/
G Topics in Computer Graphics Lecture  Geometric Model G Topics in Computer Graphics Lecture  Geometric Model

G Topics in Computer Graphics Lecture Geometric Model - PDF document

pamella-moone
pamella-moone . @pamella-moone
Follow
447 views
Uploaded On 2015-05-06

G Topics in Computer Graphics Lecture Geometric Model - PPT Presentation

3033002 Topics in Computer Graphics Lecture 2 Geometric Modeling New York University Bezier Curves and Bsplines Blossoming Lecture 2 16 September 2002 Lecturer Prof Denis Zorin Scribe Kranthi K Gade In this l ID: 62339

3033002 Topics Computer Graphics

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "G Topics in Computer Graphics Lecture G..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

G22.3033-002:TopicsinComputerGraphics:Lecture#2GeometricModelingNewYorkUniversity BezierCurvesandB-splines,BlossomingLecture#2:16September2002Lecturer:Prof.DenisZorinScribe:KranthiKGadeInthislecture,wediscusspolynomialparametriccurves,whichisthemostcommonlyused G22.3033-002:Lecture#2curvatureislikelytobediscontinuousunlessitiszero.Cubicsontheotherhandmayhavepointsofinßectionwithcurvaturechangingcontinuously.Torepresentarbitrarilycomplexcurvesoneusuallyusespiecewisepolynomials,stitchingtogethermanypolynomialpieces.Thenextquestionweneedtoaddressishowtospecifypolynomialcurves.ThemoststraightforwardapproachistodeÞneacurveusingthepolynomialcoefÞcients.Forexample,atwo-dimensionalcurvecanberepresentedusingpolynomialsinthefollowingway:Õsaretwo-dimensionalpoints.Onecanseethatistheweightedaverageofbutitisnotintuitivelyclearthoughhowistraversedaschanges,andhowinßuencetheshapeofBezierCurvesOnecanmakethecoefÞcientsdescribingapolynomialmoreintuitivebychangingthebasisfunctions.Insteadofusingthestandardmonomialbasisbasis,t,t,weusethethe(Št)3,3t(1Št)2,3t2(1Št),t3].Onewaytoderivethissetofbasisfunctionistolookattheexpansionof1=(1=(1Whythisbasis?WeshallseethatBeziercurveshaveanumberofniceproperties.BernsteinbasisisdeÞnedforany.For,thebasisisis(Št),t]andforitisis(Št)2,2t(1Št),t2].TheBernsteinbasisforareshowninFigure1.AnypolynomialcanbewrittenasacombinationofthefourpolynomialsoftheBernsteinbasis.Ifarefourpointsinspace,thenthecubicpolynomialcurveisthepolynomialiscalledacubicBeziercurvewithcontrolpointsPropertiesofcubicBeziercurvesInterpolation.Onecaneasilyseethat(0)=(1)=,i.e.theBeziercurveinterpolatesthepointsAfÞneInvariance.ThispropertycanbeeasilyveriÞedbyconsideringanafÞnemapisamatrixandisin.Now=(ThelasttransformationusesthefactthatBernsteinbasisfunctionssumuptoone(1). G22.3033-002:Lecture#2 113,0B3,1B3,2B3,3 Figure1:Bernsteinbasisfunctionsfor Figure2:BezierInterpolation3.TangenttothecurveatpointisthevectorandtangenttothecurveatThiscanbeeasilyveriÞedbydifferentiating(2)andsubstitutingappropriateparametervalues:.ThispropertycanbeusedtotestwhethertwoBeziercurvesarejoinedsmoothly:usethispropertytoÞndthetangentsatthecommonpointandthenseewhethertheyareparallel.ConvexHull.Itisclearthatthat,1].Thisand(1)meansthatallpointsontheBeziercurvelieinsidetheconvexhullofpointsPolarformsandblossomingPolarformofapolynomialofofdegreeisamultiafÞnesymmetricfunctionsuchthatt,t,...,t Wefocusonthecase.ThetwopropertiesofpolarformsaredeÞnedasfollows: G22.3033-002:Lecture#2 Figure3:BlossomingforBeziercurves.AfunctionifthevalueofthefunctionisthesameforanypermutationoftheargumentsAfunctionifforanyargumentsandany,...,at+(1)+(1Foranypolynomial,thereexistsauniquesymmetricandmultiafÞnepolarform.Wedonotgiveaformalproofforitbutanintuitionbehinditforthecasewillmakeitclear.BecausethepolarformismultiafÞneitislinearineachargument;thereforeitisapolynomial,oftotalpowerasitfollowsfrom(3).Thereforethepolarformcanbeexpressed.Writingequationsforsymmetryandtaking(3)intoaccountyieldsa 3(t1+t2+t32 isthepolarformofacubicpolynomial,thenthevalueofforanyarbitrarycanbefoundifthevaluesofgiven.ThisisdonebyrepeatedlinearinterpolationandisshowninFigure3.Inthiswaywecancomputethevalueofthepolynomialatanypointusingasequenceoflinearinterpolations.PolarformrepresentationisusefulbecauseitprovidesauniformandsimpleapproachtocomputingvaluesofapolynomialusingavarietyofrepresentationsfromBeziercurvestoNURBS(non-uniformrationalB-splines).B-splinesisadifferentapproachtorepresentingpiecewisepolynomialcurves,whichovercomessomeofthedrawbacksofBeziercurves.Supposewewishtodesignalongcurvewithmanyundulations.Oneapproachwouldbetouseahigh-degreeBeziercurve.Aswehavealreadydiscussed,thisisnotaverygoodapproach;alsonotethateachofcontrolpointsofaBeziercurveofdegreeinßuencesthewholecurve,whichmeansthatitisdifÞculttointroduceasmallfeaturewithoutchangingthecurveeverywhere.AnotherapproachusingBeziercurvesistoconstructthecurvefrommanyparts G22.3033-002:Lecture#2piecewiseBezier);inthiscaseweneedtomatchatleastthevaluesandtangentsattheendpointsofeachsegment.ValuesareeasilymatchedbyconstrainingthelastcontrolpointofsegmentandtheÞrstcontrolpointofsegmenttobethesame:.Tangentscanbemadethesameifthepointsofthesegmentsareconstrainedtobeonthesameline.Thisisthewaycurvesareconstructedinmanydrawingprograms,forexample,inAdobeIllustrator.Resultingcurvesneednotbehowever,anditisnotthateasytomakethemÒfairÓwhichtypicallymeansthatwewantthecurvaturenottochangeabruptly.Tosummarize,threecommonlydesirablepropertiesofcurvesare:Shouldbecontinuousatallpoints.Interpolation:Shouldinterpolatetheinputcontrolpoints.Localcontrol:ThemodiÞcationofaparticularcontrolpointshouldmodifythecurveonlylocally.Aswehaveseen,piecewiseBeziercurvesinterpolatethecontrolpointssharedbysegments,andhavelocalcontrol,butneednotbe-continuous.Itturnsoutthatthesethreepropertiesareincompatibleforcubiccurves:e.g.ifweattempttowriteasystemofequationsthatensuresthatsequentialBeziersegmentsarejoinedwithcontinuity,wewillseethatÒinteriorÓcontrolforsegmenthavetodependontheendpointsforall,i.e.thereisnolocalcontrol.IfwegiveuptheinterpolationpropertythereisatypeofpiecewisecubicpolynomialcurveswhichsatisÞestheremainingrequirementscalledtheB-splinecurves.Ifwerequireinterpola-tionbutgiveuplocalcontrolwegetcurvescallednaturalsplines,whichwewillnotdiscussinAB-splinecurvedeÞnedeverywhereoncanbewritteninthefollowingform:arecontrolpointsandarethebasisfunctionsassociatedwithcontrolpointsEachbasisfunctioncanbethoughtofasthevariableweightwhichdetermineshowthecontrolinßuencesthecurveatparametricvalue.Foruniformsplines,thebasisfunctionsforaÞxedfunctionWechoosethebasisfunctioninsuchawaythattheresultingcurvesaretheinßuenceofthecontrolpointsislocal(i.e.onthesmallestpossibleinterval)andthecurvesarepiecewisecubicpolynomialsoneacheachintervalali,i+1].Wewouldliketheinßuenceofacontrolpointtobemaximalatregionsofthecurveclosetoitandforthisinßuencetodecreaseaswemoveawayalongthecurveanddisappearcompletelyatsomedistance.AlsodesirableisafÞneinvariancepropertythatwehaveseenforBeziercurves.wedescribehowtoconstructbasisfunctionssatisfyingalltheserequirements.TherearemanydifferentwaystodeÞneB-splines;wewillconsidertwoequivalentdeÞni-tions:usingconvolutionandusingblossoming. G22.3033-002:Lecture#2B-splinebasisfunctionsWestartwiththesimplestfunctionswhichalreadymeetsomeoftherequirementsabove:piece-wiseconstantcoordinatefunctions.AnypiecewiseconstantfunctioncanbewrittenasBoxBoxistheboxfunctiondeÞnedasBoxWedeÞnetheconvolutionoftwofunctionsfgTheremarkablepropertyofconvolutionisthateachtimeweconvolveafunctionwithaboxitssmoothnessincreases.WewillseethatconvolutioncanbeseenasÒmovingaverageÓAB-splinebasisfunctionofdegreecanbeobtainedbyconvolvingaB-splinebasisfunc-tionofdegreewiththeboxBox.Forexample,thebasisfunctionofdegree1isdeÞnedastheconvolutionofBoxwithitself.WeneedtocomputeBoxBoxGraphically,thisconvolutioncanbeevaluatedbyslidingoneboxfunctionalongthecoor-dinateaxisfromandkeepingthesecondboxÞxed(seeFigure4).Thevalueoftheconvolutionforagivenpositionofthesecondboxissimplytheareaundertheproductoftheboxes,whichisjustthelengthoftheintervalwherebothboxesarenon-zero.AtÞrstthetwographsdonothavecommonarea.Oncethemovingboxreaches0,thereisagrowingoverlapbetweentheareasofthegraphs.Thevalueoftheconvolutionincreasesuntil.Thentheoverlapstartsdecreasing,andthevalueoftheconvolutiondecreasesdowntozeroat.ThefunctionBoxBoxisasshowninFigure4.NowtaketheconvolutionofBoxandweobtain,thedegree2basisfunction.Wecancontinuefurtherandobtaindegree3B-spline,byconvolvingBox(Figure5).PropertiesofB-splinesisapiecewisepolynomialofdegree(eachconvolutionincreasesthedegreebyhasasupportoflength.WehaveseenthatBoxhasasupport1andeachconvolutionincreasesthesupportby1. G22.3033-002:Lecture#2 Figure4:ThedeÞnitionofDegree1B-splinebasisfunctionthroughconvolutionofBoxfunc-tionwithitself. 124 6t32 3 2t2 1 2t32 3 2(4 +2(4 t)2 1 2(4 t)31 6(4 t)3 Figure5:Degree3B-splinebasisfunctionBoxcontinuousandeachconvolutionincreasessmoothnessby1.ThesetoffunctionsisafÞneinvariant.Thiscomesfromtheobservationthat G22.3033-002:Lecture#2 (0,1,2)P(1,2,3)P(2,3,4)P(1,2,t)P(2,3,t) (2,t,t)P(t,t,t)P(3,t,t)P(3,4,t)P(3,4,5) 3t 3t 3 2t 2t 3t Figure6:BlossominginB-splineswhichcanbeprovedbyininductionobservingthatthispropertyholdsfortheboxfunc-tionandispreservedbytheconvolution.BlossominginB-splinesForacubicB-spline,ifif,3],thenwecanobtainthevalueoft,t,tfromthevaluesofasshowninFigure6.Forri,i+1]andcubicB-splines,weneedfourcontrolpoints,i,i+1)i,i+2)+3)