/
INTEGRAL FORMULATION OF THE SECOND KIND FOR MULTISUBDOMAIN SCATTERING X INTEGRAL FORMULATION OF THE SECOND KIND FOR MULTISUBDOMAIN SCATTERING X

INTEGRAL FORMULATION OF THE SECOND KIND FOR MULTISUBDOMAIN SCATTERING X - PDF document

olivia-moreira
olivia-moreira . @olivia-moreira
Follow
476 views
Uploaded On 2014-12-12

INTEGRAL FORMULATION OF THE SECOND KIND FOR MULTISUBDOMAIN SCATTERING X - PPT Presentation

Claeys Universit e de Toulouse ISAE France joint project with the SAM ETH Z urich Switzerland Email xavierclaeysisaefr Talk Abstract We study the scattering of an acoustic wave by an ob ject made of several adjacent subdomains associated to differen ID: 22617

Claeys Universit

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "INTEGRAL FORMULATION OF THE SECOND KIND ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

INTEGRALFORMULATIONOFTHESECONDKINDFORMULTI-SUBDOMAINSCATTERINGX.Claeys ;;Universit´edeToulouse,ISAE,FrancejointprojectwiththeSAM,ETHZ¨urich,SwitzerlandEmail:xavier.claeys@isae.frTalkAbstractWestudythescatteringofanacousticwavebyanob-jectmadeofseveraladjacentsub-domainsassociatedtodifferentmaterialcharacteristics.Forthisproblemwede-riveanintegralformulationofthesecondkind.Thisfor-mulationonlyinvolvesoneDirichletdatumandoneNeu-manndatumateachpointofeachinterfaceofthediffract-ingobject,sothatourformulationcanbeconsideredtobelongtothesamefamilyastheformulationoftherstkindthatwasderivedbyvonPetersdorffin[2]forscalarproblemsandbyBuffain[1]forMaxwell'sequations.IntroductionWhensimulatingwavepropagationinamediumwithacomplexgeometrybymeansofboundaryelementdis-cretizationwithaniterativesolver,acrucialissueistokeepthenumberofiterationsofthesolveraslowaspos-sible.Fromthispointofview,oneinterestingapproachconsistsinusingadirectintegralequationalongwithapreconditioningstrategy.Forexample,onecanresortontheCalderonpreconditionerintroducedin[6].However,therestillremaintransmissionproblemswithsuchgeometricalcongurationthatnoCalderonprecon-ditionerisavailablesofar.Forthistypeofproblem,Steinbachandco-workers(see[4],[7]andreferencestherein)developeddomaindecompositionmethodsthatcanreadilybepreconditioned.Howeverthisapproachre-quirestheinversionoflocalSteklov-Poincareoperators,anditreliesonadoublingofsomeunknowns,asapartoftransmissionconditionsisenforcedbymeansofLa-grangemultipliers.Morerecently,HiptmairandJerez-Hanckesdevelopedanewintegralformulationoftherstkind(see[8]),thatalsoreliesondoublingpartoftheun-knowns,andthathasgoodpropertiesintermsofprecon-ditioningpossibilities.Inthistalkwepresentyetanotheralternative,thatcon-sistsinusinganinherentlywellconditionedboundaryin-tegralequation.Wepresentthederivationofawellcon-ditionedintegralformulationofthesecondkind.Wecallitasingletraceformulation,meaningthatitdoesnotre-quirethedoublingofanyunknown.TheproblemthatweanalyzeFord=2or3,considerapartitionRd=[ni=0 \niwhere[ni=1 \niisboundedandeach\niisaconnectedsub-domainwithpiecewisesmooth,Lipstick'sboundary.Wealsoset=[ni=1@\ni.Notethattheremayexistpointswherethreeormoresub-domainswouldbead-jacent,whichispreciselythesituationthatwewishtotackle,seegurebelow. i \n0=exteriordomain\n1\n2\n3Fig:1Typicalmulti-subdomaingeometryWewishtostudywavepropagationinmediawithsuchageometricalconguration.Asamodelproblemwecon-sidertheequationsFindu2H1loc(;Rd)suchthatu+2ju=0in\nj;j=0:::nuuincoutgoingradiating(1)wherej2R+;j=0:::nanduinc2H1loc(Rd)issomeknownfunctionsatisfyinguinc+20uinc=0inRd.Be-sidesH1loc(;Rd)=fv2H1loc(Rd)jv2L2loc(Rd)gInProblem(1),transmissionconditionsaretakenintoac-countbymeansoftheconditionu2H1loc(;Rd).Theconditionu2H1loc(Rd)impliesthatuhasnoDirich-letjumpacrossanyinterface,andtheconditionu2L2loc(Rd)impliesthatudoesnotadmitanyNeumannjumpanywhere.Problem(1)isclassicallywellposed.Inthistalk,wepresentanintegralformulationofthesecondkindforthisproblem. ReformulationoftransmissionconditionsSincewewishtoderiveanintegralformulationwehavetointroducetraceoperatorsandspaces.Anaturalspaceforintegralformulationsof(1)isH()=hnj=0H1 2(@\nj)ihnj=0H1 2(@\nj)iThisspaceisequippedwiththenormkVk=(Pnj=0kvjk21=2;@\nj+kqjk21=2;@\nj)1=2,andthedualitypairingB(U;V)=nXj=0@\nj(ujqjvjpj)dforU;V2H()U=((uj);(pj))andV=((vj);(qj))Letnjrefertothenormalvectoron@\njdirectedtowardtheexteriorof\njandintroducethespacesX+1 2()=f(vj@\nj)j=0:::njv2H1(Rd)gX1 2()=f(njqj@\nj)j=0:::njq2H(div;Rd)gX()=X+1 2()X1 2()ThespaceX()H()isclosedforkk,asthecon-straintscharacterizingthissetareexpressedbymeansofcontinuouslinearfunctionals.ThespaceX+1=2()isex-actlythepolarsetofX1=2()withrespecttothenaturaldualitypairing:(qj)2X1=2()ifandonlyifnXj=0@\njqjvjd=08(vj)2X1 2():(2)Let\rjDand\rjNreferrespectivelytotheDirichletandNeu-manntraceoperatorstakenfromtheinteriorof\nji.e.\rjD(v)=vj@\njand\rjN(v)=njrvj@\njwheneverv2C1( \nj).Ifuissolutionto(1),thentransmissionconditionscanbeformulatedas(\rjDu)j=0:::n;(\rjNu)j=0:::n2X():(3)Thus,wewilltakeintoaccountthetransmissioncondi-tionsbylookingforasolutioninthespaceX().ThisapproachwasdevelopedbyvonPetersdorffin[2]andBuffain[1]forthederivationofintegralformulationsoftherstkind.Notethatsuchawaytoimposetransmissioncondi-tionsisanotabledifferencecomparedtotheBETI-likeformulationsthathavebeenstudiedbySteinbachandco-workers(see[4]forexample)whereatleastpartofthetransmissionconditionsareenforcedbymeansofLa-grangemultipliers.ReformulationofCalderonidentitiesWhatisdifferentinourapproach,comparedto[1]and[2],isthewayweimposetheequationsu+2ju=0in\njj=0:::n.DenethesetofCauchydata,denotedC(),asthesetofelements((vj)j=0:::n;(qj)j=0:::n)ofH()suchthatthereexists'j2H1loc( \nj);j=0:::nsatisfying'j+2j'j=0in\nj'0outgoingradiating\rjD('j)=vjand\rjN('j)=qj;j=0:::nFor2R+andx2Rdn,introducethesingleanddoublelayerpotentialsSLjfqg(x)=@\njG(xy)q(y)d(y)DLjfvg(x)=@\njnj(y)rG(xy)v(y)d(y)whereG(x)referstotheoutgoingGreenkernelassoci-atedtotheoperator+2.Letusconsiderthecontinu-ousoperatorA:H()!H()denedbyfUg(x)=nXj=0DLjjfujg(x)+SLjjfpjg(x)A=(\r0D;:::;\rnD;\r0N;:::;\rnN)NotethatfUg(x)makessenseforanyx2Rdn.ThisoperatorcanbeusedtoreformulateProblem(1),atleastinthecaseofsmallcontrastscatterers.Proposition1Forany02R+,thereexists�0suchthat,ifmaxj=0:::njj0j,thenU2C()ifandonlyifAU=UInthesequel,weassumethat0;:::narecloseenoughtoguarantythatAU=UisequivalenttoU2C()Weshallrefertothisassumptionasa”smallcontrasthypothesis”.Thisassumptionisintroduceinordertodiscardanyspuriousmodephenomenon.LetUinc=(\r0Duinc;0;:::;0;\r0Nuinc;0;:::;0).Weprovethefollowingresult.Theorem1Assumethatthesmallcontrasthypothesisissatised.LetYbeanyclosedcomplementofX()inH()i.e.X()Y=H().Thefunctionu2H1loc(;Rd)issolutiontoproblem(1)ifandonlyifU=((\rjDu)j=0:::n;(\rjNu)j=0:::n)2X()andB((IdA)U;V)=B((IdA)Uinc;V);8V2Y:(4) MoreoverFormulation(4)takestheform”iden-tity+compact”sothatitisindeedaformulationofthesecondkind.Theorem2ThereexistsacompactoperatorAK:H()!H()suchthatIm(AK)X()andAKU=AUwheneverU2X()Itcanbecheckedbyathoroughderivationthat,intheclassicalcasewherethereisonlytwosubdomainsandoneinterface,Formulation(4)yieldsthealreadywellknownsecondkindintegralformulation.NumericalresultsFornumericalexperiments,wesolveProblem(1)withslightlymoregeneraltransmissionconditions.Assumethat0;1:::n2(0;+1)aregiven.Insteadofim-posing(3),weimpose(\rjDu)j=0:::n;(1j\rjNu)j=0:::n2X():(5)Insteadof(4),inthismoregeneralsituation,weconsiderthefollowingcontinuousformulationFindU2X()suchthat8V2YB((IdA)U;V)=B((IdA)Uinc;V):(6)whereAhasbeenreplacedbytheoperatorAdenedinaccordancewithConditions(5),A=ATT(uj);(pj)=(uj);(jpj):NotethatProblem(4)isaparticularcaseofProblem(6)where0=1=2.WesolveFormulation(6)forthe2-Dscatteringofanincidentplanewaveuinc(x;y)=exp(i0x)byaninhomogeneousdiscsplitintwoparts,seeFigure2below. \n0\n1\n2\n1[\n2= D(0;1)0=11=2;2=3:Fig:2GeometryusedfornumericalresultsForthediscretizationofFormulation(6),werelyonaGalerkinapproach.Weconsiderapaneling=[Qq=1qwhereeachjisasegment.DeneV()=nj=0V(@\nj)whereV(@\nj)=fv2C0(@\nj)jvjqh2P1ifq@\nj;q=1:::QgTakeX+=V()\X1=2()asanapproximationspaceforX1=2().FortheapproximationofX1=2(),webaseourconstructiononamimicofrelation(2):wedeneXasthesetof(qj)j=0:::n2V()suchthatnXj=0 @\njqj vjd=08(vj)2X+:wheremeansthatthequadratureisachievedusingmasslumping.ForthediscretecounterpartsofX()andY,wesetX=X+XandY=XX+:ThankstothisparticularchoiceforthespaceY,thetermB(U;V)forU2XandV2Yisassociatedtoasymmetricmatrix.ThediscreteformulationthatwesolvewritesFindU(2)2Xsuchthat8V2YwehaveB((IdA)U(2);V)=B((IdA)Uinc;V):(7)WecomparethesolutionU(2)providedby(7)tothesolutionU(1)obtainedbymeansoftherstkindformu-lationderivedfromRumsey'sprinciple,seeEquation(27)in[2].Inallthenumericalresultsbelowwetook0=1;1=2and2=3 10-3 10-2 10-1 10-5 10-4 10-3 10-2 10-1 m0 = m1 = m2 = 1 m0 = 1, m1 = 1/4, m2 = 4 RelativeerrorFig:3RelativeerrorkU(1)U(2)k=kU(1)kversusstepofthemeshh ThegureaboveshowsthatthatkU(1)U(2)k=O(h)Moreover,sincethemeshweusedismadeofsegments,therstkindformulationprovidesanapproximationnotsharperthanO(h).Thisleadstotheconclusionthat,inthepresentcontext,Formulation(7)convergeswithquasi-optimalrate.Ontheotherhand,thesecondkindformulationismuchbetterconditioned,asitappearsinFig.4below. 10-3 10-2 10-1 101 102 103 104 105 106 First kind formulation Second kind formulation Fig:4Conditioningversusstepofthemeshhforthecase0=1;1=1=2;2=2Whereastheconditionnumberfortherstkindformula-tionblowsupasO(h1),whichisstandard,theconditionnumberforthesecondkindformulationremainsstable. 0 20 40 60 80 100 10-10 10-8 10-6 10-4 10-2 100 First kind formulation Second kind formulation Fig:5NormoftheresidualforGMRES(withnorestart)versusnumberofiterationforthecase0=1;1=1=2;2=2withh=5103Finally,inFig.5above,weseethatGMRESconvergesmuchfasterwiththesecondkindformulation.AcknowledgmentsTheauthortakesthisopportu-nitytothankR.HiptmairandA.Bendaliforfruitfuldiscussions,andtothanktheSeminarofAppliedMathematicsofETHZfornancialsupport.References[1]A.Buffa,”Remarksonthediscretizationofsomenoncoerciveoperatorwithapplicationstothehet-erogeneousMaxwellequations”,SIAMJ.Numer.Anal.,43(1):1-18,2005.[2]T.vonPetersdorff,”BoundaryIntegralEquationsforMixedDirichlet,NeumannandTransmissionProb-lems”,Math.Met.App.Sc.,11:185-213,1989.[3]J-C.N´ed´elec,AcousticandElectromagneticEqua-tions,Springer,2001.[4]U.LangerandO.Steinbach,”BoundaryElementTearingandInterconnectingMethods”,Computing71:205-228,2003[5]R.Kress,Linearintegralequations,vol.82ofAppliedMathematicalSciences.Springer-Verlag,1999.[6]S.ChristiansenandJ-C.N´ed´elec,”Aprecondition-nerfortheelectriceldintegralequationbasedonCalderonformulas”,SIAMJ.Numer.Anal.40(2002),no.3,1100-1135.[7]O.SteinbachandM.Windisch,”Stableboundaryel-ementdecompositionmethodsfortheHelmholtzequation”,Numer.Math.,publishedonline.[8]R.HiptmairandC.Jerez-Hanckes,”MultipletracesboundaryintegralformulationforHelmholtztrans-missionproblems”,ETH,ResearchReportoftheSeminarofAppliedMathematicsno.2010-35,2010.