/
Puzzles Littlewood-Richardson coefficients and horn inequalities Puzzles Littlewood-Richardson coefficients and horn inequalities

Puzzles Littlewood-Richardson coefficients and horn inequalities - PDF document

natalia-silvester
natalia-silvester . @natalia-silvester
Follow
379 views
Uploaded On 2017-04-04

Puzzles Littlewood-Richardson coefficients and horn inequalities - PPT Presentation

Whocares Howcanoneevaluatethem Whatdotheycount ArethereconditionstoseewhetherornotagivenLRcoecientisnonzero 392 LittlewoodRichardsonLRcoecientscarenonnegativeintegernumbersdependingont ID: 335499

Whocares? Howcanoneevaluatethem? Whatdotheycount? ArethereconditionstoseewhetherornotagivenLR-coecientisnon-zero? 3/92 Littlewood-Richardson(LR)coecientscarenon-negativeintegernumbersdependingont

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Puzzles Littlewood-Richardson coefficie..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Littlewood-Richardson(LR)coecientscarenon-negativeintegernumbersdependingonthreenon-negativeintegervectors,,ordereddecreasingly. Whocares? Howcanoneevaluatethem? Whatdotheycount? ArethereconditionstoseewhetherornotagivenLR-coecientisnon-zero? 3/92 Littlewood-Richardson(LR)coecientscarenon-negativeintegernumbersdependingonthreenon-negativeintegervectors,,ordereddecreasingly. Whocares? Howcanoneevaluatethem? Whatdotheycount? ArethereconditionstoseewhetherornotagivenLR-coecientisnon-zero? 5/92 Littlewood-Richardsoncoecients:c SchurfunctionsfsgformaZ-basisfortheringofsymmetricfunctionsss=Xcs: IForwhichdoessscontainsasa(positive)summand? IGiven,andwhendoesonehavec�0? ThetensorproductoftwoirreduciblepolynomialrepresentationsVandVofthegenerallineargroupGLd(C)decomposesintoirreduciblerepresentationsofGLd(C)V V=Xl()dcV: IGivenand,forwhichdoesVappear(withpositivemultiplicity)inV V?IGiven,andwhendoesonehavec�0? 7/92 Littlewood-Richardsoncoecients:c SchurfunctionsfsgformaZ-basisfortheringofsymmetricfunctionsss=Xcs: IForwhichdoessscontainsasa(positive)summand? IGiven,andwhendoesonehavec�0? ThetensorproductoftwoirreduciblepolynomialrepresentationsVandVofthegenerallineargroupGLd(C)decomposesintoirreduciblerepresentationsofGLd(C)V V=Xl()dcV: IGivenand,forwhichdoesVappear(withpositivemultiplicity)inV V?IGiven,andwhendoesonehavec�0? 9/92 Littlewood-Richardsoncoecients:c SchurfunctionsfsgformaZ-basisfortheringofsymmetricfunctionsss=Xcs: IForwhichdoessscontainsasa(positive)summand? IGiven,andwhendoesonehavec�0? ThetensorproductoftwoirreduciblepolynomialrepresentationsVandVofthegenerallineargroupGLd(C)decomposesintoirreduciblerepresentationsofGLd(C)V V=Xl()dcV: IGivenand,forwhichdoesVappear(withpositivemultiplicity)inV V?IGiven,andwhendoesonehavec�0? 11/92 Littlewood-Richardsoncoecients:c SchubertclassesformalinearbasisforH(G(d;n)),thecohomologyringoftheGrassmannianG(d;n)ofcomplexd-dimensionallinearsubspacesofCn,=Xd(n�d)c: ThereexistnnnonsingularmatricesA,BandC,overalocalprincipalidealdomain,withSmithinvariants=(1;:::;n),=(1;:::;n)and=(1;:::;n)respectively,suchthatAB=Cifandonlyifc�0. ThereexistnnHermitianmatricesA,BandC,withintegereigenvaluesarrangedinweaklydecreasingorder=(1;:::;n),=(1;:::;n)and=(1;:::;n)respectively,suchthatC=A+Bifandonlyifc;�0. 13/92 Littlewood-Richardsoncoecients:c SchubertclassesformalinearbasisforH(G(d;n)),thecohomologyringoftheGrassmannianG(d;n)ofcomplexd-dimensionallinearsubspacesofCn,=Xd(n�d)c: ThereexistnnnonsingularmatricesA,BandC,overalocalprincipalidealdomain,withSmithinvariants=(1;:::;n),=(1;:::;n)and=(1;:::;n)respectively,suchthatAB=Cifandonlyifc�0. ThereexistnnHermitianmatricesA,BandC,withintegereigenvaluesarrangedinweaklydecreasingorder=(1;:::;n),=(1;:::;n)and=(1;:::;n)respectively,suchthatC=A+Bifandonlyifc;�0. 15/92 1.SchurfunctionsPartitionsandYoungdiagrams Fixapositiveintegerr1. =(1;:::;r),with1r�0positiveintegers,isapartitionoflengthl()=r. Eachpartitionisidenti edwithaYoung(Ferrer)diagram consistingofjj=1++rboxesarrangedinrbottomleftadjustedrowsoflengths1r�0. Example =(4;3;2),jj=9,l()=3= 17/92 1.SchurfunctionsPartitionsandYoungdiagrams Fixapositiveintegerr1. =(1;:::;r),with1r�0positiveintegers,isapartitionoflengthl()=r. Eachpartitionisidenti edwithaYoung(Ferrer)diagram consistingofjj=1++rboxesarrangedinrbottomleftadjustedrowsoflengths1r�0. Example =(4;3;2),jj=9,l()=3= 19/92 YoungTableaux nr,=(1;:::;r),l()=r. AsemistandardtableauTofshapeisa llingoftheboxesoftheFerrerdiagramwithelementsiinf1;:::;ngwhichisIweaklyincreasingacrossrowsfromlefttorightIstrictlyincreasingupcolumns Thastype =( 1;:::; n)ifThas ientriesequali. Example =(4;3;2),l()=3,n=6 T = 5 6 4 4 6 2 3 4 6 semistandardtableauTofshape=(4;3;2); =(0;1;1;3;1;3). 21/92 YoungTableaux nr,=(1;:::;r),l()=r. AsemistandardtableauTofshapeisa llingoftheboxesoftheFerrerdiagramwithelementsiinf1;:::;ngwhichisIweaklyincreasingacrossrowsfromlefttorightIstrictlyincreasingupcolumns Thastype =( 1;:::; n)ifThas ientriesequali. Example =(4;3;2),l()=3,n=6 T = 5 6 4 4 6 2 3 4 6 semistandardtableauTofshape=(4;3;2); =(0;1;1;3;1;3). 23/92 YoungTableaux nr,=(1;:::;r),l()=r. AsemistandardtableauTofshapeisa llingoftheboxesoftheFerrerdiagramwithelementsiinf1;:::;ngwhichisIweaklyincreasingacrossrowsfromlefttorightIstrictlyincreasingupcolumns Thastype =( 1;:::; n)ifThas ientriesequali. Example =(4;3;2),l()=3,n=6 T = 5 6 4 4 6 2 3 4 6 semistandardtableauTofshape=(4;3;2); =(0;1;1;3;1;3). 25/92 Schurfunctions Example n=7T= 5 6 4 4 6 2 3 4 6 x (T)=x01x2x3x34x5x36x07 (T)=(0;1;1;3;1;3;0) 27/92 Schurfunctionscontinued Letx=(x1;:::;xn)beasequenceofvariables. Giventhepartition,theSchurfunction(polynomial)s(x)associatedwiththepartitionisthehomogeneouspolynomialofdegreejjonthevariablesx1:::;xns(x)=XTX (T)whereTrunsoverallsemistandardtableauxofshapeonthealphabetf1;:::;ng. Example =(2;1),jj=3 n=3 2 1 1 3 1 1 2 1 2 3 1 2 2 1 3 3 1 3 3 2 2 3 2 3 : s(x1;x2;x3)=x21x2+x21x3+x1x22+2x1x2x3+x1x23+x22x3+x2x23: d=2;s(x1;x2)=x21x2+x1x22: 29/92 Schurfunctionscontinued Letx=(x1;:::;xn)beasequenceofvariables. Giventhepartition,theSchurfunction(polynomial)s(x)associatedwiththepartitionisthehomogeneouspolynomialofdegreejjonthevariablesx1:::;xns(x)=XTX (T)whereTrunsoverallsemistandardtableauxofshapeonthealphabetf1;:::;ng. Example =(2;1),jj=3 n=3 2 1 1 3 1 1 2 1 2 3 1 2 2 1 3 3 1 3 3 2 2 3 2 3 : s(x1;x2;x3)=x21x2+x21x3+x1x22+2x1x2x3+x1x23+x22x3+x2x23: d=2;s(x1;x2)=x21x2+x1x22: 31/92 K =K ,with anypermutationof . Corollary TheSchurfunctions(;x)=P weakcompositionofjjK; x ;isahomogeneoussymmetricfunctioninx1;:::;xn. 33/92 ProductofSchurfunctions TheSchurfunctionssformanadditivebasisfortheringofthesymmetricfunctions. AproductofSchurfunctionssscanbeexpressedasanon-negativeintegerlinearsumofSchurfunctions:ss=Xcs:35/92 2.Littlewood-Richardsonrule=(3;1);=(2;2) 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 invalidtableaux 1 1 2 211 1 2 2 1 1221 37/92 2.Littlewood-Richardsonrule=(3;1);=(2;2) 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 invalidtableaux 1 1 2 211 1 2 2 1 1221 39/92 2.Littlewood-Richardsonrule=(3;1);=(2;2) 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 invalidtableaux 1 1 2 211 1 2 2 1 1221 41/92 2.Littlewood-Richardsonrule=(3;1);=(2;2) 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 invalidtableaux 1 1 2 211 1 2 2 1 1221 43/92 2.Littlewood-Richardsonrule=(3;1);=(2;2) 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 invalidtableaux 1 1 2 211 1 2 2 1 1221 45/92 Littlewood-Richardsonrule=(3;1);=(2;2) 2 2 1 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 ss=s53+s521+s431+s422+s4211+s332+s3221 47/92 Littlewood-Richardsonrule=(3;1);=(2;2) 2 2 1 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 ss=s53+s521+s431+s422+s4211+s332+s3221 49/92 Littlewood-Richardsonrule=(3;1);=(2;2) 2 2 1 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 ss=s53+s521+s431+s422+s4211+s332+s3221 51/92 Littlewood-Richardsonrule=(3;1);=(2;2) 2 2 1 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1 ss=s53+s521+s431+s422+s4211+s332+s3221 53/92 =(3;1);=(2;1) 2 1 1 2 1 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 2 1 1 1 2 1 2 1 1 ss=s52+s511+s43+2s421+s4111+s331+s322+s3211 c421=2 55/92 =(3;1);=(2;1) 2 1 1 2 1 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 2 1 1 1 2 1 2 1 1 ss=s52+s511+s43+2s421+s4111+s331+s322+s3211 c421=2 57/92 =(3;1);=(2;1) 2 1 1 2 1 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 2 1 1 1 2 1 2 1 1 ss=s52+s511+s43+2s421+s4111+s331+s322+s3211 c421=2 59/92 =(3;1);=(2;1) 2 1 1 2 1 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 2 1 1 1 2 1 2 1 1 ss=s52+s511+s43+2s421+s4111+s331+s322+s3211 c421=2 61/92 =(3;1);=(2;1) 2 1 1 2 1 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 2 1 1 1 2 1 2 1 1 ss=s52+s511+s43+2s421+s4111+s331+s322+s3211 c421=2 63/92 =(3;1);=(2;1) 2 1 1 2 1 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 2 1 1 1 2 1 2 1 1 ss=s52+s511+s43+2s421+s4111+s331+s322+s3211 c421=2 65/92 =(3;1);=(2;1) 2 1 1 2 1 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 2 1 1 1 2 1 2 1 1 ss=s52+s511+s43+2s421+s4111+s331+s322+s3211 c421=2 67/92 Littlewood-Richardsonrule cisthenumberoftableauxwithshape=andcontentsatisfyingIIfonereadsthelabeledentriesinreversereadingorder,thatis,fromrighttoleftacrossrowstakeninturnfrombottomtotop,atanystage,thenumberofi'sencounteredisatleastaslargeasthenumberof(i+1)'sencountered,#10s#20s:::. 69/92 3.IntegerHives(99) Knutson-Tao(99) Ann-integerhiveisatriangulargraphmadeof(n+12)+(n2)=n2unitarytrianglesand(n+22)verticeswithnon-negativeedgelabelssatisfyingasetofconditionsgivenbylinearinequalitiescalledhiveconditionsn=5 70/92 (Edge)Hiveconditions Twodistincttypesofelementarytriangleswithnon-negativeintegeredgelabelling 71/92 (Edge)Hiveconditionscontinued Threedistincttypesofrhombiwithnon-negativeintegeredgelabelling 72/92 Knutson-TaoHives99 TheLittlewood-RichardsoncoecientscisthenumberofHiveswithboundary,and.75/92 4.Hornconjecture(62) ThereexistnnHermitianmatricesA,BandC,withintegereigenvaluesarrangedinweaklydecreasingorder=(1;:::;n),=(1;:::;n)and=(1;:::;n)respectively,suchthatC=A+Bifandonlyif,andsatisfyacertainhugesystemoflinearinequalities. 77/92 Horninequalities LetN=f1;2;:::;ng,thenfor xedd,with1dn,letI=fi1;i2;:::;idgN. LetI;J;KNwith#I=#J=#K=dandordereddecreasingly.Onede nesthepartitions (I)=I�(d;:::;2;1); (J)=J�(d;:::;2;1); (K)=K�(d;:::;2;1): LetTndbethesetofalltriples(I;J;K)withI;J;KNand#I=#J=#K=dsuchthatc (K) (I); (J)�0: 79/92 Horninequalitiescontinued ;;aresaidtosatisfytheHorninequalitiesifnXk=1k=nXi=1i+nXj=1jXk2KkXi2Ii+Xj2Jjforalltriples(I;J;K)2Tndwithd=1;:::;n�1. NotallofHorn'sinequalitiesareessential.Theessentialinequalitiesarethoseforwhich(I;J;K)satisfyc (K) (I); (J)=1:81/92 WheredoHorninequalitiescomefrom? Imposeonan-hiveapuzzleofsizen.83/92 Partitionsand01-strings Fixpositiveintegers0dnandconsiderad(n�d)rectangle. d=4n=10 86/92 Puzzlerule (Knutson-Tao-Woodward)cisthenumberofpuzzleswith,andappearingas01-stringsalongtheboundary. 88/92 Example I=f1;3g;J=f1;4g;K=f2;4gisaHorntriplesinceI,J,andKspecifythepositionsofthe0'sontheboundaryofthepuzzle 90/92 Examplecontinued I=f1;3g;J=f1;4g;K=f2;4gisaHorntriple.Superimposethepuzzle,withpinkedgesspeci edbythosesetsI;J;K,onahiveofsize5andexplorethehiveconditions 91/92