/
Averaging Sequences Deranged Mappings and a Problem of Averaging Sequences Deranged Mappings and a Problem of

Averaging Sequences Deranged Mappings and a Problem of - PDF document

olivia-moreira
olivia-moreira . @olivia-moreira
Follow
385 views
Uploaded On 2015-05-28

Averaging Sequences Deranged Mappings and a Problem of - PPT Presentation

Calkin Department of Mathematical Sciences Clemson University Clemson SC 296341907 calkinmathclemsonedu E Rodney Caneld Department of Computer Science The University of Georgia Athens GA 30602 USA erccsugaedu Herbert S Wilf Department of Mathematics ID: 76161

Calkin Department Mathematical

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Averaging Sequences Deranged Mappings an..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

AveragingSequences,DerangedMappings,andaProblemofLampertandSlaterNeilJ.CalkinDepartmentofMathematicalSciencesClemsonUniversityClemson,SC29634-1907calkin@math.clemson.eduE.RodneyCan eldDepartmentofComputerScienceTheUniversityofGeorgiaAthens,GA30602,USAHerbertS.WilfDepartmentofMathematicsUniversityofPennsylvaniaPhiladelphia,PA19104-6395wilf@math.upenn.eduDedicatedtothememoryofGian-CarloRotaAbstractWeansweraquestionposedbyLampertandSlater[7].Considerasequenceofrealnumbersintheinterval[01]de nedby=0,=1,and,forequalsanaverageofprecedingtermsinthesequence.Theweightsusedintheaverageareprovidedbyatriangulararrayn;kofprobabilitieswhoserowsumsare1.Whatisthelimitingbehaviorofasequencesode ned?FortheLampert-Slatersequencetheweightn;kistheprobabilitythatarandomlychosen xed-pointfreemappingof[+1]omitsexactlyelementsfromitsimage.Togainsomeinsightintothisaveragingprocess,we rstanalyzewhathappenswithasimplerarrayofweightsn;kde nedintermsofbinomialcoecients.Oneofourtheoremsstatesthatiftheweightsn;karecloselyconcentratedandthesequenceexhibitsoscillatorybehavioruptoacertaincomputablepoint,thenitwillexhibitoscillatorybehaviorfromthenon.WecarryoutthecomputationsnecessarytoverifythattheLampert-Slatersequencesatis esthehypothesesofthelattertheorem.Aresultonmartingales[1]isusedtoprovethecloseconcentrationoftheweightsn;kAMS-MOSSubjectClassi cation(1990):05A16,60C05,60G46 1IntroductionIn[7],thefollowingquestionisraised.Beginwithplayers,andrepeatthefollowing\knockout"procedurewhilethereremaintwoormoreplayers.Eachremainingplayerchoosesanotherplayeruniformlyatrandom;thesetofplayerssochosendropoutofthegame;thatis,weknockoutthechosenplayers.Thegameterminateswhenthereisasingleplayer,ornoplayer.LampertandSlaterintheirpaperconsidermoregeneralknockoutprocessesonagraphduringasingleroundofwhicheachvertexchoosesatrandomaneighborforknockingout.Theprocessdescribedabovecorrespondstobeingthecompletegraphonvertices.Thequestionis,asafunctionof=thenumberofplayerswhobeginthegame,whatistheexpectednumberofplayersremainingattheendoftheknockoutprocess?Clearly,thenumbersallliebetween0and1.Ourinitialcomputationsthrough=170revealedagentleoscillationbetweenmaximaintheneighborhoodof053andminimaintheneighborhoodof047,withanapparentslighttendencytowardsconvergence.Onemightconjectureatthatpointthatthelimitis12,andthattheconvergenceisslow.Tothecontrary,however,wehaveproventhatforappropriateconstantsa;b;andalllargecos(2:Thisimpliesthatthesequencehasnolimit.(AlllogarithmsinthispaperaretothebaseWhatistheconnectionbetweentheLampert-Slatersequenceandderangedmappings?Aderangedmappingoftheset[;:::nisafunctionnn]![n]suchthatforall.Thenumberofsuchfunctionsis(.Letbetheprobabilitythatarandomlychosenderangedmappingof[+1]omitsexactlyelementsfromitsimage.ThentheLampert-SlatersequenceisgivenbyThereadermaynotethattheprobabilitiessode nedarenonzeroonlyforintherange1,becauseanymappingof[+1]whichomitsexactlyelementsfromitsimageisconstant,andhencenotderanged.Nevertheless,wewritethebasicrecursion(2)asabove,withthesummationovertherange0,becausewewillwishtoconsiderotherunderlyingarrays.InSection2,inparticular,weanalyzeasequencede nedby(2)withadi erentunderlyingtriangulararray.InSection3wegatherthenecessaryresultsonderangedmappings.InSection4,weprove(Theorem3)thatifthegivenprobabilitiessatisfycertainproperties(foremostofwhichiscloseconcentration),andifasucientlylongsegmentofthesequenceexhibitsatypeofoscillatorybehavior,then,infact,thesequenceoscillatesinde nitely.Finally,inSection6,wedescribethecomputationsusedtoverifythattheprobabilitiesandsequenceposedbyLampertandSlaterdoindeedsatisfythehypothesesofTheorem3.Weconcludebyproving(1).Therolesofandchangefromsectiontosection.Thede nitionofisgivenatthestartofeachsection,andalwaysisdeterminedby(2). 2TheCoinFlippingGameInthissectionweconsiderthefollowingproblem:initiallycoinsareallheadsuponatabletop.Repeatthefollowingprocessuntilonlyoneornoneofthecoinsisheadsup: ipexactlyonceallofthecoinsthatarestillshowingheads.Whatistheprobabilitythatweterminatewithexactlyonehead?ThisquestionwasraisedasamonthlyProblemin1991andasolutionwasgivenin1994[9].Theanswerwasgiveninjustsucientdetailtoanswerthequestionpreciselyasasked,whichwastodecideifthelimitexistsornot(itdoesn't).Herewegiveamoredetailedsolutiontogivesomeadditionalinsightintothesortofbehaviorthatsuchproblemsexhibit,inacontextthatissimplerthantheknockoutsproblemthatwillbediscussedbelow,andisthemainobjectofthispaper.Itisclearthatthesequenceisgivenbytherecursion(2)withtheunderlyingprobabilities:=(2Weshallcomputetheordinarygeneratingfunctionforthissequence.Summingover2,weobtain 2=�x 2+2 2�xXn0qnx 2�xn;sof(x 2+2 2�xfx andnow,byiteratingthis,weobtain 2+x x)2+2x 3x)2+4x 8�7x+8x )2+x 21Xnn Withthisgeneratingfunctionwearenowreadytoprovethenonexistenceofthelimit.Infactwewillgivethreedi erentproofsofthis.Let'sstateitasatheorem. Theorem1Theprobabilityofterminatingwithexactlyoneheadinan-headgamedoesn'ttendtoalimit.2.1FirstproofofTheorem1Nowwecangetanexplicit, niteformulaforthecoecients.Indeedwehave 2Xm02�m1 2�m)x)2=x +1)(1+1) +1) +1) x`j `j!(�1 Thecoecientofgivesus 2Xj n�1j!(� 1�2�j�1=n 28:n;1+Xj n�1j!(� a nite,explicitformulaforourcoecients.Sumsofthistypehaveappearedelsewhere.Preciselythissequenceistreatedintheanalysisofaprobabilisticmodelinnumbertheory[8].In[4]we ndadiscussionofthequantities Intermsofthem,our'saregivenby Nowaformulaforoursequencecanbereado fromthatofthe's,asgiveninthelatterpaper.Wehave 2log2 2n;1+Hn�1 2log2miH log2 mi log2mi log2 mi log2 wherethe'saretheharmonicnumbers.As,theaboveformulais 2log2mi log2milogNotethatisaperiodicfunctionoflog,toaccuracy(1).Asimilarformulaappearsin[5,Section5.2.2,equation(47)],whereitarisesintheasymptoticanalysisofasortingalgorithm.2.2SecondproofofTheorem1Thistimeweusethefactthatifexists,thenHence 21Xkk ��=) 21Xkk (1+(2Itiseasytoseethatthebehaviourofthiswhenissmallisclosetothebehaviourof 2Xk2k (1+2Write)=2(1+,and2.BytheEuler-Maclaurinsumformula, 2Z1(t)Z1(t)u0(t)=1 2log2 2Z1(t)u0(t)1 2log2 2Z10 )1�t (1+Intheintegral,ifwecutinhalf,weadd1totheargumentof,whichdoesn'tchangeitsvalue.Sotheintegralisinvariantunderhalvingof.Tolearnmore,wereplacebyitsFourierseriessin2nt n5 andintegratetermwise(whichHardyisfondofnotingcannotbejusti edbyabsoluteconvergencebutitcanbyboundedconvergence)toobtain, 2log2 2Z10 )1�t (1+ 2log2 2Xn11 102 1�t (1+ 2log2 2Xn11 sin(2)cos(2 (1+ 2Xn11 cos(2)sin(2 (1+ 2log2 2Xn11 cos(2 (log2)sinh(2log2) 2log2 (log2) sinh(2log2)cos(2showingthat)isperiodicinlog(andnotconstant),andhencethatdoesn'texist.2.3ThirdproofofTheorem1 whereisthefractionalpartofthebase-2logarithmofThisimpliesthatdoesn'ttendtoalimit.Toprovetheassertedasymptoticformula,weextractthecoecientof),to nd 21Xk�k1�2�kn�1:6 Hence, 21Xkt+�k 1�2t+�k n!n�1=1 21Xk=�t2�k 1�2�k Now,if3,then n!n�1 1�2+t 3 n!n�1= 1�n1=3 andso Now,if3,then n!n�1=e�2�k 2�k�2k andso 2Xk2�ke�2�k 2�k�2k no1 n=1 21Xk=�ke�2�k+O1 n=1 21Xk=+ke�2+k+O1 asclaimed.Bytakingmorecarewiththeexpansionof ,weobtain ns2()�1 2s3()+1 n2s3()�5 6s4( 8s5()+O1 n3;7 inwhich Thiscan,ofcourse,beexpandedtoany xednumberofterms.Bywayofexample,actualcomputationgives,and(0)+ ns21 2s3+1 n2s35 (0)+ 72135243049383PropertiesofDerangedMappingsThroughoutthissectionequalstheprobabilitythatarandomlychosenderangedmappingofofn+1]omitsexactlypointsfromitsimage,0.InSection5wegiveanalgorithmforcomputingtheseprobabilities.Theliteratureonrandommappingsisvast,seeforexample[6],althoughthe xed-point-freepropertydoesnotappearoften.In[2]theasymptoticdistributionformanystatisticsonmappingsisderived,includingthenormalityoftheimagesize.Ofcourse,thenumberofelementsomittedfromtherangedi ersfromthelatteronlybyaconstant.Itturnsoutwedonotneedinformationonthedistributionofthisstatisticsomuchasweneedaboundondeviationfromaveragebehavior;thatis,acloseconcentrationresult.ThenecessarytheoremappearsinChapter7(Martingales)ofthebook[1]byAlon,Spencer,andErd}os.Thetotalnumberofderangedmappingsof[+1]is,sinceinconstructingafunctionforeachintegerinthedomaintherearechoicesfor).Assigningeachofthesemappingstheprobabilityisaninstanceofthefollowinggeneralsituation:lettherebegivenadomainarange,andanjjmatrixofprobabilitieswhoserowsumsareall1.Theentryappearingatrowandcolumnequalstheprobabilitythatafunctionsatis es,thelattereventsbeingindependentoverdi erent.Thegivenmatrixdeterminesaprobabilitydistributiononthesetofallfunctions.Theuniformprobabilityspacewhichweareconsideringforderangedmappingsisthecaseinwhichbothandhavesize+1,alldiagonalentriesofthematrixare0,andallo diagonalentriesare1Continuingtofollow[1,p.89],letbeafunctional(weshallbeinterestedinbeingthenumberofpointsomittedfromtheimageof),andletbean-gradationoftherange.Thesequence;:::Xde nedonfunctions)forallisamartingale.(See[1]forunde nedterms.)Notethat)istheconstant),independently,and)is).Weneedthefollowingconcentrationresult: Theorem2[1,p.90].Letaprobabilitymeasureona nitefunctionspacebegivenasabovebyanmatrixofnonnegativenumberswhoserowsumsare,andletbeafunctionalsatisfyingtheLipschitzconditionf;fdi eronlyonwithrespecttoagivengradation(3).Then,forandallwehaveLetusremarkthatwithhi],0+1,and)=thenumberofpointsomittedfromtherangeof,theLipschitzconditionissatis ed.Thus,wehaveacloseconcentrationresultfortheprobabilitiesWecompletethissectionbycomputingthemeanandstandarddeviationofthedistribution:Ofcoursethemeanissimply+1timestheprobabilitythataparticularelement,say1,isomittedfromtherange:+1)(1Turningto,westartwith+1)whichisobtainedbycountingtriples(i;j;f),witha xed-point-freemapping,i;jtwodistinctelementsnotintherangeof,andthendividingbythetotalnumberof xed-point-freemappings.Adding,andsubtracting,we nd+1)+1)(1+1)Somecarefulcalculationshowsthatdi ersfrom(+1))bylessthan1.Werecordforfutureuse:for+1)1for 4ATheoremAboutOscillatoryBehaviorThroughoutthissectiondenotesagenericarrayofprobabilitiesaboutwhichweshallassumecertainhypothesesandprovecertainresults.Weshalluse)todenotethefunctioncos(theconstantsbeinggiven.Withnolossonemaytaketheconstantspositive,andwedoso.Anarray,determiningasequence,andafunction)understoodtohavebeengiven,forintegersandwede neI;J=maxIkthemaximumabsolutedi erencebetweenandtheapproximation)overthehalfopeninterval(I;JWeintroduceoneadditionalconvenientnotationinvolvingthesymbol.Wheneverappearsinanequation,itstandsforarealnumberwhosevalueisintheinterval[+1].Itis,ofcourse,notnecessarilythesamevalueateachappearance;moreover,inagivenequation,itsvaluemaydependonthefreevariablesfoundintheequation.Ifwewanttosay,forexample,thattworealvaluedfunctions)and)di erinabsolutevaluebynomorethan10forall,wewouldwrite)+10Precisely,thissaysthat,de nedon10,neverexceeds1inabsolutevalue.Twofurtherexamplesofthisnewnotation,bothusedinthesequel,arelog(1+3(6)bThe rstisprovenbynotingthat(log(1+isanincreasingfunctionof1.ThesecondfollowsfromTaylor'sformulawithremainder.Thenexttheoremgivesconditionsontoquantifyandprovethenotionthatifapproximateswellonasucientlylargeinterval(I;J],thenthereisasubstantiallylargerinterval(I;K]wheretheapproximationisonlyslightlylessgood.Theorem3Given:atriangulararray,ofprobabilitieswhoserowsumsequal,andsixpositiveconstants.Letbede nedbytherecursion(2),cos(I;Jbede nedby(5),)bethemeanofthe-throw,)bethevarianceofthe-throw,andbethesetofsuchthat +1).Assumethefollowingconditions:+1)(1+=n+1)+1Thenthereexistconstants,andsuchthatforeverypairofintegersIJandthereexistsaninteger(1+suchthatJ;KI;JProof.Webeginbytellinghowtochoose,and.LetChoosesolargeandpositivebutsosmallthatmax= ;and(1+)(1+)(1+Then,chooseandbytheformulasc =2(1+=max(1LetIJbetwointegerssatisfyingcondition(8).Weclaimthatmaybetakenas(1+Toseethis,let+1beanintegerinthehalfopeninterval(J;K].(Inwhatfollows,wesometimeswithoutexplicitmention.)WehaveLetting,weseethatthesecondsumontherightofthepreviousequationequals.Toboundthe rstsum,we rstcheckthatI;J].Byassumption,+1) +1);sincethelatterisincreasingfor+1)+1)+1)(1+1)and).Intheotherdirection,byassumption,+1)(1+);sincethelatterisanincreasingfunctionof+1)+1)(1+)+(+1)(1+)(1++1)(1+)(1+(1+)(1+(1+)(1+)(1+and].Hence,asasserted,I;J],andI;JForthedurationoftheproof,letn;k))beimplicitlyde nedby+1)Using(for +1) +1) +1) andtheassumptionthat,wehave(again,for+1) (1+ Thus,(6)isapplicable,andlog()=log(+1) +1) forUsing(7)wecalculate,for+1) +1) Tocontinue,wecomputemax(;n +1)aswellas max( =max(1;n=1),wehavealtogether I;J(1+Usingtheassumptionsabout,and,wehave(log(+1))+bnwhichinconjunctionwith(13)implies(9).ThiscompletestheproofofTheorem3.Nowwemaystateacorollarywhich,inconjunctionwithcomputation,willpermitustoprovethatsequencesofthetypewearestudyingdonothavelimits.LetsatisfythehypothesesofTheorem3,letbede nedby(12),andassumethatsatisfyconditions(10)and(11).Letbethelargestintegerpossible,subjecttoThen,foreveryI;N(1+ 1�e�=3=6:13 Inparticular,ifthelatterislessthan,thenthesequencehasnolimit.Proof.Bythede nitionoftheinequalityholdsforIn.Letand(1+ForIn,wehavebyTheorem3,I;NLet(1+;againbyTheorem3,forIn,wehaveI;NByinduction,with(1+,we ndthatforallI;NSince(1+,wehave(1+and,since(1+(1+i=i= TheCorollaryfollows.5AwarmupexerciseToillustratetheuseoftheCorollary,wegiveanotherproofthatthelongtermbehaviorofthecoin ippingproblemisoscillatory.Theninthefollowingsectionwewillapplyittotheknockoutsproblem.TousetheCorollaryrequiressomewhatlengthycalculations.Wewilldescribetheprocessindetailforthisexample,andbemorebriefwiththesecondexample.The rsttaskisto ndalloftheconstantsinTheorem3.Ourtriangularmatrixofprobabilitieshereis1).Itiseasytoverifythatthetailestimate whichisahypothesisofTheorem3,holds,bystandardestimates(e.g.,AppendixAof[1])ofthetailsofthebinomialdistribution.Itisalsonothardtodeterminethat2andBecause2,wetakelog(2).From(12)wehave000557393854568Todetermine,tentatively,ourapproximatingfunction),wecomputethe rstonethousandvaluesof,andsolvefor,andtominimizethesumofsquarescos(log(sin(log(Togetthemorefamiliarformof),wesolveforandsuchthatcos(cos(We ndthatisabout7,rathersmall.Knowing,weguessinsistingthatthelasttwotermsontherightsideof(15)sumtolessthan6.Inthisway,wedecidetotake=20000.From(14)wetake261.Nowwerepeattheleastsquares t,usingthe\ocial"limits9000insteadofthetentativelimits400000in(16).Thisyieldsthevaluesforthefunction),andgivesalsoI;N]=maxIk(log(Thecomputedvalueforagreescloselytothetheoreticalvalue1(2log(2))giveninSection2.Finally,wecomputetherightsideof(15)tobe0,whichislessthan,andwehavecon rmedthathasnolimit.6ComputationsfortheKnockoutsProblemThroughoutthissectionagainequalstheprobabilitythatarandomlychosenderangedmappingontheset[+1]omitsexactlypointsfromitsimage.De nen;k)tobethenumberofwaysto partitiontheset[]intoanorderedcollectionofblocks,suchthatfor1elementdoesnotbelongtothe-thblock.Suchanorderedpartitioncorrespondsinanaturalwaytoa xed-point-freemappingof[]whoseimageisexactlytheset.Hence,andAmappingwhichomitsnoelementfromitsimageisa xed-point-freepermutation,alsoknownasaderangement.Therecursionforcountingderangementsiswellknown[3],andwehave0)=Nowletusconsider)whenisatleast1.Theorderedpartitionscountedbyareoftwovarieties.Inthe rstvariety,wehavethosepartitionsinwhichelement+1isasingletonblock;inthesecondvarietywehavethosepartitionsinwhichelement+1belongstoablockofsizetwoorgreater.Tocreateanorderedpartitionofthe rsttype,weproceedinthreesteps:(1)chooseaninteger,intherange1+1;(2)chooseanorderedpartitionof[]intoblockssuchthatisnotinthe-thblockfor1ijandsuchthat+1isnotintheblockfor;(3)insertasthe-thblock.Wede nedn;k)ascountingorderedpartitionsof[]intoblockssuchthatelementisforbiddenfromthe-theblock.However,amoment'sre ectionwillrevealthatn;k)willalsocountcorrectlyschemeofforbiddinginwhichacertainelementisdeniedmembershipinthe-thblock,andtheelementssosingledoutarealldistinct.Hence,thenumberoforderedpartitionsinstep(2)aboveequalsn;k),andthetotalnumberofpartitionsofthe rstvarietyis(+1)n;kTocreateanorderedpartitionofthesecondtype:(1)partition[]into+1blocks,keepingoutofthe-thblock;(2)chooseablockintowhich+1istheninserted.Notethatstep(1)isfeasible,andthatstep(2)doesnotcreateanyforbiddenmemberships,duetotheassumption1.Summarizing,wehavethenicerecursion:+1)(n;kn;k1))Letusremarkthatifwe llthe=0columnofthearraywiththefactorials1insteadofthederangementnumbers1,andthen lltherestofthetable(where1)byexactlythesamerecursion(17),theresultingtablecontains(n;n),wheren;b)istheStirlingnumberofthesecondkind.Theprobabilitiesassociatedwith(n;ncorrespondtochoosingamappingof[+1]atrandom,withnorequirementthemappingbe xed-point-free.ThisamountstoaLampert-Slaterknockoutgameinwhichself-eliminationispermitted. Altogether,then,wecancomputeinitialrowsofthen;k)arrayinanumberofarithmeticoperationswhichisproportionaltothenumberofvaluescomputed.Thissuggeststhatthe rstvaluesofthesequencecanbecomputedinquadratictime,butsuchaconclusionignoresafurthermultiplicativefactorofinthecomplexityduetothesizeoftheintegeroperandsinvolved.Itis,however,feasibletocomputethe rst1776valuesofusingtheabovescheme,providedthecalculationisdonein oatingpoint,andnotexactly.Therearisesthequestionofroundingerror.Tocon rmreliability,thecomputationshavebeencarriedoutintwodi erentprecisions, rstwithDigits=22,thenwithDigits=32.(ForthoseunfamiliarwiththesymboliccomputationsystemMaple,\Digits"isaglobalvariablesetbytheuserwhichcontrolsthenumberofdigitskeptin oatingpointcomputations.)Thetworesultsagree,outto=1776,inthe rstsixteenplacesalways.Foranyonewishingtorepeatthecalculations,wereportthefollowingsamplevalues,obtainedwithDigits=32,4767534353123257282220563501866652829933875860791739826500429501FromSection3,weknowthatand).NotethatthefourassumptionsneededtoapplyTheorem3areful lled:theinequalitiesneededforandareimpliedby(4),andtheconcentrationresultforisgiveninTheorem2.Because,wehave.Thevalueschosenfor,andwereagaindeterminedbyaleastsquares t.Hereisthesummaryofallcomputations:=1776=505I;NOne nalactofarithmeticsrevealsI;N(1+ since00243issmallerthan,wehaveproven(1).References[1]NogaAlon,JoelH.Spencer,andPaulErd}os,TheProbabilisticMethod,JohnWiley&Sons,Inc.,NewYork,1992. [2]JimArneyandEdwardA.Bender,Randommappingswithconstraintsoncoalescenceandnumberoforigin,Paci c.J.Math.(1982),269{294.[3]LouisP.Comtet,AdvancedCombinatorics,D.Reidel,1974.[4]PeterKirschenhofer,ANoteonAlternatingSums,TheElectronicJournalofCombinatorics(2)(1996),#R7.[5]DonaldErvinKnuth,TheArtofComputerProgramming,VolumeIII:SortingandSearchingAddison-Wesley,Reading,Massachusetts,(1973).[6]ValentinKolchin,RandomMappings,OptimizationSoftware,NewYork(1986).[7]DouglasE.LampertandPeterJ.Slater,Parallelknockoutsinthecompletegraph,AmericanMath.Monthly(1998),556{558.[8]ShuguangLi,OnArtin'sConjectureforCompositeModuli,DoctoralDissertation,UniversityofGeorgia,1998[9]LennartRade,proposer,ProblemE3436,TheAmer.Math.Monthly(1991),p.366;solu-tionbyO.P.Lossers,ibid.(1994),p.78.