/
Congruence between modular forms Congruence between modular forms

Congruence between modular forms - PDF document

pasty-toler
pasty-toler . @pasty-toler
Follow
418 views
Uploaded On 2017-03-22

Congruence between modular forms - PPT Presentation

q1Yn11qn241 q744196884qXcnqnThisisthefunctionknownasKleinsmodularinvariantorinaslightlydi erentcontextassimplythejinvariantItisameromorphicmodularfunctionofweightzeroandistheun ID: 330227

q1Yn=1(1qn)24=1 q+744+196884q+:::=:Xc(n)qn:ThisisthefunctionknownasKlein'smodularinvariant(or inaslightlydi erentcontext assimplythej-invariant).Itisameromorphicmodularfunctionofweightzero andistheun

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Congruence between modular forms" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

forexample,thefollowingcongruenceofRamanujan[Ram16]::=q1Yn=1(1�qn)241Xn=111(n)qnmod691:Toprovethiscongruencerequiresknowingonlythreefacts:thatbothandE12areclassicalmodularformsofweight12,thattheringofclassicalmodularformsisgivenbyZ[E4;E6] C,andthatthenumeratorofB12isdivisibleby691.Atthesametime,thiscongruencealsopointstowardsadeeperstrucure;itrepresentsthe rstincarnationofthemainconjectureofIwasawatheory|atheoremrelatingthespecialvaluesofDirichletL-functionstocorrespondingeigenspacesofclassgroupsofabelianextensionsofQ.Thetheoryofcongruencesofmodularformscanbe(roughly)distinguishedintotwotypes:(1)congruencesbetweenHeckeeigenforms,(2)congruencesbetweenclassicalholomorphicormeromorphicmodularforms.The rstsubjectisveryrichindeedandencompasses(broadlyconstrued)theentiretheoryoftwodimensionaloddGaloisrepresentationsofGQ.Weshallnotconcernourselveswithsuchcongruencesinthesenotes(excepttotheextentthattheyarerequiredtounderstandcongruencesofthesecondkind).Instead,weshallgrapplewiththesecondclassofcongruences,whichhasasitsgenesisvariouscon-jecturesofRamanujanconcerningthepartitionfunctionprovedbyWatson[Wat38](seeTheorem1.1.2below).Throughoutthistext,weshallconsiderthefollowingtwoexamples,which,althoughenjoyingsomespecialpropertieswhichdistinguishthemslightlyfromthegeneralcase,exhibitthetypicalbehaviorwithrespecttothetypeofcongruencestreatedinthesenotes.Letj=1+240X3(n)qn3 q1Yn=1(1�qn)24=1 q+744+196884q+:::=:Xc(n)qn:ThisisthefunctionknownasKlein'smodularinvariant(or,inaslightlydi erentcontext,assimplythej-invariant).Itisameromorphicmodularfunctionofweightzero,andistheuniquesuchfunctionwhichisholomorphicawayfromasimplepoleatthecuspsuchthatj()=0andj(i)=1728.Theq-expansionjhascoecientsinZwhichgrowsub-exponentiallybutfasterthanpolynomially.Weshallbeinterestedinthecongruencepropertiesofthecoecientsc(n).1.1.1.Exercise.TheWikipediaentryonthej-invariantisembarrassing|makeitbetter.Oursecondexample(whichweconsidermorebrie y)willconcerntheinverseofDedekind'setafunction,whichis(essentially)thegeneratingfunctionforthepartitions,namely:�1=1 q1=24Q1n=1(1�qn)=Xpn+1 24qn:(Followingthestandardconvention,p(m)=0ifmisnotaninteger.)ThefollowingtheoremsareduetoLehner[Leh49]andWatson[Wat38]respec-tively.2 1.1.2.Theorem.Thefollowingcongruencesaresatis ed:(1)Ifn0mod2mandn�0,thenc(n)0mod23m+8.(2)If24n1mod5m,thenp(n)0mod5m.Theproofofthesecongruencesreliedonajudicioususeofmodularequations,thatis,theexplicitfunctionalrelationshipsbetweenmodularfunctionsofcertainsmalllevels.Weshalltherebydubthistechniquethemodularequationmethod;itwasalsoappliedbyAtkinandO'Brientoprovesimilarcongruencesforhighermoduli[AO67].Weshallarguethatthesystematicuseofoverconvergentmodularformsisadirectdescendantofthemodularequationmethod.1.1.3.Thescopeofthisdocument.Thesenotesarenotintendedtobeanintro-ductiontothetheoryofmodularforms,althoughweshallsummarizesomeofthesalientdetails.Rather,itisdirectedtowardsthreespeci caudiences,namely:(1)Graduatestudentsinnumbertheorywithabasicunderstandingofclassicalmodularformsandtheirq-expansions.(2)Thosewhoareinterestedincongruencesconcerningspeci cmodularforms,forexampleinvolvingpartitions,butwhomarenotfullyconversantwiththemoderngeometricandrigidanalyticviewpointofDwork,Katz,andColeman.(3)Thosewhounderstandthetheoryofoverconvergentmodularforms,andarecuriousabouttheapplicationstoconcretecongruences.Sincetheseaudiencesbyde nitionhavesomewhatdi erentbackgrounds,Iwillhavetoapologizeinadvanceforsayingthingsthatyou,dearreader,will ndobvious.Iwillalsoapologizeforelidingtechnicaldetailswhoseabsencemaypushthemorecarefulreaderintoanapoplectic t.However,thetheoryofellipticcurvesandmodularformsencompassesquitealotofmathematics,andsoIwillnecessarilybecursoryonseveralimportantpoints(mostimportantly,thetechnicaldetailsconcerningtheconstructionofmodularcurves[DR73,KM85],aswellasanyrigorousdetailsatallconcerningrigidanalyticspaces).Inparticular,Iwillconcentrateontheissuesthataremostrelevanttomypurpose,andleavethesecondarymattertotheliterature,whichisextensiveand(quitefrequently)verywellwritten,e.g.[Sil86,Sil94,Kat73,DS05,Buz03].Indeed,aswithanylecturenotes,thekeychoiceistodecidewhichpointstoelide,whichpointstoskip,andwhichpointstoemphasize.SincemuchofwhatIsayinthe rsthalfofthesenotesoverlapswithwhatisin[Kat73],IleaveoutseveralargumentsthatKatzgivesindetail,andinsteadconcentrateongivingexamplesandemphasizingthepointsthatsomemight ndconfusingifapproaching[Kat73]withlimitedbackground.Letmeincludeatthispointthefollowingtable,whosecontent1isself-explanatory. Themodernmethod Theclassicalantecedent ThecompactnessoftheUoperator Themodularequationsmethod SerreweightsandAsh{Stevens Theweight ltrationinlowweights p-adicLanglandsforGL2(Qp) Theweight ltrationinhigherweights Holomorphicsectionsovertheordinarylocus Serre'sp-adicmodularforms 1Forreasonsoftime,Iwillnotdiscussinanydetailthesecondandthirdrowsofthistable.Fortheconnectionbetweenthe-operatorandSerreweights,oneshouldconsult[AS86].Theonlytimetheseideasariseinanyformwithinthesenotesissecretly|viaanappealtoaresultofBuzzard{Gee[BG09]concerningGaloisrepresentationsassociatedwithsmallslopeforms.However,Iwillsuppressallofthedetailsofthatpaper,togetherwiththeirconcomitantdicultiesrelatingto,interalia,p-adiclocalLanglands.3 Explicitly,themapisgivenbyx=}(z;)=1 z2+Xn01 (z�)2�1 2;y=dx dz=}0(z;)=X�2 (z�)3:Moreover,everyellipticcurveoverCadmitssuchauniformization.Inparticular,givenalattice,oneobtainsanellipticcurveE.(AnellipticcurveEoverCis,byde nition,asmoothgenusonecurvewithamarkedpoint,whichinthiscaseisthepoint\atin nity",e.g.z=0.ShowingthatellipticcurvesoverCadmitaWeierstrassequationisanelementaryexerciseusingtheRiemann{RochTheorem.)Itisimportanttonote,however,thismapisnotabijection.Itiseasytoseethatifonescalesthelatticebyahomothety,sayreplacingby,thenG4isreplacedby�4G4andG6isreplacedby�6G6.Thecorrespondingellipticcurvesareisomorphicunderascalinginxandy.Inparticular,thismapisabijectionbetweenlatticesinCuptohomothetyandellipticcurvesEoverC.Modularforms,however,arenotfunctionsonlatticesuptohomothetyunlessk=0.Itisnaturaltoask,therefore,whetherWeierstrass'theoremgivesanaturalbijectionbetweenlatticesandellipticcurvesenrichedwithsomeextrastructure.1.2.3.Lemma.Thespaceofholomorphicdi erentialsonanellipticcurveEoverCisonedimensional,thatis,H0(E; 1)=C.Proof.Ifonede nesanellipticcurvetobeasmoothprojectivecurveofgenusone,thenthislemmaisatautology.IfoneimaginesanellipticcurvetobegivenbyaquotientE=C=,thenonecanargueasfollows.Anyholomorphicdi erentialpullsbacktoadi erential!=f(z)dzonCwhichisinvariantundertranslation.Sincethedi erentialdzhasnopolesandnozeroes,itfollowsthatf(z)mustbeholomorphiconCanddoublyperiodic,andthus(byLiouville'stheorem)constant.Hencetheonlysuchdi erential(uptoscalar)isdz.Thisde nitionallowsustounderstandwhatextrastructurealatticecontainsbeyondtheisomorphismclassofthecorrespondingellipticcurve.1.2.4.Lemma.ThereisabijectionbetweenlatticesCandellipticcurvesEtogetherwithanon-zerodi erential!2H0(E;C).ThebijectionisgivenbytakingalatticetothecorrespondingWeierstrassequation,andthentaking!:=dz=dx dx=dz=dx y:Thisbijectioniscanonical,butitisnotcanonicallycanonical,sinceonecouldformsuchabijectionusingany xedmultipleofdX=Y.Thischoice,however,alsomakessenseintegrally(atleastuptofactorsof2).Underthisbijection,wecancomputeexplicitlywhathappensifwereplaceby.Wedothisingorydetail.Explicitly:7!:y2=4x3�60G4x�140G6;!=dx y;7!:v2=4u3�60G4�4u�140G6�6;!=du v:5 Nowwemaywritethelattercurveas(v3)2=4(u2)3�60G4(u2)�140G6,andhence!=du v=dx�2 y�3=!:Thisleadstoanewde nitionofamodularform.1.2.5.De nition(Version2).AmodularformfofweightkoverCisafunctiononpairs(E;!)consistingofanellipticcurveEandanon-zeroelement!2H0(E; 1E)suchthatf(E;!)=�kf(E;!);andsuchthatf(C=(Z+Z);dz)isboundedas!i1.Thiscoincideswiththepreviousde nitionifweletf()=f(C=;dz),since(aswesawabove)f()=f(C=;dz).1.2.6.ThefundamentaldomainandX(1).TheactionofPSL2(Z)ontheupperhalfplaneHhasafundamentaldomaingivenbytheshadedregioninFigure1.2.6: Figure1.ThisisapictureyouhaveseenbeforeThequotientY(1)=H=PSL2(Z)hasanaturalstructureasacomplexorbifoldwithconepointsofangles2=2atz=i,2=3andz=,and2=1atz=i1.Thereisanaturalcompacti cationX(1)obtainedby llinginthecuspatin nity.Thefunctionj:X(1)!P16 Figure2.Themonodromyof!Xfor 2�thesheafofrelativedi erentials 1E=Y(�)onY(�).If:E!Y(�)denotesthenaturalprojection,thenwelet:!Y:= 1E=Y:Intuitiontellsusthatthe breof!YatapointE2YcorrespondingtoanellipticcurveEshouldbeexactlywhatwearelookingfor,i.e., 1E=H0(E; 1E)(asheafataclosedpointissimplythemoduleofglobalsections).Thisintuitioniscorrect|itrequiresonlythatthemapisproper.1.2.18.De nition(Version3a).AmeromorphicmodularformfofweightkoverRandlevel�isasectionofH0(Y(�)R;! k).Notethatwealsowouldliketounderstandwhathappensatthecusps.For-tunately,theconstructionof[DR73]providesuswithageneralizedellipticcurveE=X(�),andacorrespondinglocalsystem!XonX(�),andwemayset:1.2.19.De nition(Version3b).AmodularformfofweightkoverRandlevel�isasectionofH0(X(�)R;! k).It'susuallysensibletoassumethatRisaZ[1=N]-algebrawhereNisthelevelof�.DenotetheR-moduleH0(X(�)R;! k)ofmodularformsbyMk(�;R).1.2.20.Warning.Inordertode ne!Yor!X,oneneedstheexistenceofauniver-salgeneralizedellipticcurveE,whichrequiresthemoduliproblemtobe ne,which11 requiresworkingwithX1(N)ratherthanX0(N).Thisisnotanarti cialproblem|thereisnoappropriatesheaf!onX0(N),andmodularformsofoddweightonX0(N)areautomaticallyzeroforparityreasons.1.2.21.Exercise.Showthat|whenitmakessensetocomparethem|allthede nitionsofmeromorphicmodularformscoincide.1.2.22.Kodaira{Spencer:Anotherdescriptionwhenk=2.Anotherdescriptionofmodularformsofweight2overCarisesfromthefactthat,forsuchforms,f()disinvariantunder�.Thismightleadonetosuspectthat 1X'! 2X;butthisisonlycorrectalongY(�).Theproblemisthatthedi erentialdisnotsmoothatthecusp.Thenatural(analytic)parameterat1isq=e2i,andd=1 2idq q:Inparticular,asectionofH0(X; 1)willbe(locally)amultipleofdq,andsothecorrespondingfunctionf()dq=2iqf()dwillautomaticallyvanishatthecusp.Inparticular,thecorrectisomorphismis 1X(1)'!2X;whereD(1)indicatesthatdi erentialsareallowedtohavepolesofordersatmostoneatthecusps.TheseisomorphismsgobythenameoftheKodaira{SpencerIsomorphism|overYitcanbededucedmoredirectlyusingdeformationtheory(seex3Bof[HM98]forageometricdiscussion).1.2.23.Changeofcoecients.MostlythecoecientsRjustcomealongfortheride.Inparticular,Mk(�;R)denotestheformsofweightkandlevel�overR,thenonemighthopethatMk(�;S)=Mk(�;R) RSforanS-algebraR.ThisiscertainlytrueifSisa atR-algebra,butitisnotalwaystrue.Theexceptions,however,aremainlycon nedtovaryparticularcir-cumstances:1.2.24.Proposition.LetSbeanR-algebra,andsupposethatNisinvertibleinR.Thenthereisanisomorphism:Mk(�(N);S)'Mk(�(N);R) RSprovidedthatN3andk2.TheonlyinterestingcaseisreallywhenR=ZpandS=FpforaprimepnotdividingN.Thereisamap:0!!!!!!=p!0oflocalsystemsonX(N)=Zp.SincejX(N)=Fp!X(N)=Zpisaclosedimmer-sion,thereisanisomorphismHi(X(N)=Fp;! k)'Hi(X(N)=Zp;j! k)=Hi(X(N)=Zp;! k=p):ItsucestoshowthatH1(X(N)=Zp;! k)=0.Sincethisis nitelygenerated,itsucestoshowthatH1(X(N)=Zp;! k)=piszero,andhenceitsucestoshowthatH1(X(N)=Fp;! k)iszero.Thereisaverynaturalwaytoshowthatthe12 isthenaprioriameromorphicmodularform,however,bylookingattheq-expansion,weseethatitisregularatthecuspsandthusholomorphicbytheq-expansionprinciple.(ThisniceargumentisduetoGross[Gro90]x4.)Ontheotherhand,fordiscussionofHeckeoperators\withoutthecrutchofq-expansions"see[Con07].1.5.TheFrobeniusmorphism.SupposethatSisaringwithpS=0,andsupposethatX=Sisascheme.Inthiscontext,thereareapairofmapswhichgoviathenameFrobenius.First,onehastheabsoluteFrobenius,whichinducesmapsFabs:Spec(S)!Spec(S)andX!X.Thismapisgiven,locallyonrings,bythemapx7!xp.Thereisacommutativediagramasfollows:X Fabs-XSpec(S)? Fabs-Spec(S)? Inparticular,FabsisnotamapofschemesoverS,unlessFabsonShappenstobeconstant(soS=Fp).TherelativeFrobeniusisawayofmodifyingthistogiveamorphismofschemesoverS.Namely,letX(p)=XSS,whereSisthoughtofoverSnotbythetrivialmapbutviaFabs.Then,byconstruction,thereisamap,relativeFrobenius,givenbyF:X!X(p),suchthatthecompositionwiththenaturalmapX(p)!XisFabs.1.5.1.Exercise.LetXbethesmoothcurve:ax3+by3+cz3=0overk,where3abc6=0.ProvethatX(p)isthecurveapx3+bpy3+cpz3=0:NotethatthemapFabsonH(X;OX)isnotS-linear,althoughitisFp-linear.1.6.TheHasseinvariant.LetSbeasintheprevioussection.SupposethatE=Sisanellipticcurvetogetherwithadi erential!Sgenerating 1E=S.BySerreduality,wemayassociateto!Sadualbasiselement2H1(E;OE).TheFrobeniusmapinducesamap:FabsH1(E;OE)!H1(E;OE);andwemaywriteFabs()=A(E;!)forsomeA(E;!)2S.1.6.1.Lemma.Aisameromorphicmodularformofleveloneandweightp�1overS.Proof.Ifonereplaces!by!0=!for2S,thenbecomes0=�1,andFabs(0)=Fabs(�1)=�pA(E;!)=1�pA(E;!)0;andthusA(E;!)=1�pA(E;!):18 IfSisa eld,thenA(E;!)iseitherzerooraunit|itiszeropreciselywhenEissupersingular(thisisessentiallyade nitionofwhatitmeanstobesupersingular,see[Sil86]).WecallAtheHasseinvariantofE.Tocomputetheq-expansionofA,weneedtoevaluateAonthepair(T(q);!can).Inordertodothis,weneedtounderstandtheoperatorFabsmoreexplicitlyoncurves.1.7.TheCartieroperatoroncurves.SupposethatX=Sisasmoothcurveofgenusg,andthatSisperfect.TheCartieroperatorCde nesamapfromthemeromorphicdi erentialsonXtoitselfsatisfyingthefollowingproperties:(1)Cpreservestheholomorphicdi erentialsH0(X=S; 1).(2)C(fp!)=fC(!)foranymeromorphicfunctionf.(3)C(fn�1df)=(df;n=p0;0np:.(4)If2H1(X;OX),then,underthepairingofSerreduality,hC(!);i=h!;Fabsi:Toimaginewhysuchanoperatormightexist,considerthecompletion[OX;xofalocalringatx.BecauseXissmooth,thecorrespondingringisS[[x]],themero-morphicdi erentialsareoftheformS[[x]]dx.ThenCmaybede nedasfollows,writing!=f(x)dx:C(!):=pr �dp�1f dxp�1dx:ClearlyCpreservesholomorphicityatapoint.Bythechainrule,onehas:dp�1fpg dxp�1=fpdp�1g dxp�1;dp�1fn�1df dxp�11 ndp dxp(fn):TheusageofismeanttoindicatethatthisequalityisonlyanequalityofformalexpressionsoverZ[[x]]|overS[[x]]itmakesperfectsenseif(n;p)=1andimpliesthatC(fn�1df)=0,becausedp=dxpisclearlythezerooperator.ForpjnitisnottoohardtomakeformalsenseofwhatthismeansandcomputethatC(fp�1df)=df.Tomakethisrigorous,oneneedstoshowthatCmayalsobede nedalgebraically,andthatitdoesnotdependonthechoiceofauniformizer.Itwouldtakeusalittletoofara eldtoprovethesestatements,however.1.7.1.Deligne'sComputationofA.Nowletuscomputetheq-expansionofA,namely,tocomputeA(T(q);!can)overR=Fp((q)).1.7.2.Theorem(Deligne).A(T(q);!can)=1.Theideaissimplytoshowthatthecorresponding1-formispreservedunderFabs.FromthecharacterizingpropertiesoftheCartieroperator,itthussucestoshowthatC(!can)=!can.Letx=t�1beauniformizingparameterofGmattheorigin.Thena(Gm-invariant)di erentialisgivenbydx 1+x=dt t=!can:YetaneasycomputationshowsthatC(dt=t)=t�1C(tp�1dt)=dt=t.Wecan'tquitearguethisway,becauseRisnotperfect(eventhelocalde nitionofCaboveinvolvestakingpthrootsandthusrequiresthattheunderlyingringSbeperfect).19 Ontheotherhand,ifRperistheperfectionofR,then,sinceR!Rperis at,bytheq-expansionprinciple(Corr.1.3.2),itsucestoworkoverRper,wheretheargumentabovegoesthrough.1.8.LiftingtheHasseinvariant.(cf.[Buz03]).Ifp5,thenAliftstoamodularformincharacteristiczero.Fromthecomputationabove,wenotethattheq-expansionofanysuchliftiscongruentto1modp.FromtheKummercongruences,wededuce:1.8.1.Theorem.Supposethatp5.ThemodularformEp�1isaliftofAsuchthatEp�1Amodp.Ifp=2orp=3,themodularformsE4andE6areliftsofA4mod8andA3mod9respectively.Proof.Forp=2and3thisisacomputation;forp5itisanimmediatecon-sequenceofthevonStaudt{ClausentheoremonBernoullinumbers,aswellastheidenti cationoftheconstanttermoftheclassicalholomorphicEisensteinseries.Justtobeclear,hereby\mod"pwereallymeanmodulotheideal(p),sothatifEp�1isthoughtofasamodularformoversomeringR,thiscongruenceidenti esthevalueofAinR=p,evenifthelatterisnotreduced.Inparticular,givenaWeierstrassequationforE(andhenceacanonicaldi erential!)onemaycomputeAmodpbycomputingthecorrespondingvalueofEp�1,withappropriatemodi cationsifp=2or3.2.p-adicmodularformsLetus xacongruencesubgroup�oflevelprimetop.Thede nitionofp-adicmodularformandoverconvergentp-adicmodularformatlevelonearevirtuallythesameasthecorrespondingde nitionatlevel�|oneneedonlyaddthenaturalcompatibilitywiththelevelstructure awayfromp.Inthesequel,therefore,weshallessentiallyignorethisdistinctionandworkatlevelone,makingremarksaboutthelevelstructureawayfromp(the\tame"levelstructure)whenappropriate.2.1.p-adicmodularforms:TheSerreapproach.Serrewroteabeautiful3andelementarypaperonp-adicmodularforms[Ser73b].Thebasicidea(translatedintosomewhatdi erentlanguage)isasfollows.Inordertocapturethenotionofcongruencesbetweenmodularformsinsometopologicalway,thenwewouldliketosaythattwoq-expanionsaandbarecloseifabmodpnforlargen.Recallthat(uptonormalization)thespaceofmodularformshasabasiswithcoecientsinZ.ThereisanaturaltopologyonZp[[q]] Qp(note,thisisdi erentfromQp[[q]]) 3Asonewouldexpect,Serree ortlesslyexplainseverythingseeminglystartingfrom rstprin-ciplesandgivesabeautifulexplanationoftheconstructionofp-adicL-functions.Followingtheelementaryargumentsdowntothesource,thekeyfactistoshowthat=1Xn=1p�2(n)qndoesnotlieinthe eldoffractionsoftheringofmodularformsmoduloponthecomplementXnSofthesupersingularlocus([Ser73b],p.199Ser-9).Anelementaryargumentusingweightsshowsthatitselfisnotamod-pmodularform.Serrenotesthat�p= forsomeexplicit ,andthenusesthefactthatH0(XnS;OX)isintegrallyclosed(becauseXandthusXnSissmooth)toobtainacontradiction.Yettogettheidenti cationofgM0withH0(XnS;OX),oneusesthefactthattheHasseinvariantAiscongruentto1modp,whichisofanorderofdicultyhigherthantherestoftheargumentsinthepaper.Thusitisbettertoread[Ser73b]inconjuctionwithSerre'sBourbakiseminaronthesubject[Ser73a],whichgivesalittlemoredetailconcerningthisargument.20 whichexactlyrecordsthisnotionofcongruence,andwemayde nep-adicmodularformstobetheclosureofthesetofmodularforms(see[Ser73b]).LetAbe(any)liftoftheHasseinvariant.SinceA1modp,itfollowsthatthepowersofA(atleastthepnthpowers)arebecomingmoreandmorecongruentto1modp.Hencetheyconvergeto1.ItfollowsthatthepowersApn�1areconvergingtoA�1,orinparticularthatanyliftoftheHasseinvariantisinvertible.Thespaceofp-adicmodularfunctionsthende nesitself:2.1.1.De nition.Thep-adicmodularfunctionsonX(�)arethefunctionswhicharewellde nedatallpointsofordinaryreduction.Naturallyenough,onemightbealittlesuspiciousofthisde nition,sinceoneisallowingpolesatanin nitenumberofsupersingularpoints(thereareonly nitelymanysupersingularpointsmodulop,buttherearein nitelymanyliftstocharac-teristiczero).Aninitialsteptorepairingthisisgivearule{basedde nition.2.1.2.De nition(Version2).Ap-adicmodularformfofweightkandleveloneoverap-adicallycompletealgebraAisafunctiononpairs(E=R;!)forap-adicallycompleteA-algebraRsatisfying(1)!isanowherevanishingsectionof 1E=A,(2)A(E=B;!B)isinvertible,whereB=A=p,suchthat:(1)f(E=A;!)dependsonlyontheA-isomorphismclassof(E=A;!).(2)f(E;!)=�kf(E;!)forany2A.(3)If:A!Bisanymapofrings,thenf(E=B;!B)=(f(E=A;!)).(4)f(T(q);!can)2A[[q]].Asexpected,thereisananalogousde nitionatlevel�primetop,whereoneconsidersfunctionsf(E=A;!; )forsomelevelstructure awayfrompcorrespond-ingtothegroup�.DenotethisspacebyMk(�;R;0).If�=SL2(Z)(whichisanaturalchoiceforwhichallthephenomenacanalreadybeseen)wesimplywriteMk(1;R;0).ClearlyanyclassicalmodularformofweightkoverRgivesap-adicmodularform.Moreover,ap-adicmodularformovera nite eldk(necessarilyofcharacteristicp)consistsofsectionsofH0(XnS;!k),whereSisthesupersingularlocus(sinceinvertibleovera eldisthesameasnon-vanishing).IfAistheHasseinvariant,thenAisamodularformofweightp�1overFp,andA�1isamodularformofweight1�poverFp.Moreover,Apn�1de nesaninvertiblep-adicmodularformofweightpn�1(p�1)overZ=pnZ,andthus:2.1.3.Lemma.Supposethatpn=0inR.Thenthemap;Apn�1:Mk(�;R;0)!Mk+pn�1(p�1)(�;R;0)isanisomorphism.Fromthiswededucetheq-expansionprinciple.2.1.4.Lemma.ThereisaninjectivemapMk(�;R;0)!R[[q]].Proof.Byconstruction,Mk(�;R;0)=Mk(�;lim R=pn;0)=lim Mk(�;R=pn;0):21 2.2.3.Remark.Sincenewformsoflevel�0(p)haveUp-eigenvalueequaltooneofthenumbersp(k�2)=2,whenk�2,theordinaryprojectionisgeneratedbyoldformsfromMk(�;R).2.3.Whyp-adicmodularformsarenotgoodenough.Letusexplainwhyonemightasktogobeyondthetheoryofp-adicmodularforms.Wedothiswithanexample, rstobservedbyAtkinandO'Brien[AO67].Thej-invariantde nesameromorphicmodularformofweightzeroandlevel1foranyp.ItfollowsthatUpjalsoap-adicmeromorphicmodularformofweightzeroandlevel1.Ontheotherhand,sinceUpj2Zp[[q]],thefunctionUpjextendstothecuspandde nesanhonestp-adicmodularform.ByHida'stheorem,itfollowsthatepUpjliesintheordinaryspaceepM0(1;Zp;0),andcanthusbewrittenasa nitesumof(generalized)ordinaryeigenforms.AtkinandO'Brienconsiderthespecialcaseofp=13.Inthiscase,thedimensionofe13M0(1;Z13;0)isthesamedimensionase13M12(1;Z13;0),whichistheimageoftheclassicalspaceM12(1;Z13)undere13.Thespaceofmodularformsofweight12andlevel1overZ13isgeneratedbyE121mod13and.TheeigenvalueofT13onis(13)=�577738;andthustheordinaryprojectione13M12(�0(13);Z13;0)consistsoftheforms:E12(q)�1311E12(q13);(q)� (q13);withU13eigenvalues1and respectively,where =�288869�p �1708715094876=51311+31312+91313+::: =�288869+p �1708715094876=8+513+10133+5134+:::aretheroots(inZ13)ofx2+577738x+1792160394037=0.Inparticular,theordinaryspacehasdimensiontwo.Aprioriitiseasytoobtainanupperboundof2,butthelowerboundrequiresthecomputation(13)860mod13.Itfollowsthate13M0(�;Z13;0)hasdimensiontwo.Thefunction1isaclassicalmodularformofleveloneandweight0,anditisalsoanordinaryformwitheigenvalue1.Theotherordinaryformisthusanormalizedcuspidaleigenformh2Zp[[q]].Indeed,hmod13.Itfollowsthatthereisanidentitye13U13j=744+ hforsome 2Z13.Inparticular,wededucethat,forany xedd,Un13j�744mod13d=1Xk=1c(13nk)qkmod13disaHeckeeigenformforsucientlylargendependingond.Theseargumentsdonotmakeclear,however,howlargenhastobeforanyparticulard.Ontheotherhand,AtkinandO'Brienconjecturedsomethingmuchmoreprecise,namely,theyconjecturethat1Xk=1c(13nk)qkmod13nisalreadyaHeckeeigenform.Thatis,theconvergenceofUn13jtotheordinaryprojectionislinear.Wemayask:isthisageneralphenomenonforallp-adicmodularforms?Inthisgenerality,itturnsoutthattheanswerisno.25 aslongasweinterpretXrig0(p)[0]tobethecomponentoftheordinarylocuscon-taining1.Yetthissectionextendsasfarasthecanonicalsubgroupcanbede ned,namely,toXrig[r]foranyrp p+1:Toseethisexplicitlyforp=2,weneedtorecallsomeofthegeometryofX0(2).Ithasgenuszero,andthusitisgivenbytheprojectivelineforsomemodularfunctionf.Therearevariouschoicesofftomake,butoneclassicaloneistheinverseoftheHauptmodul:f=(2) ()=q1Yn=1(1+qn)24=q+24q2+:::Onehastheclassicalmodularequation:f (1+28f)3=j�1=1 q+744+:::�1=q�744q2+356652q3:::Thefunctionsfandj�1arebothuniformizingparametersatthecusp1.Letustrytocomputeasectionbysolvingthecorrespondingcubicequation:(1+28f)3�jf=0inaneighbourhoodofj�1=0.Theslopes(valuationsofthecoecients)ofthispolynomial(asapolynomialinf)are[24;16;v(328�j);0]:Inparticular,aslongas:kj�1k2k2�8k=28;thereisauniquerootfofvaluation&#x]TJ/;༔ ; .96;& T; 10;&#x.516;&#x 0 T; [0;�8.HowdoesthisrelatetoourpreviouscomputationandLemma3.0.4?NotethatE4=1�240X3(n)qnisaliftofA4.Moreover,wehaveE34 =j:IfweareclosetothecuspofX(1),thenisclosetozeroandthereisacanon-icalsubgroupcorrespondingtopinT(q)(Thecorrspondingellipticcurveshavemultiplicativereduction).SupposeinsteadthatEhasgoodreductionat2.Then,choosing!soastoobtainaminimalmodelforE,we ndthat(E;!)isaunit,andhencev(E34)=v(j):Inparticular,theregionv(j)8corresponds(forcurvesofgoodreduction)totheregionv(A)=1 4v(E4)=1 12v(E34)8 12=2=3;whichisexactlytheboundrequiredtoadmitacongruencesubgroup.3.2.3.Exercise.Showthat,fortheellipticcurveEofexercise3.0.5,onehasj=26+29+O(211),andf(E;C)=2�6+2�4+24+O(25).30 ofoperatorshavethisproperty.Imagine,forexample,weletC(r)denotethecom-plexanalyticfunctionsontheclosedballjzjr.SupposewehadancontinuousoperatorU:C(1)!C(2):ThenwecouldcomposeUwiththerestrictionmapC(2)!C(1).Whatisamazingaboutthislastmapisthatitiscompact.3.4.Overconvergentp-adicmodularforms.3.4.1.De nition.Let0rp=(p+1)berational.Thespaceofoverconvergentmodularformsofweightk,level�,andradiusr,isde nedtobe:Myk(�;r)=H0(Xrig[r];!k):3.4.2.Remark.Thereisaninclusion:Myk(�;r)!Mk(�;Cp;0)!Cp[[q]]:Henceoverconvergentmodularformssatisfytheq-expansionprinciple.3.4.3.Example.SupposethatN=1andp=2andk=0.ThenMy0(�;r)=C2h2rfiisaballofradius2�r.3.4.4.Lemma.My0(�;r)isaBanachspacewithrespecttothesupremumnormonXrig[r].Denotethenormbykkr.Therestrictionmaps;:My0(�;s)!My0(�;r)arecontinuous,sincekgksk(g)kr:Thenormalsomakessensewhenr=0.Inthiscasetheformsarenolongeroverconvergentandthuswedropthey.3.4.5.Exercise.Showthatkk0co-incideswiththeq-expansionnorm.DeducethatanysequenceofoverconvergentmodularformsconverginginMyk(�;r)arealsoconvergingintheq-expansiontopology.Itisnottoodiculttoconstructsectionsof!kwhichdon'tvanishonXrig[r],andhenceMyk(�;r)'My0(�;r)asBanachspacesforeveryintegerk.Ofcourse,theseisomorphismsdon'tcommutewithHeckeoperators.3.5.Compactoperatorsandspectralexpansions.LetUbealinearoperatorona niterankvectorspaceV(youcan,ifyouwish,chooseabasisforVandthinkofUasamatrix).HerewesupposethatthecoecientslieinR,orC,orQp,orCp,oranycompletenormed eldF.TheoperatorUhasngeneralizedeigenvaluesinsome niteextensionofF.Foranyv2V,wemaywritev=X iviforaneigenbasisvi.Letussupposethatj1j&#x-298;j2j:::jnj:33 3.5.2.Lemma(AsymptoticExpansions).SupposethatUactscompactlyonasep-arableBanachspaceBwithanultrametricnorm.Then,forv2B,thereexistsconstants iandgeneralizedeigenvectorsviofUwithnon-zeroeigenvalueP ivianda\spectralexpansion"vP iviwiththefollowingproperty.Let�0bea xedrealnumber.Then,asngoestoin nity, Unv�X iUnvi =o(n);wherethesumrangesoverthe nitelymanygeneralizedeigenvectorsviwhosecor-respondingeigenvalueis.Inparticular,anasymptoticexpansionallowsonetounderstandUnvmoduloany xedpowerof,withthenecessaryprovisothattheimpliederrorconstantsdependon.3.5.3.Remark.Notethatfora xedeigenvalue6=0,thegeneralizedeigenspaceofUis nitedimensional,butthatnotallgeneralizedeigenfunctionsmaybeactualeigenfunctions.Thishappensalreadyinthe nitedimensionalcase.3.5.4.Exercise.LetC(r)denotethecomplexanalyticfunctionsonjzjr.Provethatthecomposition:C(1)!C(2)!C(1)de nedbyUf(z)=f(z=2)iscompact.DeterminealltheeigenvectorsofU,andprovethateveryelementinC(1)admitsanabsolutelyconvergentspectralexpansion.ThepointofthisexerciseisthatthemapUpisexactlyoftheform,andhence:3.5.5.Theorem.Supposethatrp p+1:ThenthemapU:H0(Xrig[r];!k)!H0(Xrig[r];!k)iscompact.Theproofisthatitiscomposedofacontinuousmapwhichextendsconvergencewiththerestrictionmapwhichiscompact(thisusesTheorem3.3.2.)Thebigquestionthenis,whattypeofcompactoperatoristhis?3.6.ClassicalForms.ThefollowinglemmaistheanalogofLemma2.1.63.6.1.Lemma.Thereisaninclusion:Mk(�0(pn))Myk(�;r)foranykandsmallenoughr.IfE=Risnottoosupersingular,thenEhasacanonicalsubgroupC.AslongastheHasseinvariantofE=Rissucientlylarge,wededucethatE=Cisalsonottoosupersingular,andthus(byinduction)aslongasrissucientlysmall,forsuitableE=Rwemay ndacanonicalsubgroupCoforderpn,fromwhencethelemmafollows.35 3.6.2.Someimportantbutnotentirelyrelevantfacts.Supposethatfisaclassicaleigenformofweightkandlevel�.SupposethatTphaseigenvalueap.Considerthepolynomialx2�apx+pk�1;whichistheminimalpolynomialofcrystallineFrobenius(afactwhichisbothhighlyrelevantandcanbeignoredcompletely).Associatedtofisatwodimensionalspaceofold-formsoflevel�0(p),givenexplicitlybyf=f(q)andUpf=apf�pk�1f(qp).If and aretherootsofthecharacteristicpolynomial(theyareconjecturallydistinctifk�1)thenf(q)� f(qp)andf(q)� f(qp)havelevel�0(p)andareeigenvaluesofUp.Theyareoverconvergent!Notethatv( );v( )p�1.Thereis(almost)aconversetothis,namely,iffisanoverconvergenteigenformforUpwithUpf=fandv()k�1,thenfisclassical.ThisisatheoremofColeman[Col96].Whenv()=k�1,itcan(anddoes)goeitherway,althoughtherearemorere nedconjecturespredictingwhatshouldhappeninthiscase.3.7.Thecharacteristicpowerseries.AssociatedtothecompactoperatorUpistheFredholmpowerseriesdet(1�TUp)2Zp[[T]].GeneralizingHida'stheo-rem,Colemanshowsthatastheweightvaries,thecoecientsofthisseriesvarycontinuouslyintheweight.Moreover,theymaybeidenti edwithelementsintheIwasawaalgebra=Zp[[Zp]].Usingthefactthatformsofsmallweightareclassi-cal,theusualtraceformulaallowsonetogiveanexactformulaforthecoecientsofdet(1�TUp)as nitesumsinvolvingclassnumbers.Inparticular,thecoecientsareverycomputable,andthus,viaNewton'sLemma,thevaluationsofthespectraleigenvaluesj1jj2j:::arealsoverycomputable.3.7.1.Exercise.Showthatany niteslopeeigenvalueofUpliesinMyk(�;r)foranyrp p+1.3.7.2.Exercise.ProvethatthetraceofU2onMy0(1;r)is7�p �7 28=1+23+24+27+210+212+213+:::3.8.TheSpectralconjecture.Wehaveseenthat,ingeneral,theasymptoticex-pansionwithrespecttoacompactoperatorneednotbeabsolutelyconvergent.OnemayaskwhetherthissequencedoesconvergeinthespecialcaseofoverconvergentmodularformswithrespecttotheUp-operator.Oneobstructiontoconvergenceisasfollows.3.8.1.Lemma.IftheasymptoticexpansionofanoperatorUonaBanachspaceBisconvergenttotheidentityoperator,thenker(U)=0.Proof.Thisisobvious.Ontheotherhand,wehavethefollowing.3.8.2.Lemma.Vpde nesamapVp:Myk(�;r)!Myk(�;r=p):TheproofisvirtuallythesameastheproofthatVppreservesp-adicmodularforms.Moreprecisely,VpfevaluatedonEdependsonlyonfevaluatedatE=C,36 whereCisthecanonicalsubgroup.YetthisincreasesthevaluationoftheHasseinvariant.Onq-expansions,wehaveVpXanqn=Xanpqn:Inparticular,thecompositionUpVpistheidentity.(Thisfollowsfromtheq-expansionprinciple.)LetWpbetheoperator1�VpUp.ThenUpWp=Up�UpVpUp=Up�Up=0.Inparticular,iffliesinker(Up)thenWpf=f,andmoreover,theimageofWpliesinthekernelofUp.Onq-expansions,wehaveWpXanqn=X(n;p)=1anqn:3.8.3.Lemma.Supposethatr1 p+1,thenWpde nesamap:Myk(�;r)!Myk(�;r)whichisaprojectionontoker(Up).Thereasontheboundonrisneededisthatforlargerr,itisnotnecessarilythecasethatUpincreasestheradiusofconvergencebyafactorofp,andthusthecompositeVpUpmaydecreasetheradiusofconvergence.Weimmediatelydeducefromthisthefollowing:3.8.4.Lemma.Supposethatr1 p+1:ThenthekernelofUponMyk(�;r)isin nitedimensional.Inparticular,thespectralexpansionofUpforsuchrisnotingeneralconvergent.Ontheotherhand,thereseemstobeatransitionthattakesplaceatr=1=(p+1),asindicatedbythefollowinglemma.3.8.5.Lemma.Ifr�1 p+1,thenthekernelofUponMyk(�;r)istrivial.Proof.Thisis[BC06]Lemma6.13(andRemark6.14).Thekernelofacompactoperatorisnottheonlyobstructiontoconvergence.RecallthatthedampedshiftoperatorUxn�1= nxnconsideredabove(wherelim n=0isasequenceofnon-zeroelements)hastrivialspectralexpansionseventhoughUitselfhasnokernel.Therestill,however,appearstobereasontobelievethefollowing.3.8.6.Conjecture.Supposethatr2(1=(p+1);p=(p+1)).ThenanyF2Myk(�;r)hasaconvergentspectralexpansionwhichconvergestoF.Explicitly,wemaywriteanyF2Myk(�;r)asF=Xi(F)vi;wheretheviarea xedchoiceof(generalized)eigenvectorswitheigenvaluesi.Notethatby\convergence"abovewemeanconvergenceintheBanachspacenormonMyk(�;r)(thatis,thesupremumnorm).Thisisamuchmorerestrictivecondi-tionthanconvergenceintheq-expansiontopology(whichisthesupremumnormontheordinarylocusXrig[0].)37 3.10.2.Theorem.Let123:::denotetheeigenvalueswhichoccurforN=1andp=2ofvaluation3;7;13;:::.Letvidenotethecorrespondingeigenform,normalizedsothattheleadingcoecientis1.IfF2My0(1;1=2),thenthereisanequalityF=X ii;where i:=hF;ii hi;ii:Moreover,k iik1=2kFk1=2foralli.3.10.3.Lemma.Ifiisanormalizedoverconvergenteigenform,thenkikr1:Proof.Wenotedpreviouslythatkikrkik0.Thelatterisgivenbytheq-expansionnorm,andthus(sinceiisnormalized)itfollowsthatkik0=1.ByLemma3.10.3,wededucethatj ijkFk1=2 kik1=2kFk1=2:Inpractice,oneexpectskik1=2toincreaserelativelyquickly.However,thisesti-mateatleastallowsforanexplicitcomputationof i.Wereturntothenumerologyofeigenformsinsectionx5.3.11.Someheuristics.Letusnowreformulatethespectralconjectureinaslightlydi erentwayinweight0.First,supposeweareworkingwithclassicalcuspformsinSk(�;C).Then,foracuspformF,onehasanidentity:F=Xhi;Fi hi;iii;wheretherighthandsideisa nitesumovercuspidaleigenformsi,andh;iisthePeterssoninnerproduct,givenbyh; i=Z  ykdxdy y2;whichsatis esh;i=L(1;ad0)foreigenforms.Ontheotherhand,weexpectthatforF2Sy0(�;r)(andrsucientlylarge),onehasanidentity:F=Xhi;Fi hi;iii;wheretherighthandsideisnowanin nitesumover niteslopeeigenformsi,andh;iistheinvariantpairingdescribedabove.3.11.1.Exercise(?).Showthat,suitablynormalized,theinvariantpairingh;ifora niteslopeeigenformcoincideswiththep-adicL-functionLp(1;ad0)at=0,wheredenotestheColemanfamilyofeigenformsofweightpassingthrough.40 Herearesomethoughtsonthisexercise.Notethatthep-adicadjointL-functionisrelatedtotherami cationoftheColemanfamilyoverweightspace.Inparticular,Lp(1;ad0)shouldhavezerosexactlyattherami cationpoints(resultsofthis avourwereprovedbyKiminhisthesis[Kim06]).Ontheotherhand,assumingtheexistenceofspectralexpansionsoneexpectsthath;i=0whereU=ifandonlyifthereexistsageneralizedeigenform suchthat(U�) =(seethecalculationofx5.0.7foronedirection,andusetheq-expansionprincipleandthefactthath;iisnon-vanishingfortheotherdirection).Yetthenon-semi-simplicityofUisequivalenttotheeigencurvebeingrami edatthispoint.4.ExamplesInthissection,wegivesomeexplicitexamplesinordertoillustratethegeneraltheory.Writej=1 q+744+196884q+:::=Xc(n)qn:We rstshowhowtounderstandcongruencesforc(n)modulopowersoftwousingaclassicalmethod,andweshallreturnlateranduseamodernapproach,whichgivesmoreinformation.4.1.Anexample:N=1andp=2;theWatsonapproach.RecallthatX0(2)isuniformizedbythefunction:f=q1Yn=1(1+qn)24=q+24q2+:::andthatthereisanidentity(1+28f)3 f=j:We rstapplyU2toj,andwe ndthat:U2j=744+Xc(2n)qn:Formally,U2takesfunctionsonX0(1)toX0(2).ThusU2jisameromorphicfunc-tiononX0(2).Moreover,sinceU2j(E)isasumofj(E=C)forvariousC,thefunctionU2jwillbeholomorphiconX0(2)awayfromthecusps.SinceU2jisholo-morphicat1,itcanonlyhavepolesattheothercuspofX0(2),namelyatf=1,andhenceU2jisapolynomialinf.Indeed:U2j�744=140737488355328f4+3298534883328f3+19730006016f2+21493760f=25�262144g4+393216g3+150528g2+10495g;whereg=26f.Ontheotherhand,ifhisameromorphicfunctiononX0(2)thensoisU2h,andifhonlyhasapoleat0thensodoesU2h;thatis,U2takespolynomialsinftopolynomialsinf.Wesee:U2f=24f+2048f2;U2f2=f+1152f2+196608f3+8388608f4;andsoon.Moregenerally,U2fn=1 2f 2+f+1 2:41 HenceU2fnsatis esarecurrencerelationxn�a1xn�1+a2xn�2=0,whereX2�a1X+a2=X�f 2X�f+1 2=X2�(48f+4096f2)X�f:Theclassicalideaisnowtoexplicitlycomputethe\matrix"ofUonsomenicebasis.If,forexample,oneshowsthatthismatrixisdivisibleby8(inthiscase),theniteratingUwillestablishthenecessarilycongruences.4.1.1.Lemma.Leth=8f,andconsidertheringR=Z2[[h]]ofpowerseriesinhwithintegralcoecients.ThentheoperatorF:=U2=8actscontinuouslyonhR.Proof.ContinuityisequivalenttoaskingthatF(hn)2R,andthedegreeofU2hngoestoin nitywithn.Bothclaimsfollowbyinduction.Fromthecomputationsabove,weseethat:F(h)=3h+32h2;F(h2)=h+144h2+3072h3+16384h4;andthenF(hn)=16(3h+32h2)F(hn�1)+8hF(hn�2).SinceU2j�744228hR,itfollowsthat1Xn=1c(2mn)qn=Um2j�744=(8F)m�1(U2j�744)(8F)m�1(28hR)23m+5F(hR)23m+5hR23m+8Z2[[q]]:ThisprovesLehmer'scongruenceintheintroduction.4.2.Anexample:N=1andp=2;theColemanapproach.Thefunctionjde nesameromorphicfunctiononXrig[r]withapoleonlyat1,andhenceUpjextendstoanelementofMy0(�;r)foranyrp p+1:TheoperatorUponthisspaceiscompact.Nowletp=2.Wemaymanuallycomputethe rstfewslopesofthespectrumofU2tobe0,3,7,and13.Ofcourse,1isaneigenvalueforU2withslopezero.Inparticular,foranyoverconvergentformginMy0(�;r)withnoconstanttermwehave,fromtheasymptoticexpansionLemma3.5.2),thatg 11+ 22+ 33+:::andthus:Um2(U2j�744)= 1m11+ 2m22+o(213m):Howmayonecomparethesearguments?TheWatsonstyleargumentessentiallyprovesbyhandthatU2iscompact,andindeedthatthenormofF=U2=8onthecuspidaloverconvergentformsis1.Thisjusti estheclaimintheintroduction|ColemangivesyouthecompactnessofUbygeometry,whereasWatsongivesittoyoubyexplicitcomputation,butbyacomputationwhichneedstoberedoneeverysingletimetogetthebestbounds.Moreover,suchcomputationsbecomeessentiallyinfeasibleassoonasX0(p)hasgenus�0.Ontheotherhand,thefactthatFhasoperatorbound1isisstrongerthanthefactthatthe rsteigenvaluehasslope3,evenifitdoesn'tsayanythingaboutthehigherordereigenvalues.Howmaywereconcilethesetwoapproaches?42 acontradiction.Inparticular,theeigenfunctionofweightzerowithlargestslopewhichisnotordinaryhasslopeatleast1.Theresultthenfollowsimmediatelyfromtheasymptoticexpansion.4.3.2.Remark.Notethatexactlythesameargument|andconclusion|appliestoanyoverconvergentp-adicmodularformofweight0andlevel1.4.3.3.Exercise.Letgbeanyp-adicoverconvergentmodularfunctionwhichiscongruentto1modp,forexample,g=1+p(p) ().Provethatgs:=exp(slog(g))=1+s(g�1)+s2(g�1)2+s3(g�1)3+:::isalsooverconvergentforsucientlysmalls2Cp.Computewhatsucientlysmallmeansexplicitlyinthiscase.Anaturalquestionthatpresentsitselfisasfollows:Canonee ectivelycomputetheconstantc?Supposeoneassumedtheexistenceofaconvergentspectralexpan-sion,togetherwiththeestimatekFkr=supj ijkikrforr=1=2.Aswithp=2,wewouldthenhave:Upj=Upej+ 11+ 22+:::anditwouldsucetoobtaine ectiveanduniformboundsfor i.Yetthereareobviousboundskikr1andkUpjkrpforallr,andthusj ijp.Asweshallseelater,itismostlikelythecasethatthenormskikrgrowextremelyrapidly(exponentiallyini)andthusthe idecreasetozeroinaconcomitantfashion.4.3.4.Exercise(?).WhatistheoptimalupperboundforkUpjkrforgeneralp?WhatabouttheoptimalupperboundfortheoperatornormkUpkr?4.4.Anexample:convergenceslowerthanO(pn).Theredoexistformsofslopestrictlybetween0and1,whichmaye ecttherateofconvergence.Togiveaneasyexample,letf=Xa(n)qn=qYn=1(1�qn)2(1�q11n)22S2(�0(11);Z);whichcorrespondstothemodularcurveX0(11).Thisellipticcurvehassuper-singularreductionat2,andtheminimalpolynomialofcrystallineFrobeniusisx2+2x�2.Itfollowsthatthecorrespondingoldformsf ,f with ; =�1p 3oflevel�0(22)eachhaveslope1=2.Inparticular,itisnottoohardtoshowthat:Xa(2mn)qn0mod2dm 2e;butthatthereisnosuchcongruencemoduloanyhigherpowerof2.Ofcourse,thesamethinghappens(withthesameform)foranyofthein nitelymanyprimespsuchthatX0(11)issupersingular.4.4.1.Exercise.ShowthatifE4 E58=1+240X3(n)qnq1Yn=1(1�qn)24 1�1416 2913228046513104891794716413587449X58(n)qn=:Xd(n)qn;thenXd(59mn)qnconvergestozeronofasterthanO(59m=2).44 4.8.Anexample:congruencesforthepartitionfunctionmodulopowersof5,followingWatson.SupposeinsteadofusingColeman'stheory,onewantedtoprovethecongruenceabovedirectly,evenjusttheconsiderablyweakerclassicalcongruences.ThenonehastoexplicitlydetermineenoughabouttheoperatorU=U25toshowthat(forexample)itisdivisibleby25.Asinx4.1,oneneedstoworkexplicitlywithmodularequations.Forexample,letf()=254s (5) ()=25(5)6 ()6=25q1Yn=1(1�q5n)6 (1�qn)6;4.8.1.Lemma.Thefollowingidentityholds:4Ym=0X�f+m 5=X5�a1X4�a2X3�a3X2�a4X�a5;wherea1=52f(63+260f+315f2+150f3+25f4)a2=54f(52+63f+30f2+5f3)a3=55f(63+30f+5f2)a4=57f(6+f)a5=58fProof.Theproofisroutine.4.8.2.Lemma.Foranon-negativeintegern,letAn=U5fn�1() �1(5)andBn=U5fn�1(5) �1().ThenAnandBnarepolynomialsinfwhichsatisfytherecurrencerelationXn=a1Xn�1+a2Xn�2+:::+a5Xn�5:Moreover,forsmallvaluesofn,wehavethefollowingequalities:A0=f 5A1=5f(28+245f+525f2+455f3+175f4+25f5)A2=52f(104+9100f+113880f2+528125f3+1232725f4+1660750f5+1376375f6+715000f7+227500f8+40625f9+3125f10)A3=53f(19+13889f+672885f2+9791080f3+66083900f4+252487675f5+608947625f6+988926250f7+1124158750f8+913721875f9+534909375f10+224081250f11+65609375f12+12765625f13+1484375f14+78125f15)A4=56f(1+8375f+1375975f2+52547625f3+831122125f4+7023871875f5+36454450625f6+126528231250f7+310499593750f8+559393046875f9+759056634375f10+788952734375f11+634365468750f12+396053515625f13+191527734375f14+71064453125f15+19855468750f16+4042968750f17+566406250f18+48828125f19+1953125f20)48 B0=1B1=5f(63+260f+315f2+150f3+25f4)B2=53f(104+4095f+32820f2+107300f3+182700f4+180375f5+107500f6+38250f7+7500f8+625f9)B3=54f(189+49230f+1512585f2+15998850f3+83171925f4+251923750f5+488490750f6+640687500f7+586327500f8+379518750f9+173362500f10+54750000f11+11390625f12+1406250f13+78125f14)B4=56f(24+42920f+4266360f2+118018875f3+1455608800f4+9969720300f5+42885018000f6+125026746500f7+259678080000f8+397294462500f9+457754050000f10+402607546875f11+272038500000f12+141147812500f13+55788750000f14+16505156250f15+3540625000f16+520312500f17+46875000f18+1953125f191Xn=0AnTn=q=5+5(28f+182f2+265f3+140f4+25f5)T�52(�104f�20f2+10f3)T2�54(�19f+6f2+5f3)T3+56fT4 1�a1T�a2T2�a3T3�a4T4�a5T51Xn=0BnTn=1�20f(63+260f+315f2+150f3+25f4)T�53f(156+189f+90f2+15f3)T2�54f(126+60f+10f2)T356f(6+f)T4 1�a1T�a2T2�a3T3�a4T4�a5T5Proof.Thesefollowfromthestandardmethods.Notethatsomeoftheseidentitiesarequiteclassical,forexample,A1=f=5isjusttheidentityXp(5n+4)qn=5(1�q5)5(1�q10)5(1�q15)5 (1�q)6(1�q2)6(1�q2)6Manyoftheseequationsare(inslightlydisguisedform)in[Wat38].Thesere-currencesgiveenoughinformationtoprove(asinx4.1)that,withrespecttosomesuitablebasis,thatU25=52FforsomesuitablecontinuousoperatorF,whichallowsonetoprovethedesiredcongruences,whichiswhatWatsondoes.However,itdoesnotseemobvioushowonecanusethisapproachtounderstandthesecondeigenvalue(andeigenvector)ofU25.WhatoneneedstoshowisthattheactiononU25onsomenaturalspaceisdivisibleby57|yetthisisonlypossibleifonecansomehowprojectawayfromtheeigenform1ofslope2.UnliketheEisensteinseries|whichinweight0isjusttheconstant1|thereisnoobviouswaytoaccountforthein uenceof1whentryingtoestimatetheerrorterm.5.p-adicarithmeticquantumchaos(See[Sar95].)FixamodularcurveX=X(�).DonBlasiussuggestedtomethepossibilitythattherecouldbeanusefulanalogybetweenthediscretespectrumofthehyperbolicLaplacian=�y2@2 @x2+@2 @y2andtheoperatorUpinweightzero.Inthissection,wediscussvariousconjecturesrelatingtothisquestion.Onenaturalquestionishowtocountsucheigenvalues.Theybothformin nitecountablesets|intheArchimedeancasebyanon-trivialresultofSelberg,andinthep-adiccasebyColeman|itsucestonotethatthecoecientsoftheFredholmdeterminantareallnon-zero,whichfollowsbyatheoremofKoike[Koi75,Koi76].49 Thenaturalwaytocounteigenformsisthusbyboundingthesizeoftheeigenvalues.Intheclassicalcase,theclassicalresultisthefollowing:5.0.3.Theorem(Weyl'sLaw).LetN(T):=#fjv()Tgdenotethecountingfunctionfordiscreteeigenvaluesof.ThenN(T)Vol(X) 4T:ThemodularcurvesinheritfromHanaturalmetricofconstantcurvature-1.Recallthat,withrespecttothismetric,Vol(X)=[�0(1):�] 3:Somewhatbettererrorboundsareknown,butthey,too,arenon-trivial.NotethatvolumeistakenwithrespecttothenaturalmeasureonXwhichmakesitamanifoldofconstantcurvature�1.Whenitcomestocounting niteslopeeigen-forms,thenaturalmeasureofsizeofeigenvaluesisbytheirvaluation.SincetheoperatorUpdependsonthechoiceofasubgroupoforderp,itismorenaturaltoworkwithX0(p)ratherthanX(attheleveloftheappropriaterigidanalyticspacesXrig[r]thereisnodi erenceduetotheexistenceofthecanonicalsubgroup).5.0.4.Conjecture(p-adicWeyl'sLaw).LetN(T):=#fjv()TgdenotethecountingfunctionforeigenvaluesofUp.ThenN(T)Vol(X0(p)) 4T:Howdoesonecountsucheigenvalues?Theslopesoftheeigenvaluesarede-termined(viaNewton'sLemma)tothevaluationsoftheFredholmpowerseriesof1�TU.Wehavethefollowingpartialresult,whichprovesonedirectionofConjecture5.0.4:5.0.5.Theorem.Thereisaninequality:N(T)Vol(X0(p)) 4T+o(T):ThisfollowsfromtheestimatesofWan[Wan98](inparticular,itfollowsviaaneasycomputationfromLemma3.1ofibid.)Onealsoobtainsfromthisabound:5.0.6.Theorem.Thereisaninequality:N(T)Vol(X0(p)) 4T;wheretheimplicitconstantdependsonX.Anothernaturalproblemtobeconcernedwithisthebehavioroftheeigenfunc-tionsU=asfunctionsas!1.Forexample:(1)HowfastdoestheL1-normgrowwith?Obviouslythisdependsonsomenormalizationoftheeigenfunctions.SincetheeigenfunctionsareL2,anaturalnormalizationistheL2-norm,i.e.,insistingthatkk22=jh;ij=1:50 We xaradiusofconvergencer,andletkkdenotethesupremumnorm.Inthiscase,wehave:(1)Weviewkk=kkrasasubstitutefortheL1-norm(itisasupremumnorm).(a)Thereisnoknownupperboundforkk.(b)Thereisatriviallowerboundkk1,ifwenormalizebyusingq-expansions,butnoknownnon-trivialbounds.(c)Ifr1=2,thereisatriviallowerboundkk1,ifwenormalizebysettingjh;ij=1:(2)Regardingthefunctionforlarge,therearetwonaturalquestionsonecouldaskdependingonthenormalization.(a)Ontheordinarylocus,thefunctionscanbethoughtofaselementsoftheuniversaldeformationringofa nitenumberofresidualrepre-sentations.Nothingisknownaboutthedistributionofthesepoints.(b)Onthesupersingularlocus,aresultofBuzzard[Buz03]impliesthateigenformsextendtosectionsofXrig[r]forallr1,andthattheycannotbeextendedbeyondthis(sokkr!1asr!1),butnothingisknownconcerningwhatthesefunctionslooklike.5.0.10.Lemma(Hadamardthree-circletheorem).SupposethatkFka=pAandkFkb=pBforrational0abp=(p+1).Thenthereisaninequality:logpkFkrA+(B�A)(r�A) (b�a)forallarbinQ.IfFhasnozeroesonthecorrespondingannulus,thenequalityholds.Proof.BothAandBarerational.SincenormofanintegralpowerofFisthecorrespondingpowerofthenorm,afterreplacingFbyapowerofitselfandmul-tiplyingtheresultbyapowerofp,wemayassumethatA=maandB=mbforsomem2Z.Nowconsiderthefunction:G=Ft�m:Byconstruction,thenormofGontheannulusjtj=jpajis1,andthenormontheannulusjtj=jpbjisalso1.IfFhasnozeroes,thesameargumentappliestoF�1.OneconsequenceisthattheminimumvalueofkFkskFk1�sfors2(1�r;r)andF2My0(�;r)withr�1=2occursfors=1=2.5.1.Anexplicitexample:N=1andp=2.WhenN=1andp=2,somemileage7maybeobtainedfromthefactthatX0(2)hasgenuszero,aswellasthefactthatU2hassuchanexplicitformonMy0(1;r),namelybyidentifyingthelatterwiththeTatealgebraMy0(1;r)'C2h2rfi;f=q1Yn=1(1+qn)24: 7orkilometrage,ifyouprefer.52 Withrespecttothenaturalbasisintermsofpowersof2rf,onehasU2=[sij],wheresij=3i(i+j�1)!22i+2j�1 (2i�j)!(2j�i)!2(6�12r)(i�j):Whenr=1=2thisisparticularlysymmetric.Wewill(mostly)beconcernedwiththisvalueofr,althoughnotexclusively.Notethatonehasthefollowingrelationshipbetweenthevaluationoffandtheannulijtj=j2rj,whichcanbededucedinasimilarmannertothecomputationsinx3.2.2:5.1.1.Lemma.Supposethat0r1.Then,ontheannulijtj=j2rj,onehasjfj=kfkr=212r.Forconvenience,however,wemakethefollowingde nitions.5.1.2.De nition.Letkkdenotethenormkk1=2,andletg=26f.Notethatkgk=1.Letusdenotetheeigenvectorsbynforpositiveintegersn.Akeyresultof[Buz03]impliesthateigenvectorscanbeanalyticallycontinuedtobesectionsofXrig[r]foranyr1.Onehasanexactformulafortheslopesoftheeigenvalues[BC05],andoneknowsthespectralconjecture[Loe07].Forexample,theslopeofthentheigenvaluenoftheeigenfunctionnisv(n)=1+2v(3n)! (n)!:5.1.3.Exercise.Usingtheexplicitformulaefortheslopes,provethe2-adicWeyl'slawforN=1,namely,thatN(T)Vol(X0(2)) 4T+O(log(T)):RecallthematricesA=[aij]andB=[bij]andthediagonalmatrix[Dii]from[BC05],where:aij=2(j�i)(12�6r)6ij(2j)! 2jj!22ii! (2i)!2(2i�1)! (i+j)!(2j+i�1)! (3j)!ji�j;bij=j iaji;dii=24i+1(3i)!2i!2 3(2i)!4:OnehasafactorizationU=ADB.Whenr=1=2,thematricesAandBlieinZ2andarecongruenttotheidentitymodulo2.Asnotedin[Loe07],thesameholdsforallrintherange56r7.Inparticular,ifwelet =2(6r�12),thentheproofofthemaintheoremofLoeer[Loe07]impliesthefollowing:5.1.4.Lemma.Then-theigenfunctionn,consideredasanelementoftheTatealgebraC2h gi,admits,afternormalization,anexpansion:n=Xai( g)iwherev(ai)&#x]TJ/;ø 9;&#x.962; Tf;&#x 20.;ł ;� Td;&#x [00;0foralli6=n,andv(an)=0.Wederivesomeimmediatecorollariesfromthis.53 (4)Ifkk0denotestheq-expansionnorm,thenkk2 jh;ijjj=O(logv()):(5)As!0,arethefunctionsaredistributedinsomenaturalway?Asaspecialcase,isittruethatthe(normalized)sequencekk2onMy0(�;1=2)convergestofunctionswhichareconstantonsupersingularannulijtj=1=2,atleastifonerestrictstosubsequencesforwhichtheresidualrepresentation isconstant?(Or,perhaps,toaconnectedcom-ponentoftheeigencurve?)DothesumofdeltameasuresonXrig[1=2]supportedonthezerosofconvergetoanyexplicitmeasureonthecorre-spondingBerkovichspace(alreadyaninterestingcomputationforN=1andp=2)?Tomakeanevenwilderguess,letSdenotethezerosetofintheregionXrig[1=2].Weexpect(andknowforN=1andp=2)thatjSjgrowslinearlywithrespecttothenaturalorderingoftheeigenvalues.ItmayalsobethecasethatSiscompletelycontainedwithinXrig[r],wherer=1=(p+1).Considerthemeasures:1 jSjXx2Sx:IsitthecasethatthesemeasuresoncomplexvaluedcontinuousfunctionsonXrig[r]havealimitingmeasureontheBerkovichspaceassociatedtotheanoidXrig[r](forr=1=(p+1))?Ifso,doesitconvergetotheGausspointcorrespondingtothesupremumnormontheentirespace?Forexample,isitthecasethatwhenN=1andp=2,andforapolynomialF2C2[[g]],onehaslim!01 jSjXx2SjF(x)j=kF(x)kr;wherer=1=(p+1).Forexample,ifF=g,thisisequivalenttosayingthatalmostallofthezerosof(inXrig[1=2]),theHasseinvarianthasvaluationatleastr�forany xed�0andr=1=(p+1).(6)As!0,theGaloisrepresentationsaredistributedonthecorrespond-ingglobaldeformationringsSpec(R )withrespecttoanaturalmeasure.NotethatwhenN=1andp=2alltheeigenfunctionshavecoecientsinZ2;Ingeneral,Buzzardraisesthequestion[Buz05]ofwhetherforanyNandpall niteslopeeigenformsinanyparticularweightarede nedovera xedextensionK=Qp.Hence,bymeasure,weareconsideringsubsetsofthecompactp-adicmanifoldHom(R ;OK)ratherthansomemeasureontheBerkovichspaceassociatedtherigidanalyticspacecorrespondingtoR .AssumingaverystrongversionoftheGouv^ea{Mazurconjecture,onecanrephrasepart6ofthisguessasfollows(andequallyvaguely):5.2.2.Guess.Considertheclassicalmodulareigenformsofweightpk�1(p�1)over Qp.Then,ask!1,theGaloisrepresentationsmodulopkaredistributedonthecorrespondingglobaldeformationringswithrespecttoanaturalmeasure.56 Ontheotherhand,theclaimsconcerningthedistributionofontheannuliareclosetomeaninglesswithoutsomepossiblecandidatedistribution.6.StudentprojectsTherearevariousprojects,dependingontheinclinationofthestudent|somearemoretheoreticalandsomearemorecomputational.(Ofcourse,thecomputa-tionsshouldhelpwiththetheoreticalmusings.)6.1.TurnGuess5.2.1intoaconjecture.oratleastaquestion.Thisrequires:6.1.1.Moredata.SupposethatN=1andp=2.Here'sapracticalwayofcom-putingeigenformsofhighslope.Chooseanarbitrarycuto ,sayn=100;letM=[sij]fori;j100denotethecorrespondingmatrix.Computethecharacter-isticpolynomialX100+:::ofM.TherootsofthispolynomialalllieinZ2,sotheyareeasytocomputetohigh2-adicaccuracy.Let0denotearootofthispolyno-mialtohigh2-adicaccuracy.Letdenotethecorrespondinggenuineeigenvalue.Chooseaarandomvectoru2Z1002,andletv=(M�0)�mu:forsomelargishintegerm.Thenvshouldbeagoodapproximationtothegenuineeigenvectorassociatedto.Forexample,theeighteigenvalue8hasvaluation31,and,usingHensel'sLemma,wecomputethat8=1802090304606119228112737467361460811598903762601218215405738446438703552331427086814610754371584+O(2321)Let0denotethisnumber,andletMbethe5050matrix[sij]withi;j=1;:::;50.Letv=(M�0)�100(1;0;0;0;:::;0):(Alargerexponentwouldprobablygiveamoreaccurateapproximation,butIdidn'tdothisinaverycleverwaysoeventhiscomputationwasalittleslow.)Letwdenotethescalarmultipleofvnormalizedsothatthe rstentryis2�6.Anapproximationto8shouldthenbegivenby850Xi=1vigi:Wecomputethevaluationsofthecoecientsvitobeasfollows:[�6;�9;�9;�14;�13;�16;�16;�23;�16;�16;�13;�14;�9;�9;�6;�7;4;6;11;12;19:::]Totestthisasanapproximationto8,notethatthesquareofthenormk8k2appearstobeequalto246=2982223,aspredictedbyGuess5.1.10.Wealsocomputethe rstfewtermsoftheq-expansion(omitted,becausetheyareratiosof500000digitnumbers,althoughitisridiculoustocomputetheminthisman-ner,sinceoneshouldworkmodulosomepowerof2|hopefullysomeofyoucanprogrammebetterthanIcan):8'q+a(2)q2+a(3)q3+a(4)q4+a(5)q5+a(6)q6+:::we ndthatv(a(2))=31=v(8),andwealsocheckthata(3)a(5)a(15)mod2115;57 [Ram08] ,Thehalf-integralweighteigencurve,AlgebraNumberTheory2(2008),no.7,755{808,WithanappendixbyBrianConrad.MR2460694(2010a:11077)[Ram09] ,TheoverconvergentShimuralifting,Int.Math.Res.Not.IMRN(2009),no.2,193{220.MR2482114(2010i:11060)[Sar95]PeterSarnak,Arithmeticquantumchaos,TheSchurlectures(1992)(TelAviv),IsraelMath.Conf.Proc.,vol.8,Bar-IlanUniv.,RamatGan,1995,pp.183{236.MR1321639(96d:11059)[Ser62]Jean-PierreSerre,EndomorphismescompletementcontinusdesespacesdeBanachp-adiques,Inst.HautesEtudesSci.Publ.Math.(1962),no.12,69{85.MR0144186(26#1733)[Ser73a] ,Congruencesetformesmodulaires[d'apresH.P.F.Swinnerton-Dyer],SeminaireBourbaki,24eannee(1971/1972),Exp.No.416,Springer,Berlin,1973,pp.319{338.LectureNotesinMath.,Vol.317.MR0466020(57#5904a)[Ser73b] ,Formesmodulairesetfonctionsz^etap-adiques,Modularfunctionsofonevariable,III(Proc.Internat.SummerSchool,Univ.Antwerp,1972),Springer,Berlin,1973,pp.191{268.LectureNotesinMath.,Vol.350.MR0404145(53#7949a)[Sil86]JosephH.Silverman,Thearithmeticofellipticcurves,GraduateTextsinMathemat-ics,vol.106,Springer-Verlag,NewYork,1986.MR817210(87g:11070)[Sil94] ,Advancedtopicsinthearithmeticofellipticcurves,GraduateTextsinMath-ematics,vol.151,Springer-Verlag,NewYork,1994.MR1312368(96b:11074)[SS89]A.SeegerandC.D.Sogge,Boundsforeigenfunctionsofdi erentialoperators,IndianaUniv.Math.J.38(1989),no.3,669{682.MR1017329(91f:58097)[TO70]JohnTateandFransOort,Groupschemesofprimeorder,Ann.Sci.EcoleNorm.Sup.(4)3(1970),1{21.MR0265368(42#278)[Wan98]DaqingWan,Dimensionvariationofclassicalandp-adicmodularforms,Invent.Math.133(1998),no.2,449{463.MR1632794(99d:11039)[Wat38]G.N.Watson,Ramanujansvermutunguberzerfallungsanzahlen,J.ReineAngew.Math.179(1938),97{128.62