/
Linear Completeness Thresholds for Bounded Model Check Linear Completeness Thresholds for Bounded Model Check

Linear Completeness Thresholds for Bounded Model Check - PDF document

olivia-moreira
olivia-moreira . @olivia-moreira
Follow
408 views
Uploaded On 2015-05-16

Linear Completeness Thresholds for Bounded Model Check - PPT Presentation

Bounded model checking is a symbolic bug64257nding method that examines paths of bounded length for violations of a given LTL formula Its rapid adoption in industry owes much to advances in SAT technology over the past 1015 years More recently there ID: 67796

Bounded model checking

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Linear Completeness Thresholds for Bound..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

LinearCompletenessThresholds forBoundedModelChecking  DanielKroening 1 ,Jo¨ elOuaknine 1 ,OferStrichman 2 ,ThomasWahl 1 , andJamesWorrell 1 1 DepartmentofComputerScience,OxfordUniversity,UK smallcompletenessthresholds.Inthispaper,weshowthatiftheB¨ uchi automatonassociatedwithanLTLformulais cliquey ,i.e.,canbedecom- posedintoclique-shapedstronglyconnectedcomponents,thentheasso- ciatedcompletenessthresholdis linear intherecurrencediameterofthe (BMC)[4,3]isasymbolicbug-“ndingmethodthat searchesforlasso-shapedcounterexamplestoanLTLformulainagivenKripke structure.Withinthreeorfouryearsfollowingitsintroduction,itwasfound tohavealmostentirelyreplacedBDD- basedmodelcheckersinthehardware industry,owingtothefactthatmanyuserscaremoreabout“ndingbugsquickly vastamountsofmemoryandtime.Thism ajorsuccesscanbeattributedmostly totheimpressiveadvancesmadeinSATtechnologyoverthepast10to15years. ThefundamentalapproachunderpinningBMCistolookforcounterexamples, orbugs,ofboundedlength.Assuch,anabsenceofcounterexampleisinconclu- sive;agenuinebugcouldstilllurkdeeperinthesystem.Forthisreason,fromthe  SupportedbytheEUFP7STREPPINCETTE. G.GopalakrishnanandS.Qadeer(Eds.):CAV2011,LNCS6806,pp.557–572,2011. c  Springer-VerlagBerlinHeidelberg2011 558D.Kroeningetal. complete methodwiththeabilityalsotoguaranteetheabsenceofcounterexam- plesofanylength.See,forinsta nce,theoriginalworkofBiere etal. [4],orthe 2008TuringAwardlectureofEdClarke[7],inwhichtheproblemisdescribed asatopicofactiveresearch. In[4],Biere etal. observedthatforsafetypropertiesoftheform G p ,a com- pletenessthreshold isgivenbythe diameter (longestdistancebetweenanytwo states)oftheKripkestructureunderconsideration:indeed,ifnocounterexam- pleto G p oflengthatmostthediameterofthesystemcanbefound,thenno counterexampleofanylengthcanpossibl yexist.Likewise,forlivenessproper- tiessuchas F q ,the recurrencediameter (longestloop-freepath)oftheKripke structurecanbeseentobeanadequatecompletenessthreshold.Butthegeneral problemofdeterminingreasonablytightcompletenessthresholdsforarbitrary LTLformulasremainswideopentothisday. Notethatthediameter(forsafetyproperties)andtherecurrencediameter (forlivenessproperties)arenotmerelysoundbounds,theyarealsoworst-case tight.Inotherwords,nosmallercompleten essthresholdexpres siblestrictlyin termsofthediameterscanbeachieved.Ofcourse,inanyparticularsituation theleastcompletenessthresholdmaywellbeordersofmagnitudesmallerthan thediameter,butdeterminingitsvalueisclearlyatleastashardassolvingthe originalmodel-checkingprobleminthe“rstplace,andwemustthereforebe contentwithsoundbutreasonablytightover-approximations. Inthispaper,wedescribeanecientt echniqueforobtainingfairlytight, lin- ear completenessthresholdsforawiderangeofLTLformulas,asafunctionofthe diameterandrecurrencediameterofanyKripkestructureunderconsideration. AllB¨ uchiautomatathatare cliquey ,i.e.,thatcanbedecomposedintoclique- shapedstronglyconnectedcomponents,a dmitlinearcomplet enessthresholds. Moreover,weshowthatsuchautomatasubsume unarylineartemporallogic , andindeedcompriseawiderangeofformulasusedinpractice,including,for example,thevastmajorityofspeci“cationsappearinginMannaandPnuelis classictextonthespeci“cationofrea ctiveandconcurrentsystems[12]. 1 We alsoshowthatcomputingtheselinearcompletenessthresholdscanbedonein timelinearinthesizeofthegivenB¨ uchiautomata.Finally,weexhibitsome simple(non-cliquey)B¨ uchiautomata,andcorrespondingLTLformulas,having superpolynomial andeven exponential completenessthresholds. Inthepast,researchershavebeenableto achievecompletenessthresholdsby studyingthe product structureoftheKripkemodelandtheB¨ uchiautomaton correspondingtothespeci“cationofinter est;see,e.g.,[6,1].Suchthresholds areingeneralincomparablewiththeoneswepresentinthispaper.Moreover, asigni“cantdisadvantageoftheearlierapproachisthatitrequiresonetoin- vestigateastructurewhichisoftenmuchtoolargeandunwieldytoconstruct, letaloneperformanycalculationsupon.Anotherbene“tofthepresentap- proachisthat,oncethediameterandrecurrencediameterofagivenKripke structureareknown(orover-approximated),theycanbeputtouseagainstany 1 Forinstance,speci“cationssuchas conditionalsafety , guarantee , obligation , response , persistence , reactivity , justice , compassion ,etc.,allfallwithinourframework. 560D.Kroeningetal.and()withs,s)=(Notethatthelabellingfunctionsofanddeterminewhichstatesexist(arevalid)intheproduct.Thereisatransitionintheproducticorrespondingtransitionsarepresentinbothcomponents.Forourpurposes,thelabellingofstatesintheproductautomatonisirrelevant.Finally,theacceptancesetfamilyisderivedfromthatoftheB¨uchiautomaton.TheproductconstructionisrelatedtoLTLmodelcheckingasfollows:Theorem1([9]).LetbeaKripkestructureandanLTLformula.ThereexistsageneralisedB¨uchiautomatonsuchthatexactlyifhasnoacceptingpath.In“gures,werepresentB¨uchiautomataasdirectedgraphs.Initialstateshaveanincomingedgewithoutsource.Acceptingstatesaredrawnas“lleddiscs(ourillustratingexamplesallhaveasingletonacceptancesetfamily,inotherwordstheyaresimpleB¨uchiautomata),andotherstatesaredrawnashollowcircles.InKripkestructures(cf.Figure4),wedepictthelabelofastateasasetofpropositions,omittingthebracesForaKripkestructure,wewritetodenotethateverylasso-shaped-boundedpathsatis“escompletenessthresholdforandisanintegersuchthatThisde“nitionre”ectstheintuitionbehindboundedmodelchecking:assumingthatthereisnocounterexampletooflengthatmostshouldholdinWecangeneralisethisde“nitiontoB¨uchiautomataasfollows:acompletenessthresholdforaKripkestructureandaB¨uchiautomatonisanyintegersuchthat,ifhasanyacceptingpath,thenithasa-boundedlasso-shapedacceptingpath.Withthesede“nitions,anintegerisacompletenessthresholdforaKripkestructureandformulapreciselyifitisacompletenessthresholdforand,whereistheresultoftranslatingintoanyequivalentgeneralisedB¨uchiautomaton.Thefollowingarekeynotionsinthispaper:Denition2.LetbeaKripkestructure.Thedistancefromastateastateisthelengthofashortestpathfrom(orifthereisnosuchpath).Thediameter,denoted,isthelargestdistancebetweenanytworeachablestates(‘longestshortestpath’).Therecurrencediameterdenotedrd,isthelengthofalongestsimple(loop-free)paththrough3B¬uchiAutomatawithLinearCompletenessThresholdsGivenaKripkestructureandanLTLformula,itisclearthatdeterminingthesmallestcompletenessthresholdisatleastashardasthemodel-checkingprob-lemitself,andisthusnotsomethingweareaimingtoachieve.Rather,the 564D.Kroeningetal. Acomplicationisthat,sincewedonothavetheconcreteKripkestructure athand,thecostsofmovingfromcliquetocliquearegivensymbolically,by expressionsoftheformappearinginTable1.Thus,whencomparingthelengths ofpathstoaparticularcliquefoundsofar,insteadofrecordingthenewlength asthenumericalmaximumofthetwogivenlengths,werecorditasthe symbolic maximum ofthetwolengthexpressions.The“nalresultreportedbythefunction willthusbeanexpressioninvolvingtheparameters d and rd oftheunknown Kripkestructure,aswellas linear operatorsconnectingthem,suchasaddition, constantmultiplication,andmax. ThetraversaloftheSCCquotientgraphisshowninAlgorithm1.Itassumes theB¨ uchiautomatonhasauniqueinitialclique C 0 (i.e.,acliquecontaining initialstatesof B );wehandlethegeneralcasebelow.Thealgorithmkeepsthe costoftraversingaclique,ascomputedinTable1,inanarray cost ,andthecost ofreachingandtraversingacliqueinanarray reach ,bothasanon-“naland “nalclique(thelatterstoredinarrayswithsubscript f ).The reach valuesare initialisedto0.Fortheinitialclique,thesevaluesaresettothecosttotraverse it(Line4). Algorithm1. MaximumlengthofanSAPin M × B Input : B withinitialclique C 0 0: foreach clique C do 1:initialise cost [ C ], cost f [ C ]asinTable1 2: reach [ C ]:= reach f [ C ]:=0 3: endfor 4: reach [ C 0 ]:= cost [ C 0 ], reach f [ C 0 ]:= cost f [ C 0 ] 5: foreach clique C of B inatopologicalorder,startingat C 0 do 6: foreach successorclique D of C do 7: reach [ D ]:=max { reach [ D ] , reach [ C ]+ cost [ D ] } 8: if D isaccepting then 9: reach f [ D ]:=max { reach f [ D ] , reach [ C ]+ cost f [ D ] } 10: endif 11: endfor 12: endfor 13: return max { reach f [ C ] | C isaccepting } Thealgorithmtraversesthecliques C of B insometopologicalorder,starting with C 0 ,andexaminesallof C ssuccessorcliques D .Value reach isupdatedto themaximumofitscurrentvalueandthevalueobtainedbyreaching D via C . Value reach f isupdatedanalogously,butonlyif D isaccepting.Afterprocessing allcliquesthisway,thealgorithmreturnsthemaximumofthevalues reach f [ C ] overallacceptingcliques. If B hasseveralinitialcliques,thealgorithmisperformedforeachofthem inturn;inthiscasewereturnthemaximumoverallvaluesobtained,asthe maximumlengthofanSAP,foranyKripkestructure M . 568D.Kroeningetal.CombiningTheorem5andLemma10yieldsoneofourmainresults:Theorem11.EveryUTLXformulaadmitsalinearcompletenessthreshold.Finally,onemaywonderwhetherLTLXformulasthathaveacliqueyrepresen-tationareinfactalwaysequivalenttosomeUTLXformula.Theanswerisno,asournextresultshows:Lemma12.LTLthereexistLTLXformulasthatdohaveacliqueyrepresentationyetarenotequivalenttoanyUTLXformula.Proof(sketch)a,b,cbedistinctelementsof2,andconsiderthelanguage.b.iscapturedbytheLTLXformula)),anditisalsoclearthatiscliquey.Usingtheresultsof[17],onecanshowthatthislanguageisinexpressibleinUTL(letaloneUTLX).Forexample,onecancomputethesyntacticmonoidassociatedwithandinvokethecharacterisationofsyntacticmonoidsofUTL-de“nablelanguagesfrom[17]toobtainthedesiredresult.Weomitthedetails.Figure2summarisesourexpressivenessresults.Allinclusionsarestrict.  Fig.2.Relationshipsamongvariousclassesof-regularlanguages5BeyondCliqueynessTwonaturalquestionsariseastowhethercliqueynessisnecessaryinordertoachievealinearcompletenessthreshold,andwhetherthereactuallyareanyregularlanguagesthatfailtohavelinearcompletenessthresholds.Weanswerthe“rstquestionnegativelyandthesecondonepositively.Infact,weshowthat-regularlanguagescanbeengineeredtohavecompletenessthresholdsboundedbelowintheworstcasebysuperpolynomialandevenexponentialfunctionsoftherecurrencediameterofKripkestructures.5.1LinearCompletenessThresholdswithoutCliqueynessConsidertheB¨uchiautomatondepictedinFigure1(b).Itisclearlynotcliqueyandisinfactsemanticallynon-cliquey,i.e.,notequivalenttoanycliqueyB¨uchi 570D.Kroeningetal. Fig.4. Kripkestructurefamily( M i )  i =1 witnessinganon-linearcompletenessthreshold AnSAPof  = M × B ,however,musttake all q -loops.Toseethis,consider theinitialstateof  ,whichislabelled( { p,q } ,p ¬ r ). B doesnotallowan r -stateassuccessor(bothpossibletransitions[oneofwhichisa B -self-loop] requiresuccessorssatisfying ¬ r ).Thusthejointpathmustenterthe“rst q - loop.Duringthisloop, B staysinthe( q ¬ r )-state,uptoandincludingthe timewhen M “nishestheloopandarrivesbackatthe p,q -state.Atthistime theshortestpathcontinuesatthestatelabelled( { r } ,r !),followedbythestate labelled( { p,q } ,p ¬ r ),atwhichpointitisforcedintothenext q -loopof M i . Notethat,forthispathtobe accepting,ithastovisitan r -stateof M i in“nitely often,whichisonlypossibleviatheself-loopreachable after allthe q -loopshave beentaken. Havingtogothrough i loopseachofsize i ,anSAPof  haslengthatleast i 2 . Combiningthiswiththesizeoftherecurrencediameterofatmost4 i ,wesee thatthecompletenessthresholdfor B isatleast quadratic intherecurrence diameterofKrip kestructures.  ItisnotdiculttoseeourfamilyofKripkestructurescaninfactbemodi“ed toexhibita cubic completenessthresholdforourverysameautomaton B ,by modifyingtheloopsslightlyandgraftingafurtheradditionalfamilyofloops ontoeachofthem.Inthisvein,oneseesth atcompletenessthresholdsexceeding anygivenpolynomialcaninfactbeachieved,sothatourformula  andB¨ uchi automaton B have superpolynomial completenessthreshold. Infact,even exponential completenessthresholdscanbeachievedforLTL formulas. 4 ConsiderafamilyofKripkestructures,eachofwhichresemblesa fullbinarytree,withbidirectionale dgesbetweeneveryparentandchild.The recurrencediameterofanysuchstructureisthelengthofalongestloop-freepath fromoneleaftoanother,andisthereforelogarithmicinthesizeofthestructure. ThesestructurescanhoweverbeinstrumentedinsuchawaythatacertainLTL formulaforcestheuniqueacceptingpathto performadepth-“r sttraversalofthe entiretree,resultinginapathoflength exponentialintherecurrencediameter. Toachievethis,atomicpropositionsareusedtokeeptrackofthedepthofnodes modulo3,andfurtherpropositionslabeltheroot,leaves,andleftandright 4 Wearegratefultooneoftheanonymousrefereesforthisobservation. LinearCompletenessThresholdsforBoundedModelChecking571childrenaccordingly.Atraversalofthetreeisthenorchestratedbyrequiringthat(i)wheneveraninteriornodeisenteredfromabove(whichisdeterminedbyknowledgeofthedepthsmodulo3ofthepresentnodeandthatofthepreviousone),thentheleftchildshouldbevisitednext;(ii)wheneveranon-leafnodeisreturnedtofromaleftchild,thentherightchildshouldbevisitednext;and(iii)wheneveranon-leafnodeisreturnedtofromarightchild,thentheparentnodeshouldbevisitednext.Finally,therightmostleafislabelledwithaspecialpropositionwhichtheformularequirestoholdeventually.6ConcludingRemarksWehavepresentedamethodforcalculatingfairlytight,linearcompletenessthresholdsforalargeclassofLTLspeci“cations.Thealgorithmweproposeishighlyecient,runningintimelinearinthesizeoftheB¨uchiautomaton.Severalpotentialbottleneckshoweverremain,includingthefollowingtwo:ComputingthediameterandrecurrencediameterofalargeKripkestructurecanbecomputationallyprohibitive;onepossibleremedymightbetosettlefortractableover-approximationsofthediameters,asin[2],inatrade-owhichwouldlikelyrequirecarefulconsideration.Ithasoftenbeenempiricallyobservedthatboundedmodelcheckingcom-putationstendnottoscaleupverywell.SincemanyKripkestructureshavedeeprecurrencediameters(oftheorderofthetotalnumberofstates,forexample),onecanexpectthatexploringthesystemtotherequireddepthproveincertaincasestobeintractable.Nonetheless,thisisanareaofactiveresearchinwhichprogressisbeingmadeonseveralfronts.Ourhopeisthatthetechniquespresentedheremayprovebene“-cialnotonlytopractitioners,butalsotootherresearcherswhosetechnologyitmightpotentiallycomplement.Alongsidethesepracticalconsiderations,twointerestingtheoreticalquestionsarise:(i)isitdecidablewhetheragivenLTLformula(ormoregenerallyagiven-regularlanguage)hasalinearcompletenessthreshold;and(ii)isthecomplete-nessthresholdofan-regularlanguagealwayseitherlinearorsuperpolynomial?Weleavethesequestionsasfurtherresearch.References1.Awedh,M.,Somenzi,F.:Provingmorepropertieswithboundedmodelchecking.In:Alur,R.,Peled,D.A.(eds.)CAV2004.LNCS,vol.3114,pp.96…108.Springer,Heidelberg(2004)2.Baumgartner,J.,Kuehlmann,A.,Abraham,J.A.:Propertycheckingviastructuralanalysis.In:Brinksma,E.,Larsen,K.G.(eds.)CAV2002.LNCS,vol.2404,p.151.Springer,Heidelberg(2002)3.Biere,A.,Cimatti,A.,Clarke,E.,Strichman,O.,Zhu,Y.:Boundedmodelchecking.AdvancesinComputers58,118…149(2003)