintegersgreaterthan1.Thenthecomplexorbicurve(X;D;~r)de nedin[CR,2.2.2]isisomorphictoXD;~r.ThisfollowsfromthelocaldescriptionofExample2.4.1.Example2.4.7Thefollowingexamplewillappearthroughouttherestofthepaper.Let:C!SbeafamilyofcurvesoveraconnectedNoetherianschemeS(seetheintroductionforconventions)andsupposewehaveann-tupleDofdisjointCartierdivisorsDiCwhichmapisomorphicallytoS.Givenann-tupleofpositiveintegers~r=(r1;:::;rn),weobtainastackCD;~roverS.IftheintegersriareinvertibleonS,thisisafamilyoftwistedn-pointedcurvesoverSinthesenseof[AV,4.1.2].Thisiseasilyveri edusingCorollary2.3.4,Proposition3.0.1,andExamples2.4.1and2.4.3.Seealsothebeginningofsection4,whereitisshownthattheDiaredisjointfromthesingularlocusof.3MorphismsCD;~r!XD;rThegoalofthissectionistoclassifycertainmorphismsCD;~r!XD;r,whereCD;~risthetwistedcurveofExample2.4.7,Xisascheme,andDXisane ectiveCartierdivisor.Ingeneral,amorphismofstacksisde nedbyafunctorbetweentheunderlyingcategories.SuchafunctorwouldtakeanobjectofCD;~roveraschemeTtoaquadruple(f;M;t;')overT(seeRemark2.2.2).Itisequivalenttoclassifysuchquadruples(f;M;t;')overCD;~r,whichfollowsfrom[LMB,13.3.6].Itiseasytoclassifymorphismsf:CD;~r!X.Proposition3.0.1ThemorphismCD;~r!CmakesCthecoarsemodulispaceofCD;~r.Inparticular,anymorphismCD;~r!XcomesfromauniquemorphismC!X.Proof:Giventhe rststatement,thesecondfollowsfromtheuniversalpropertyofcoarsemodulispaces.Forthe rst,sinceitislocalonCitsucestoconsiderthecaseofjustonedivisor.Indeed,sinceExample2.4.7assumesthatthedivisorsaredisjoint,onecancoverCbytheZariskiopensetsCn[j6=iDj;1in:ThecaseofasingledivisorwasdoneinCorollary2.3.7.210 3.ThecanonicalmorphismM!Misanisomorphism.Proof:WeclaimthatthesearelocalonX.Thesecondandthirdclearlyare.Forthe rst,notethatgivenapresentationP!XandapresentationQ!PXX(L;s;r)oneobtainsapresentationQ!X(L;s;r),andapply[LMB,13.2.4].SowecanassumeX=SpecAandListrivialonX.ByExample2.4.1,X(L;s;r)=[SpecB=r],whereB=A[x]=(xr�s)andractsbytx=t�1xandta=afora2A.TheinvertiblesheafFon[SpecB=r]isequivalenttoaninvertibleB-moduleMtogetherwithanactionofronMwhichiscompatiblewiththeractiononB(e.g.,thisfollowsfromfpqcdescent[LMB,13.5.5]).AfterlocalizingonSpecA,wecanassumethatMisfreeasaB-module(thisfollowsfrom[Ei,Ex.4.13]).Sincerisdiagonalizable,MsplitsasadirectsumM=Mi2Z=(r)Mi;wheretheactionofronMiisgivenbytm=tim[Ja,x2.11].Bycompatibilityoftheraction,eachMiisanA-moduleandmultiplicationbyxsendsMitoMi�1.SinceMiisaprojectiveA-moduleandMisafreeB-module,itfollowsthatMiisinvertible(otherwisexr�1wouldannihilateM).BylocalizingagainonSpecA,wecanassumethateachMiisafreeA-module.Nowthe rststatementreducestoshowingthatthenaturalmorphism :M0 AB!Misanisomorphism.By[Ei,4.4a],itsucestoshowthat issurjective.SincemultiplicationbyxonMisgraded,xMisagradedsubmoduleofM,soM=xMsplitsasadirectsumofMi=xMi+1.Thehypothesis(F)=0impliesthattheinducedr-actiononM=xMistrivial,soMi=xMi+1=0foralli6=0.Itfollowsthat issurjective,whichprovesstatement1.ThetautologicalsheafTisrepresentedbyBwithther-actiontxi=t1�ix,andthetautologicalsectionisrepresentedbyx.Sostatement2reducestoshowingthatmul-tiplicationbyxkisanisomorphismfromM0toM�k.ThisfollowsfromthefactthatMi=xMi+1=0fori6=0.Forstatement3,notethatgivenanA-moduleNrepresentingM,NisrepresentedbyN AB,withNbeingther-invariantsubmodule.2Corollary3.1.2AssumethatZisconnectedandnonemptyandletFbeaninvertiblesheafonX(L;s;r).ThenthereisaninvertiblesheafMonXandanintegerksuchthat0krandF=M Tk:Moreover,kisuniqueandMisuniqueuptoisomorphism.Proof:Wede nektobetheintegerin[0;r�1]representedby(F).Byconstructionof,F T�ksatis esthehypothesisofTheorem3.1.1.LetM=(F T�k).Theorem12 Proof:Theconclusionisobviouswhenri=1,soassumeri�1.ByCorollary3.2.1,wehaveadecompositionGT0i= L QTkii,andbyCorollary3.2.2,thepullbackofthetautologicalsection0igoestoasectionoftheform sQkii.RaisingbothsidestothepowerriandusingtheuniquenessstatementofCorollary3.2.1andthefactthatg(Di)=Ei,itfollowsthatOC(Di)=Lri OC(Pj`jDj)byanisomorphismsendingsDitosriQjs`jDjwhere`j=rikj=rj.Bycomparingvanishingloci,itfollowsthatkj=0forj6=i.Sincethegeometric bersofarenodalcurveswhoseintersectionwithDiisasinglesmoothpoint,itfollowsthatsdoesnotvanishatanypointofCandkiequals1.ThusListrivialandGT0i=Ti.2RemarkItfollowsthatanytwomorphismsCD;~r!BE;~rovergare2-isomorphic.3.3Classi cationFixaschemeX,ane ectiveCartierdivisorDX,andapositiveintegerr.WearenowreadytoclassifycertainmorphismsCD;~r!XD;r(hopefullythetwousesoftheletterrwillnotcauseconfusion).Let :CD;~r!Cbetheprojectionand xamorphismF:CD;~r!XD;r.ByProposition3.0.1,everymorphismCD;~r!Xisoftheformf forauniquemorphismf:C!X.ThusthemorphismFisgivenbyaquadruple(f;M;t;'),wheref:C!Xisamorphism,MisaninvertiblesheafonCD;~rwithglobalsectiont,and':Mr! fOX(D)isanisomorphismsuchthat'(tr)= f(sD).CD;~rF//  XD;r Cf// X(3.3.1)ByCorollary3.2.1,theinvertiblesheafMuniquelydeterminespositiveintegerskiwith0kiri�1andaninvertiblesheafLonCsothatM= L QTkii.Weneedacriterionforamorphismtoberepresentable.Thefollowinglemmaisaconsequenceof[Co,2.2.5-7],andforDeligne-Mumfordstacksaproofcanbefoundin[AV,4.4.3].Firstwe xsomenotation.Ify:Speck!YisageometricpointofanalgebraicstackY,letGybethegroupschemeoverkgivenbyGy(R)=f2�automorphismsofSpecR!Speck!Ygforanyk-algebraR.Thiscanbethoughtofastheautomorphismgroupschemeofy,andforaDeligne-MumfordstackY,itissimplythe2-automorphismgroupofy.Lemma3.3.2AmorphismofalgebraicstacksY!Zisrepresentableifandonlyifforeveryalgebraicallyclosed eldkandeverymorphismy:Speck!Ywithinducedmorphismz:Speck!Z,theinducedmorphismGy!Gzisinjective.Proposition3.3.3ThemorphismFisrepresentableifandonlyifforeveryi,ridividesrandkiisrelativelyprimetori.14 Theorem3.3.6Let:C!SbeasmoothfamilyofcurvesoveraconnectedNoetherianbaseS,andletDiC,i=1;:::;n,beann-tupleofdisjointe ectiveCartierdivisorswhichmapisomorphicallyontoS.Fixann-tupleofpositiveintegers~%,andlet~rbedeterminedfrom~%by(3.3.5).Givenamorphismf:C!Xsuchthat1.no berofmapsintoDand2.thereexistsane ectiveCartierdivisorZC(necessarilyuniquebyLemma5.3)suchthatfD=rZ+P%iDi,thereisaunique(upto2-isomorphism)representablemorphismCD;~r!XD;rofcontacttype~%whichmakesdiagram3.3.1commute.Conversely,anyrepresentablemorphismF:CD;~r!XD;rofcontacttype~%suchthatF�1Gdoesnotcontainany berscomesfromsuchanf.HereGisthegerbeofXD;r(De nition2.4.4).Proof:Itremainstoproveonlythe rstpart.ArepresentablemorphismF:CD;~r!XD;r,ifitexisted,wouldbegivenbyaquadruple(f;M;t;')asabove.Wewanttoshowthatthereisonlyonesuchquadrupleuptoisomorphism.Themorphismf:C!Xisalreadygiven.LetL=O(Z)andletsbethecanonicalsectionofLvanishingonZ.LetM= L QTkii,andlett= sQkii.Thencondition2impliesthatthereisanisomorphism':Mr! fO(D)sendingtrto fsD.Thisde nesamorphismFofcontacttype~%.Ifwechooseadi erentquadruple(f;N;u; )givingrisetoamorphismofcontacttype~%,thenwehavealreadyshownthatthereisaninvertiblesheafL0onCandasections0sothatN= L0 QTkiiandu= s0Qkii.IfZ0Cisthevanishinglocusofs0,thenLemma5.3impliesthatZ=Z0,sothereisanisomorphismL!L0sendingstos0.ThisinducesanisomorphismM!Nsendingttou,anditnecessarilysends'to sincetanduarenonzeroonadenseopenset.24TwistedstablemapsInthissection,wecomparetwistedstablemapsintoXD;rwithordinarystablemapsintoX.WeassumethatXisprojectiveovera eldkandthatrisinvertibleink.Webeginwithanobservationaboutnodaln-pointedcurvesoveraNoetherianschemeS.Inthestandardde nition,onehasa atmorphism:C!Swhosegeometric bersarenodalcurvestogetherwithnsectionsi:S!Cwhoseimagesaredisjointandwhichdon'tpassthroughanysingularpointsofthe bers.Itisequivalenttoreplacethensectionsiwithndisjointe ectiveCartierdivisorsDiCwhichmapisomorphicallytoS.Indeed,anysectionofaseparatedmorphismisaclosedembedding(thisfollowsfrom[Gr2,8.11.5]),andgivenasectionwhichdoesn'tpassthroughanynodes,itfollowsfromLemma5.1thatitsimageisane ectiveCartierdivisor.Conversely,ifitise ectiveCartierandmapsisomorphicallyontoS,thenitsrestrictiontoeach berisapointde nedbyasingleequation,soitcan'tbeanodeofthe ber.Therefore,weconsideranodaln-pointedcurveoverStobegivenbythedata(:C!S;D1;:::;Dn).16 LetUg;n(XD;r; )Kg;n(XD;r; )betheopensubstackconsistingofstablemapsfromsmoothtwistedcurveswhichdonotmapintothegerbeGXD;rofDe nition2.4.4.Toseethatthisisopen,itsucestoseethatforanyfamily(:C!S;1;:::;n;F:C!XD;r)ofstablemapsintoXD;r,thesetofs2Ssuchthatthe berCsissmoothanddoesnotmapintoGisopen.Thisisaneasyconsequenceofthefactthatisbothopenandclosed.ByTheorem4.1,anobjectofUg;n(XD;r; )overaconnectedschemeSisequivalenttothedata(:C!S;D;~r;F:CD;~r!XD;r),where(:C!S;D)isasmoothn-markedcurveoverS,~risann-tupleofpositiveintegers,andFisastablemorphismsuchthatno berofmapsintoDundertheinducedmorphismf:C!X.ForFtobestablemeansthatitisrepresentableandfisstable(asamorphismfromann-markedcurveintoX).WewillthereforedenoteobjectsofUg;n(XD;r; )by(:C!S;D;~r;F).Equation3.3.4associatestoanysuchmorphismFann-tupleofintegerscalledthecontacttype.ItfollowsfromLemma3.2.3thatthecontacttypede nesnlocallyconstantfunctionsonthemodulistackofstablemaps.LetUg;n(XD;r; ;~%)Ug;n(XD;r; )betheopenandclosedsubstackconsistingofstablemapswhichhavecontacttype~%.LetVg;n(X; )Kg;n(X; )betheopensubstackconsistingofstablemapsfromsmoothcurveswhichdonotmapintoD.BytheremarkfollowingLemma5.2,foranystablemap(:C!S;D;f)inVg;n(X; ),f�1Disane ectiveCartierdivisor(whichwedenotefD).LetVg;n(X; ;~%)bethestackwhoseobjectsoveraschemeSarequadruples(:C!S;D;f;Z),where(:C!S;D;f)isanobjectofVg;n(X; )andZCisane ectiveCartierdivisorsuchthatfD=rZ+P%iDi,andwhosemorphismsaremorphismsofstablemapswhichpreserveZ.WehaveamorphismVg;n(X; ;~%)!Vg;n(X; )andweclaimthatthisisaclosedembedding.Let(:C!S;D;f)beanobjectofthesecondstack,andletTbethe berproduct,asinthediagrambelow.Vg;n(X; ;~%)2// Vg;n(X; )TOO //  2SOO  Hilbd0C=Sh// HilbdC=SLetd=D andletd0satisfyd=rd0+P%i,whichisanintegersinceweassumed~%tobeadmissible.ThestackTisisomorphictothestackwhoseobjectsoveraschemeUarepairs(g;Z),whereg:U!SisamorphismandZgCisane ectiveCartierdivisorsuchthat~gfD=rZ+P%i~gDi.Here~g:gC!Cistheprojection.SuchaZisnecessarily atoverSbyLemma5.2,soitde nesamorphismfromTtotheHilbertfunctorHilbd0C=Sparametrizinglengthd0subschemesofthe bersofC!S.SinceXisprojectiveandf:C!Xisstable,CisprojectiveoverS.Inthissituation,theHilbertfunctorisrepresentablebyaschemewhichisprojectiveoverS[Gr1,3.2].Wehaveamorphismh:Hilbd0C=S!HilbdC=SsendingZtorZ+P%iDiwhichmakesa bersquareasinthe18 Proof:We rstshowthattheidealsheafofDislocallygeneratedbyasingleelement.Forthis,itsucestoassumethatS=SpecAandX=SpecB,whereAandBarelocalringswithmaximalidealsmandM.LetIbetheidealofD.Wehaveanexactsequence.0// I// B// B=I// 0SincejDis at,Tor1A(B=I;A=m)=0,sothisremainsexactaftertensoringwithA=m.ThusI=mIistheidealoftherestrictionofDtoSpecB=mB.Thisisgeneratedbyasingleelementbyhypothesis,soI=MIisalso,andNakayama'sLemmaimpliesthatIisalsogeneratedbyasingleelement.WeclaimthatanylocalgeneratoroftheidealsheafofDisanonzerodivisor.Ifnot,thenthereisapointx2DwhichisanassociatedpointofX,meaningthatthemaximalidealofitslocalringconsistsofzerodivisors.Lets=(x).Sinceis at,itfollowsthatxisanassociatedpointofXs.Forexample,thisfollowsfromthefactthatdepthisadditivefor atmorphisms[Ma,23.3].ButthiscontradictsthehypothesisthatDsXsisane ectiveCartierdivisor.2Lemma5.2Let:X!Sbea atmorphismofNoetherianschemesallofwhose bersareintegral.LetDXbeaclosedsubschemewhoseidealsheafislocallygeneratedbyasingleelementandwhichdoesnotcontainany berof.ThenDis atoverS,andinparticular,DXisane ectiveCartierdivisor.Proof:ThatDXise ectiveCartierfollowsfromLemma5.1giventhatDis atoverS.Toshow atness,wereducetothelocalcaseandusethenotationfromLemma5.1.Bythelocalcriterion[Ei,6.8]and atnessof,weneedonlyshowthatI=mI!B=mBisinjective.WearegiventhatIisgeneratedbyasingleelementf,soitsucestoshowthatfg2mBifandonlyifg2mB.ButthisfollowssincemBisaprimeidealwhichdoesnotcontainf.2RemarkOneapplicationofLemma5.2isthefollowing.LetSbeaNoetherianscheme,let:C!Sbeasmoothmorphismwithconnected bers,letf:C!XbeamorphismtoaschemeX,andletDXbeane ectiveCartierdivisor.Ifno berofmapsintoD,thenf�1Disane ectiveCartierdivisor.Lemma5.3LetSbeaNoetherianscheme,let:C!Sbeasmoothmorphismofrelativedimension1withgeometricallyconnected bers,letrbeapositiveintegerwhichisinvertibleonS,andletZCbeane ectiveCartierdivisorwhichdoesnotcontainany berof.IfZ1andZ2aretwoe ectiveCartierdivisorsonCsuchthatrZ1=rZ2=Z,thenZ1=Z2.Proof:FirstnotethatitsucestoprovethelemmaafterabasechangeS0!SwhereS0isthespectrumofanArtinianlocalring.Indeed,ifZ16=Z2,thenthereisapointp2CsuchthattheidealsofZ1andZ2di erinOp.Thisimpliesthattheydi erinthecompletioncOp,sotheydi erinsomequotientOp=mk,wheremOpisthemaximalideal.SoZ1andZ2woulddi erafterthebasechangeSpecOp=mk!S.20 [Gr2]A.Grothendieck,ElementsdegeometriealgebriqueIV,PublicationsMathematiquesdel'I.H.E.S.24,28(1965-6).[Ja]J.C.Jantzen,RepresentationsofAlgebraicGroups,Amer.Math.Soc.,2003.[LMB]G.LaumonandL.Moret-Bailly,Champsalgebriques,Springer-Verlag,2000.[Li]J.Li,Stablemorphismstosingularschemesandrelativestablemorphisms,J.Dif-ferentialGeom.57(2001)509{578.[MO]K.MatsukiandM.Olsson,Kawamata-ViehwegvanishingasKodairavanishingforstacks,Math.Res.Lett.12(2005)207{218.[Ma]H.Matsumura,CommutativeRingTheory,CambridgeUniv.Press,1986.[Ol1]M.Olsson,Logarithmicgeometryandalgebraicstacks,Ann.Sci.EcoleNorm.Sup.36(2003)747{791.[Ol2]M.Olsson,On(log)twistedcurves,preprint.UniversityofMichigan2074EastHallAnnArbor,MI48109-1043cdcadman@umich.edu22