/
uhongGaoandDanielPtofMathematicalSciences,ClemsonUnivClemson,SouthCaro uhongGaoandDanielPtofMathematicalSciences,ClemsonUnivClemson,SouthCaro

uhongGaoandDanielPtofMathematicalSciences,ClemsonUnivClemson,SouthCaro - PDF document

pamella-moone
pamella-moone . @pamella-moone
Follow
365 views
Uploaded On 2015-08-18

uhongGaoandDanielPtofMathematicalSciences,ClemsonUnivClemson,SouthCaro - PPT Presentation

nqqn21 q1nInqnq Thismeansthatafraction1ofthepolynomialsofdegreeareirreducibleandsowe ndonaerageoneirreduciblepolynomialofdegreetriesInordertotransformthisideaintoanalgorithmonehastoconsid ID: 110225

nq(qn=21) (q1)nInqnq Thismeansthatafraction1ofthepolynomialsofdegreeareirreducible andsowe ndonaerageoneirreduciblepolynomialofdegreetries.Inordertotransformthisideaintoanalgorithmonehastoconsid

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "uhongGaoandDanielPtofMathematicalScience..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

uhongGaoandDanielPtofMathematicalSciences,ClemsonUnivClemson,SouthCarolina29634-1907,USAtofComputerScience,UnivyofTto,CanadaM5S-1A4paperfocuspolynomialsrithmprovidingavtofitthatimproesRabin'scostestimatebalogfactor.Wegiveapreciseanalysisoftheprobabilitythataran-dompolynomialofdegreetainsnoirreduciblefactorsofdegreeless).ThisprobabilityisnaturallyrelatedtoBen-Or's(1981)algorithmfortestingirreducibilityofpolynomialsoer nite elds.Walsocomputetheprobabilityofapolynomialbeingirreduciblewhenithasnoirreduciblefactorsoflowdegree.Thisprobabilityisusefulintheanalysisofvariousalgorithmsforfactoringpolynomialsoer nite elds.epresentanexperimentalcomparisonoftheseirreducibilitymethodswhentestingrandompolynomials.importantinimplementingcryptosystemsanderrorcorrectingcodes.Onewpolynomial ndingirreduciblepolynomialsandtestingtheirreducibilityofpolynomialsaretalproblemsin nite elds.Aprobabilisticalgorithmfor ndingirreduciblepolynomialsthatworkswinpracticeispresentedin[26].Thecentralideaistotakepolynomialsatrandomandtestthemforirreducibilit.Letbethenberofirreduciblepolynomialsofdegreeera nite eldI.Itiswwn(see[21],p.142,Ex.3.26&3.27)that n�q(qn=2�1) (q�1)nInqn�q Thismeansthatafraction1ofthepolynomialsofdegreeareirreducible,andsowe ndonaerageoneirreduciblepolynomialofdegreetries.Inordertotransformthisideaintoanalgorithmonehastoconsiderirreducibilitytests. Insections2and3,wefocusontestsforirreducibilit.LetLetx],degapolynomialtobeforirreducibilit.Assumethatarethehesforthisproblem:Butler(1954):isirreducibleifandonlyifdimk)=1,whereistherobeniusmaponIIx]=(f)thatsendsh2IFq[x]=(f)tohq2IFq[x]=(f),andIistheidenymaponIIx]=(f)(see[4]);f;x,and0mod(see[26Otherirreducibilitytestscanbefoundin[14],[31],and[12Inthispaper,weconcentrateonRabin'stest,andavtpresentedin[1].Insection2,wereviewRabin'sandBen-Or'sirreducibilityalgorithms.Westatesection3,efocusonBen-Or'salgorithm.Thisleadsusbehaviorofpolynomials,polynomialsanalysisisexpressedasanasymptoticformin,thedegreeofthepolynomialtobetestedforirreducibilit.First,we xa nite eldI,andthenwestudystudy],probabilisticpropertiespolynomialser nite eldsfrequentlyhaeashapethatresemblescorrespondingproper-tiesofthecycledecompositionofpermutationstowhichtheyreducewhenthegoespolynomialoferI),when.ThisprobabilityrelatesnaturallywithBen-Or'salgorithm.Theprobabilityofapolynomialbeingirreduciblewhenithasnoirreduciblefactorsoflowdegreeprovidesusefulinformationforfactoringpoly-nomialsoer nite elds(seeforinstance[126).WeprovidetheprobabilitofapolynomialbeingirreduciblewhenithasnoirreduciblefactorsofdegreeatInsection4,wegiveanexperimentalcomparisononthealgorithmsdiscussedsection2.polynomialhasamhbetteraeragetimebehaviorthanothers,eventhoughitswyisthewerysparseirreduciblepolynomialsareusefulforseveralapplications:pseu-dorandomnbergeneratorsusingfeedbackshiftregisters([15]),discreteloga-rithmoerI([6],[23]),andecientarithmeticin nite elds(Shoupprivunication,1994).Hoer,fewresultsareknownaboutthesepolynomialsbeyondbinomialsandtrinomials(see[22],Chapter3,andthereferencesthere).section5,polynomialswithupto(1)nonzeroterms(notnecessarilytheloestcoecienforin nitelymanydegreeseassumethatarithmeticinIisgiven.ThecostmeasureofanalgorithmwillbethenberofoperationsinI.Thealgorithmsinthispaperusebasicpolynomialoperationslikeproductsandgcds.Weconsiderinthispaperexclu- loglogpolynomialsofdegreeatmostusing\fast"arithmetic([28],[27],[5])canbeenas),andthecostofagcdbeteentopolynomialsofdegreeatcanbetakenas)operationsinI.Thenberofmcationsneededtocomputemodymeansoftheclassicaldsquaringmethodd],p.441{442),wherepolynomialerIbertationof.Therefore,thecostofcomputingmodythismethod)operationsinIusingFFTbasedmethods.Inthissection,wereviewRabin'sandBen-Or'stests,andwepresentavofRabin'smethod.Rabinirreducibilitytestandan RabinIrreducibilitAmonicpolynomialolynomialx]ofdegreeallthedistinctprimedivisorsofEither\isirreducible"or\isreducible". ],p.275,Lemma1).;:::;palllx]ofdeisirrducibleininx]ifandonlyifgcf;x,for,andThebasicideaofthisalgorithmistocomputemodindependentlyforeacyrepeatedsquaring,andthentotakethecorrespondentgcd.Theworst-caseanalysisgivenin[26]is)log)operationsinIer,itcanbeshownthat)loglog)isanupperboundofthe berofoperationsinIforthisalgorithm.Indeed, rstnotethatthenberofdistinctprimefactorsofisatmostlog.Thecostofexponentiationsis )log )logistheharmonicsum.Usingthewwnapprotionoftheharmonicsum([16],p.452),=loglog ),weobtain)loglog),whichdominatesthecost)log)ofcomputinggcd's.Therefore,thetotalcostofRabin'salgorithmis)loglogAsanimprot,weproposethefollowingvtforthecomputationofmod,for1 tofRabinIrreducibilitAmonicpolynomialolynomialx]ofdegree;:::;pallthedistinctprimedivisorsofEither\isirreducible"or\isreducible".:: Theorem2.2nomialirrducibility,anduses)logationsinThecorrectnessofthealgorithmfollowsfromthecorrectnessofthepocomputations.WeproethatmodyinductiononBasis:when=1,modestep:forsomemod.Then,mod Withthisvt,intheworst-case,thenberofpolynomialminRabin'salgorithmtocomputeallpoersusingrepeatedsquaringis)log)logexponen)logber)log)logBen-Orirreducibilitytest Ben-OrIrreducibilitAmonicpolynomialolynomialx]ofdegreeEither\isirreducible"or\isreducible". ThecorrectnessofBen-Or'sprocedureisbasedonthefollowingfact(see[21p.91,Theorem3.20).,theppx]istheprductofallmonicduciblepolynomialsininx]whosedeedividesmodf;x;:::; .Thepolynomialisreducibleifandonlyifoneofthegcd'sisdi erenfrom1.Intheworstcase,thisalgorithmcomputes timesathpoerandagcdofpolynomialsofdegreeatmost.Recallingthecostoftheseoperationsfromsection1,beha)log(usingFFTbasedmultiplicationalgorithms,andtherefore,itisworsethanourRabin'svt.Hoer,ascanbeseenfromourtheoreticalandexperimenresultsinSections3and4,Ben-Or'salgorithmisveryecient.Themainreasonfortheeciencyofthisalgorithmisthatrandompolynomialsoflargedegreeareerylikelytohaeanirreduciblefactorofsmalldegree,andBen-Or'salgorithmklydiscardsthesepolynomials(seealso[19poinnotknown.Ben-Or'saerage-caseanalysisisonlyknownwhengoestoin nitexpected amongtheirreduciblefactorsof;thentheexpectedcostofBen-Or'salgorithm)log(Ben-Or([1Theorem2)esan).Infact,herelatesthefactorialdecompositionofpolynomialswiththecyclicdecompositionofpermutations.Theresultfollowsfromthestudyoftheexpectedlengthoftheshortestcycleinarandompermutation([30]).Hothisrelationbeteenirreduciblefactorsofpolynomialsandcyclesofpermtionsjustholdswhenthesizeofthe eldislarge,asitwasobservedin[7].polynomialsolynomialswithoutirreduciblefactorsoflowdegreemakeBen-Or'sirreducibil-ytesttoexecutealargenberofiterations.Theprobabilitythatarandompolynomialofdegreetainsnofactorsoflowdegreegivesmeaningfulinfor-mationonthebehaviorofBen-Or'salgorithm.Wecallapolynomialithasnoirreduciblefactorsofdegrees.Inthissectionweareinterestedinthedistributionofroughpolynomials.Thefollowingtheoremisproedin[2]whenis xed.Theorem3.1Denotebyn;mtheprabilityofarandommonicpofdeough.Thenwhenn;m (1+uniformlyforbethecollectionofallmonicirreduciblepolynomialsinI,thesummationofallmonicpolynomialswithallirreduciblefactorswith(1+beaformalvariable,andthedegreeof.Thesubstitutionproducesthegeneratingfunction)ofpolynomialswithallirreduciblefactorshavingdegrees�km Notethatarywhen,andthuswecannotapplythetransferlemmasin[8,24Asusual,[)representsthecoecientof),andobservethatn;mmzn]Pm(z)=qn.Inordertoestimaten;m),weapplyTheorem10.8in[24)presentsapoleoforder1at withresidue qmYk=1(1�q�k)Ik:6 productSuppose q�1 .ByOdlyzko([24],Theorem10.8), qgq(m)1 q�n�1! �n+r�1 q�1r�n1 =max.Therefore,n;m q�11 qgq(m)!()�n=w+1 b�1gq(m)nw+1 independenm;qonlyneedtoestimateintermof.When 1,and.Consideringthateobtain j1�jmYkj1�zkjIk1 (1+ log(1+ b�1mYk=1exp(Ikrk)1 b�1mYk=1exp(bk1 b�1 mXk=1bk!1 b�1expbm+1 b�11 b�1expb b�1bclogn=1 b�1expb b�1nclogb:Hence,w1 b�1expb ,and b�1=bn2 b�1expb ByTheorem3.2belo em1 n;m gq(m)�1 2 b�1eclognexpb Aslog0and1,theright-handof(2)approachesto0asSincethequanyontheright-handof(2)isindependentofeseethatn;m)approachesto1uniformlyforThiscompletestheproof. Inthenexttheoremweestimatethefunction Theorem3.2oranyprimepandpositiveinte,wehave emexp �mXk=11 k!mYk=1(1�q�k)Ik1�1 p q�q q�1exp �mXk=11 ,wehave qkIk!e�Hme� istheEuler'sconstant,andNotethatlog(1+1,and k=2=�1�1 p By(1),weha qkmYk=1exp�Ik =exp qk!exp0@�mXk=1qk k�q(q2� (q�1)k qk1Aexp �mXk=11 k!exp q q�1mXk=1q2�1 k! �mXk=11 k! exp 1Xk=11 2q q�1=1�1 p q�q q�1exp �mXk=11 upperboundbounderboundspolynomialsandforthedensityofnormalelements(see[11]).Sinceitissimple,ereproduceithere.Asand01,weha qkIkmYk=11�1 qkqk�1 k=mYk=1 1 qk�1qk�1!�1 kmYkexp�1 =exp k!:8 betheharmonicsum,i.e.,.Then=xdx1+log,andth).When wnapproximationof=log ),weha ,thisresultisinaccordancewiththecorrespondentoneofpermwithnocyclesoflengthorless(see[29eprovideinTable1belowthevaluesofn;m)andtheirratio,=logforsev1000.Thiswsthatgenceofn;m)to)isveryfast.Moreoer,asn;m)quicdecreases.Forinstance,forarandompolynomialofdegree900,thereisaprob-yofmorethan0.9ofhavingafactorofdegreeatmost9.Thisisanotherhforirreduciblepolynomialsofdegreeatmost)inordertohahighprobabilityof ndingafactor.polynomialbeirreducibleifithasnoirreduciblefactorsoflowdegree.Manyal-gorithmsforfactoringpolynomialsoer nite eldscomprisethefollowingthreeefactorization(replaceapolynomialbyasquarefreeonewhicpolynomialexponenreducedto1);efactorization(splitasquarefreepolynomialintoaproductofpolynomialswhoseirreduciblefactorshaeallthesamedegree);andefactorization(factorapolynomialwhoseirreduciblefactorshaethesamedegree).bottlenecpolynomialfactorizationproblem(see[14],[18],[13]).Thisstepofthefactoriza-tionprocessworksasfollows:atanypoin,alltheirreduciblefactorsofdegreeuptoebeenfound,andalltheirreduciblefactorsofdegreegreaterthanremaintobedeterminedfromafactorAnaturalwyofimprovingthedistinct-degreefactorizationstepisbytestingasymptoticscenario,thecostoftheirreducibilitytestisaboutthesameasthedistinct-degreefactorizationalgorithm.Analternativetooercomethisproblemproblem](x6).Thecentralideaistoruntheirreducibilitytestandthedistinct-degreefactorizationalgorithminparallel,feedingtheformerwithpartialinformationobtainedbythelatter(seethedetailsin[12Itisclearthattheprobabilityofamonicpolynomialbeingirreduciblewhenithasnoirreduciblefactorsoflowdegreeprovidesusefulinformationintheaboprocess.Inthefollowing,wederiveanasymptoticformulaforthisprobabilit n m n;m gq(m) P/g 2 1 .25000000000000000000000000 .25000000000000000000000000 1.0000 3 1 .25000000000000000000000000 .25000000000000000000000000 1.0000 4 2 .18750000000000000000000000 .18750000000000000000000000 1.0000 5 2 .18750000000000000000000000 .18750000000000000000000000 1.0000 6 2 .18750000000000000000000000 .18750000000000000000000000 1.0000 7 2 .18750000000000000000000000 .18750000000000000000000000 1.0000 8 3 .14062500000000000000000000 .14355468750000000000000000 .97963 9 3 .14453125000000000000000000 .14355468750000000000000000 1.0068 10 3 .14355468750000000000000000 .14355468750000000000000000 .99997 20 4 .11828613281250000000000000 .11828541755676269531250000 1.0000 30 4 .11828541755676269531250000 .11828541755676269531250000 1.0000 40 5 .09776907367631793022155762 .09776907366723652792472876 1.0000 50 5 .09776907366723719405854354 .09776907366723652792472876 1.0000 60 5 .09776907366723652792472876 .09776907366723652792472876 1.0000 70 6 .08484899050039278356888779 .08484899050039278175814854 1.0000 80 6 .08484899050039278175860054 .08484899050039278175814854 1.0000 90 6 .08484899050039278175814857 .08484899050039278175814854 1.0000 100 6 .08484899050039278175814854 .08484899050039278175814854 1.0000 200 7 .07367738498865927351164168 .07367738498865927351164168 .99999 300 8 .06551498664534958936373162 .06551498664534958936373162 1.0000 400 8 .06551498664534958936373162 .06551498664534958936373162 1.0000 500 8 .06551498664534958936373162 .06551498664534958936373162 1.0000 600 9 .05872097388539275926570230 .05872097388539275926570230 1.0000 700 9 .05872097388539275926570230 .05872097388539275926570230 1.0000 800 9 .05872097388539275926570230 .05872097388539275926570230 1.0000 900 9 .05872097388539275926570230 .05872097388539275926570230 1.0000 able1.aluesofn;m)and),with=log=2.Theorem3.3n;m.Then,asachtoin nity,n;m istheEuler'scconsideringthepolynomialsofdegreeerIinsidethesetofpolynomialsofdegreeerIwithoutirreduciblefactorsofdegreelessthanorequaltoUsing(1),Theorems3.1and3.2,whenhtoin niteobtainn;m n;m n e� m=e m n:10 ExperimendescribeSection2.WeprovidearunningtimecomparisonofthealgorithmsforrandompolynomialsonaSunSparc20computer.ThealgorithmswereimplementedonaC++softareduetoShoup.Thispacagecontainsclassesfor nite eldsandpolynomialsoer nite eldswithimplementationsforbasicoperationssuchasultiplication,takinggcd,andsoon(foradescriptionofthesoftaresee[32polynomials.able2andTable3.ThedegreesinTable2andinTable3werechosensuchasmanyprimedivisorsandfewprimedivisors,respectiv.Thenberpolynomialstestedas10forTable2andforTable3,wherethedegreeofthepolynomialsbeingtestedforirreducibilit.ItcanbeseenfromcaseofdivisorsBen-Orhasbestbehaalgorithmshappenswhentestingirreduciblepolynomials.Weincludeacolumnwiththenberofirreduciblepolynomialsthatweretestedforeachdegree. n Rabin Rabin's Ben-Or berof Vt Irreducible 105 0.7990 0.6133 0.2000 9 210 2.7652 2.6942 0.9938 14 330 10.5672 17.4147 2.3443 8 420 10.5702 4.3971 1.5189 7 able2.eragetimeinsecondsfortesting10polynomialsoerIofdegreewithmanyprimedivisors. n Rabin Rabin's Ben-Or berof Vt Irreducible 101 4.1564 8.9188 0.5901 4 256 20.8451 46.9867 2.7950 5 331 32.7156 71.8685 2.7719 9 eragetimeinsecondsfortesting5polynomialsoerIofdegreewithfewprimedivisors. polynomialsarepresentedinTable4belo n Rabin Rabin's Ben-Or berof Vt Irreducible 101 186.1383 280.2633 13.0198 4 105 78.2952 61.8381 11.2629 5 210 227.5800 174.7400 23.0000 3 able4.eragetimeinsecondsfortesting5polynomialsofdegreeerIalsotestedcaseoferylarge elds.eragetimeinsecondsofCPUfortesting315polynomialsofdegree105oerIaprimewith100bits,wRabin'svInthiscase,5irreduciblepolynomialswerefound.betterbehaviorthanothers,eventhoughitsorst-casecomplexityisamongthem.Avtoftheaboealgorithmsthateconomizesgcd'scomputa-tionscanbegivenusingBen-Or'sideasupto)iterationsandourRabin'stafterthatpoint.Forthisalgorithmtogetherwithmoreexperimentalre-sults,see[25polynomialsytestsSection2,toexperi-tourprogramsonvariouspolynomialsoflargedegrees.Forreduciblepoly-Section3,programsterminatealmostimmediately.Hoer,whentestinganirreduciblepolynomial,wedonothaeapriorianyideaofwlongitetocom-pletethetask.Itisdesirabletohaesomesimplepolynomialswhiceknowinanceareirreduciblesothatwecantestthecorrectnessofourprogramsandwtheapproximatetimeourcomputerneedsonvariousdegrees.Thiswalsohelpusindecidingtherangeofdegreestocomparethetests.By\simple",emeanpolynomialsthatcaneitherbeconstructedeasily(withouttestingfororhaeonlyafewnonzeroterms.problemofsparseirreduciblepolynomialsisalsoofindependentinwnopenproblemistoconstructirreduciblepolynomialsoerIofdegreewithatmost)nonzerotermsinitsloestcoecients.These polynomialsareusefulinthediscretelogarithmproblem([6],[23]).Shoup(pri-atecommunication,1994)pointsoutthatifIIx]=(f)withirreducibleandandx]ofsmalldegree,saydeg2log,thenexponenoperationserations)Experimenwthatsuchpolynomialexistsfor1000takingdeg2+logShparlinski([33])givesaconstructionofirreduciblepolynomialswithdegreesoftheform4erIerI,and2erI,foran3,andk;leintegers.Inthefollowing,we rstgeneralizehisconstructionandthenconstructexplicitlyseveralin nitefamiliesofirreduciblepolynomials.Theorem5.1;:::;p;:::;egativeintegers.Then,overany nite eldwhosecharacteristicisdis-tinctfr,thereisanirrduciblepolynomialofdewithatmost1)+1oterms.ifallareodd.Ifoneof,sa,is2and3mod4,let=lcm(2).Then,1)for1,and41)ifisevbeanelementinIthatisnotathpoerinIfor1.ThepolynomialerI([21],p.124,Theorem3.75),isirreducibleoerIforallnonnegativein.ThenisirreducibleoerIofdegree.Thepolynomial(4)hasatmost+1nonzeroterms.polynomialsTheorem5.1berdependsexponenpolynomialshaeonlynonzerotermstheloestcoecients).Thiscanbeseenfromthefollowingexamples.Example5.21mod4esidue.Thenisirrducibleoverforallorinstanc3mod8isaprime,thentake5mod12isaprime,thentake2mod5isaprime,thentakeTheseresultsarefrom[17](Prosition5.1.3forthe rsttwo,andTheem2,p.54,forthethir Example5.33mod4em5.1.following[3].isoddand3mod4isaprime.L+1)+1).Constructativelyasfollows: 2p (modv; 2p (mode,ateachstep,onecantakeanyofthesignsarbitrarily.L.Thenisirrducibleover,andoveraswell,forallExample5.4em5.1followingolynomialsoverforallk;`;m;nconstructionsofpolynomials,olynomials,](Chap-ter3),and[10ethankBruceRichmondforhelpfuldiscussionsandVic-authorwhilevisitingtheUnivyofWaterloowhosehospitalityandsupportaregratefullyacBen-Or,M.Probabilisticalgorithmsin nite elds.c.22ndIEEESymp.oundationsComputerScienc(1981),pp.394{398.polynomialsoer nite elds.InInformationTheoryandApplic,A.GullivN.Secord,ol.793erlag,1994,pp.1{23. Blake,I.,Gao,S.,andMullin,R.Explicitfactorizationof+1oerIwithprime(mod4).Appl.Alg.Eng.Comm.Comp.4(1993),89{94.Butler,M.Onthereducibilityofpolynomialsoera nite eld.Quart.J.Math.(1954),102{107.polynomialsarbitraryalgebras.cta.Inform.28(1991),693{701.IEEETans.Info.Theory30(1984),587{594.Flajolet,P.,Gourdon,X.,andPanario,D.Randompolynomialsandpoly-ol.1099NotesinComputerScienc,Springer-Verlag,pp.232{243.SIAMJournalonDiscreteMathematics32(1990),216{240.onzurperiodsSubmittedtobolicComputationtendedabstractinProc.LAol.911ofLectureNotesinComputerScience311{322),1995.o,S.,andMullen,G.ksonpolynomialsandirreduciblepolynomialso nite elds.J.NumberTheory49(1994),118{132.SubmittedtoFieldsandtheirApplic(abstractinAMSAall1995,#904-68-227,p.798),1995.onzurGathen,J.,andGerhard,J.Arithmeticandfactorizationofpolyno-mialsoerIc.ISSAC'96,Zurich,Switzerland(1996),L.Y.N.,Ed.,Apress,pp.1{9.onzurGathen,J.,andPanario,D.Asurveyonfactoringpolynomialso nite elds.SubmittedtothespecialissueoftheMAGMAconferenceinJ.Symb.,1996.onzurGathen,J.,andShoup,V.ComputingFrobeniusmapsandfactoringpolynomials.Computcomplexity2(1992),187{224.Golomb,S.W.ShiftrgisterseAegeanParkPress,LagunaHills,Cali-fornia,1982.2nded.,Reading,MA,1994.Ireland,K.,andRosen,M.AClassicalIntrductiontoModernNumberThe2nded.erlag,Berlin,1990.tofen,E.,andShoup,V.Subquadratic-timefactoringofpolynomialso nite elds.c.27thACMSymp.TheoryofComputing(1995),pp.398{406.cher,J.,andKnopfmacher,A.tingirreduciblefactorsofpoly-nomialsoera nite eld.Theartofcvol.2:seminumericalalgorithms2nded.,ReadingMA,1981.Lidl,R.,andNiederreiter,H.Finite eldsol.20ofdiaofMathe-maticsanditsApplic,ReadingMA,1983.Menezes,A.,Blake,I.,Gao,X.,Mullin,R.,Vanstone,S.,andYt,Lancaster,1993. ol.209NotesinComputerScienc,Springer-Verlag,pp.224{314.o,A.Asymptoticenumerationmethods.okofCombinatoricsR.Graham,M.Grhel,andL.Loasz,Eds.Elsevier,1996.anario,D.binatorialandalgebraicaspectsofpolynomialsoer nite elds.PhDThesis,inpreparation,1996.Rabin,M.O.Probabilisticalgorithmsin nite elds.SIAMJ.Comp.9ge,A.hnelleMultiplikationvonPolynomenuberKorpernderCharak-teristik2.ctaInf.7(1977),395{398.ge,A.,andStrassen,V.hnelleMultiplikationgroerZahlen.puting7(1971),281{292.Sedgewick,R.,andFlajolet,P.nIntrductiontotheAnalysisofA,ReadingMA,1996.Shepp,L.,andLloyd,S.Orderedcyclelengthsinarandompermmer.Math.Soc.121(1966),340{357.Shoup,V.astconstructionofirreduciblepolynomialsoer nite elds.J.Symb.Comp.17(1995),371{391.Shoup,V.AnewpolynomialfactorizationalgorithmanditsimplemenSymb.Comp.20(1996),363{397.arlinski,I.Findingirreducibleandprimitivepolynomials.Appl.Alg.Eng.Comm.Comp.4(1993),263{268..ThispaperhasappearedinoundationsofComputationalMathematicsF.CucerandM.Shub(Eds.),Springer1997,346{361.ThisarticlewasprocessedusingtheLXmacropacagewithLLNCSst

Related Contents


Next Show more