/
asUDP-basedgameandVoIPtracandTCPtrac,oftenarenotiidbecausethereisaut asUDP-basedgameandVoIPtracandTCPtrac,oftenarenotiidbecausethereisaut

asUDP-basedgameandVoIPtracandTCPtrac,oftenarenotiidbecausethereisaut - PDF document

phoebe-click
phoebe-click . @phoebe-click
Follow
374 views
Uploaded On 2016-08-07

asUDP-basedgameandVoIPtracandTCPtrac,oftenarenotiidbecausethereisaut - PPT Presentation

1Inrealitymostowsarenormalowssoadetectorsfalsepositiveratemustbeloworcovertchannelsaree ectivelymaskedseeSection5 Fig1AverageautocorrelationforQ3clienttoserverleftSkypemiddleandTCPri ID: 436548

1Inrealitymostowsarenormalows soadetector'sfalsepositiveratemustbeloworcovertchannelsaree ectivelymasked(seeSection5). Fig.1.Averageauto-correlationforQ3client-to-server(left) Skype(middle)andTCP(ri

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "asUDP-basedgameandVoIPtracandTCPtrac,o..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

asUDP-basedgameandVoIPtracandTCPtrac,oftenarenotiidbecausethereisauto-correlation.Thechannelproposedin[2,3]iseasytodetectwithsuchapplications.Thechannelin[2,3]requiresaccessiblesequencenumbersintheoverttrac.Oth-erwiseanylostpacketsdesynchronisecovertsenderandreceiver.TCPprovidesse-quencenumbers,butnotallUDP-basedtrachassequencenumbers,ortheymaynotbeaccessibleiftheprotocolisencrypted.Weproposeanimprovedchannel,basedontechniquesforinformationhidinginimages(steganography),whichishardertodetectwhenIPGsarenotiid.Ournewtech-niquegeneratestherandomnumbersneededforencodingfromthepacketsthemselves,whichmakesthechannelrobustenoughforusewithallUDP-basedprotocols.First,wemotivateourworkbydemonstratingthatseveralapplicationshaveauto-correlatedIPGs.Wethenpresenttheimprovedcovertchannel.Weshowthatfortracwithauto-correlatedIPGstheexistingtimingchanneliseasytodetectwith~80%accu-racyandafalsepositiverateof0.5%1.Ournewchannelismuchhardertodetect.Thedetectionaccuracyreducestoonly~9%withafalsepositiverateof0.5%.Adrawbackofournewchannelisareducedrobustnessagainstnetworkjitter.However,basedonaproof-of-conceptimplementationweshowthatthechannelcapacityisstillhighenoughforpracticaluse,evenacrossuncongestedInternetpathswithmorethan10hops.Thecapacityrangesfromafewbitspersecondtooverhundredbitspersecond,dependingontheoverttrac'spacketrateandnetworkjitter.Thepaperisorganisedasfollows.Section2outlinesrelatedwork.InSection3weshowthatseveralapplicationsoftenhaveauto-correlatedIPGs.InSection4weproposeournewchannel.InSection5weanalysethedetectionaccuracyforthechannelin[2,3]andourimprovedchannelusingmachinelearning.InSection6weanalysethecapacityofourimprovedchannel.Section7concludesandoutlinesfuturework.2RelatedWorkThepossibilityofencodingcovertchannelsinthetimingofpackets(orframes)wasidentiedearlybyPadlipskyetal.[5].However,allthetimingchannelsproposedpriortoBerk'swork[6]werebasedonencodinginvaryingpacketratesovertimeasopposedtoencodinginIPGvaluesdirectly.Forspacereasonswedonotdiscussthemhereandinsteadreferthereaderto[1].Berketal.introducedpacket-timingchannelswherethecovertinformationisen-codedintheIPGsofconsecutivepackets[6].TheycomparedchannelswithtwoIPGsandmultipleIPGs,anddevelopedamechanismbywhichthesendercanpicktheoptimalsymboldistributioninmulti-symbolchannels.Shaetal.developeda“bug”thathooksintotheconnectionbetweenkeyboardandcomputerandex-ltratesallkeystrokesbymodulatingtheIPGsofnetworktracsendbythevictim[7].Gian-vecchioetal.latershowedthatbothofthesechannelsareeasytodetect[8].Gianvecchioetal.[2]developedastealthierIPGtimingchannelandevaluateditsperformance.TheyproposedtotamodeltotheIPGdistributionofrealtracandthenusethemodeltogenerateacovertchannelwithidenticaldistribution.IftheIPGs 1Inrealitymostowsarenormalows,soadetector'sfalsepositiveratemustbeloworcovertchannelsaree ectivelymasked(seeSection5). Fig.1.Averageauto-correlationforQ3client-to-server(left),Skype(middle)andTCP(right)trac(zoomedy-axis)Weanalysetheauto-correlationofIPGsandleastsignicantpartsofIPGs.Wedenetheleastsignicantpartas:dlsp=dmodl=d�$d l%l;(3)wheredistheIPGandlisthesizeoftheleastsignicantpart.Forexample,iftheIPGis21.75msandl=1msthendlsp=0:75ms(sub-millisecondpart).3.2ResultsFigure1showstheaverageACFsofQ3client-to-server,SkypeandTCPtracforthefullIPGsanddecreasingleastsignicantparts(100).TheaverageACFofthefullIPGsdecaysmorerapidlythanindividualACFs(e.g.theoneshowninFigure2(left)),asindividualACFshavelowsandhighsatdi erentplaces.StillitissignicantlylargerthantheaverageACFforsmallleastsignicantparts.FortheUDP-basedapplicationsIPGsareoftenatleastmoderatelycorrelated.How-ever,smallerleastsignicantpartsofIPGsarelargelyuncorrelated.Thesizeoftheleastsignicantpartwherecorrelationdiminishesdependsontheapplication.TheTCPowsshowlesscorrelation,butmanyowsstillhavelowtomoderatecorrelation.IPGsofapplicationswherepacketsendtimesarehuman-drivenande ectivelyrandomwereshowntobeiid(e.g.Telnet[4]).However,forotherapplicationsauto-correlationofIPGstendstoexistbecauseoflarge-time-scalebehaviours,suchasthecongestionwindowgrowth/collapseforTCPortheapplication'sencodingforgamesorVoIPoverUDP.Networkjitterreducesexistingcorrelations,butevenaftermanyhopsoftenthereissomecorrelation.Furthermore,ifthewardenisclosetothecovertsender,theIPGsobservedarelargelyuna ectedbynetworkjitter.Thesmalltime-scalebehaviour(exposedbylookingonlyattheleastsignicantpartofIPGs)isjitteredbylargelyuncorrelatednoise,forexamplequeuingdelaysateachhop.Ournewencodingtechniqueexploitsthise ect. Fig.2.Auto-correlationofIPGsofnormalQ3trac(left),covertchannelin[2,3](middle)andsub-bandencodingwithl=5ms(right)4.2ImprovedsynchronisationThebasicencodingworksonlyiftheoverttrachasaccessiblesequencenumbers.OtherwiseanypacketlosspermanentlydesynchronisesAliceandBob.Furthermore,ifBobisunabletoobserveatransmission'sstarthecanneversynchronisewithAlice.SynchronisationcanbeimprovedbycomputingRfromthepacketsthemselves.LetHbeagoodhashfunctionthatmapstheinputsasevenlyaspossibleovertheoutputrange(uniformdistribution).LetBdenotesomepartofanovertpacketthatisimmutableonthepathfromAlicetoBob,andletbibethevalueofBforthei-thpacket.Randomnumbersaregeneratedasfollows:ri=H(bi):(8)WeassumethattheinputsbivarysucientlysothattheoutputofHisapprox-imatelyuniformlydistributed.Previousworkonpacketsamplingandone-waydelaymeasurementshowedthatgenerallythisisthecaseifBischosenproperly,andsug-gestedseveralsuitablechoicesforHandB[14].TCPretransmissionsmaycausethesameinputsbirepeatedly,butusingTCPheaderinformationAliceandBobcan`ignore'them.AliceandBobneedtoagreeonHandB.ItispossibleforawardentoguessHandBandthereforetodetectthecovertchannel,sincethechoicesforHandBarelimited.AliceandBobcanusekeyedhashfunctionsusedforMessageAuthenticationCodes(MACs)forhighersecurity.Withourimprovedsynchronisationtechniquelostpacketscanstillcauselostbits,butneverapermanentdesynchronisation.4.3Sub-bandencodingNowwepresentournewencodingschemethatismuchstealthierifIPGsarenotiid.TheschemeencodescovertbitsonlyintotheleastsignicantpartofIPGsasdenedinEquation3.LetlbethesizeoftheleastsignicantpartoftheIPGs.Theparameterldeterminesthetrade-o betweenstealthandrobustness.LetDbetherangeofIPGs(maximumminustheminimum).ThenanIPGdistributiontypicallyspansm=dD=lesub-bandsof 5DetectionWeuseclassiersconstructedbyasupervisedMachineLearning(ML)algorithm.Dur-ingtrainingsupervisedMLtechniquesbuildclassiersbasedondatainstanceswithclasslabelsattached,sothatthedatainstancesare`optimally'separatedintothedi er-entclassesbasedoncharacteristics(features)oftheinstancesotherthantheclasslabel.Theclassiersarethenusedtoclassifydatainstancesofunknownclass.5.1DatasetsandFeaturesAsnormaltracweusedthedatasetsfromSection3.Thecoverttracwascreatedbasedonthesedatasetsusingsub-bandencoding.ForeachnormalowwegeneratedonecorrespondingcovertchannelbasedonthesameIPGdistribution.Weusedtherst5000IPGsofeachow.Thecovertdatawasuniformlyrandomdistributed,asifAliceandBobusedencryption.Eachdatasethadthesamenumberofcovertandnormalowstoavoidbiasoftheclassiertowardsalargerclass.LetX=[X1;:::;Xn]beaseriesofIPGsofaowwithvaluesx1;:::;xn.ForeachXwecomputedtherstorderentropy(Entropy)andanestimateoftheentropyrate(En-tropyRate)usingthecorrectedconditionalentropy(CCE)[8].Therstorderentropyisusefulforcomparingtheshapeofdistributionsofrandomvariables,andtheentropyrateisusefulforcomparingtheregularityoftimeseries.ForcomputingtheCCEweusedequiprobablebinningofthedataasin[8].TodeterminethenumberofbinsQweperformedinitialtestsandfoundQ=5maximisedtheclassicationaccuracy.Wealsocomputedafeaturebasedonthetwo-sampleKolmogorov-Smirnov(KS)test,whichteststhehypothesisthattwosamplesweredrawnfromthesamedistribution.AlowKSteststatisticmeansthatthedistributionsaresimilarwhereasahighKSteststatisticmeansthedistributionsaredi erent.TheKStestisapplicabletoavarietyofdatawithdi erentdistributions.Sinceweneedafeaturethatreectshowdi erentadistributionisfromthesetofdistributionscharacterisingnormaltrac,wecomputedthesetofKSteststatisticsbetweenadatainstance(covertornormal)andallinstancesofnormaltrac(excludingtestsofanormalinstancewithitself)andusethemeanofallKSstatistics(MeanKS).5.2MachineLearningPreviousresearchshowedthatforclassicationofnetworktracthebetterMLtech-niquesprovidesimilaraccuracy,butdi ergreatlyregardingtrainingtimeandclassi-cationspeed[15].WeusedtheC4.5decisiontreeclassier[16]–morepreciselyitsimplementationintheWaikatoEnvironmentforKnowledgeAnalysis(WEKA)[17],becauseithadperformedwellpreviously[15].Usingadecisiontreealgorithmalsohastheadvantagethatahumancaninterprettheresultingclassier,althoughwithincreas-ingsizeofthetreethisbecomesdicult.C4.5selectsfeaturesinorderofmaximisinganentropy-basedgainratio.Themostusefulfeaturesarealwaysusedatthetopofthetreeandirrelevantfeaturesarelargelyignored.Hence,C4.5isnotadverselya ectedbyirrelevantfeatureslikesomeothertechniquesandfeaturepre-selectionisnotnecessary.C4.5attemptstoavoidover-tting Fig.3.Precisionandrecallofcoverttracclassforbasicencodingandsub-bandencod-ingdependingonleastsignicantpartl Fig.4.ROCcurvesofcoverttracclassforthebasiccovertchannelproposedin[2,3]andsub-bandencodingwithl=5ms6ChannelCapacityWeproposeamodeltocomputethechannelcapacity,describeourexperimentalsetup,andpresentthemeasuredchannelcapacitiesbasedondi erentnetworkjitter.6.1ChannelModelWeassumethechannel'soutputonlydependsontheinputandtheerrorsbutnotonpre-viousinputs(memorylesschannel)andwefocusonabinarychannel(onebitencodedperIPG).Timingjittercausesbitsubstitutionerrors.Undertimingjitterwesubsumepackettiminginaccuraciesatthecovertsender,timestampinginaccuraciesatthecovertreceiverandnetworkjitter.Inourtestbedexperimentstheresultingerrorrateswereapproximatelysymmetric.HencewemodelthechannelasBinarySymmetricChannel(BSC)withacapacity[18]:C=1�H(p)=1+plog2(p)+(1�p)log2(1�p);(11)whereH(:)isthebinaryentropyandpistheprobabilityoftimingerrors.Thecapac-ityCisinbitsperIPG(bitspersymbol).GivenanaveragerateofIPGsfStheaveragetransmissionrateinbitspersecondis:R=CfS:(12)6.2TestbedandMethodologyWeimplementedaprototypeofsub-bandencoding,usingtheCovertChannelsEval-uationFramework(CCHEF)[19],whichwascarefullydesignedtomaximiseAlice's packettimingaccuracy.However,sinceitisauserspaceprogramitcompeteswithotheruserspaceprogramsforCPUtime.OtherprogramsusingalotofCPUtimedecreasethetimingaccuracy.Toavoidthisweusedreal-timeLinux2.6.20andranAliceandBobasreal-timeprocesseswithhighpriority.Wealsosetthekernel'stickfrequencyto10kHztoreducethesizeoftimeslices.OurtestbedconsistedoftwocomputersconnectedviaaFastEthernetswitch.Weusedscptoperformletransferscappedat2Mbit/s,andSSHtoperformremoteinter-activeshellsessions.WegeneratedQ3withbotsasplayers.Eachexperimentlasting20minuteswasrepeatedthreetimesandwereporttheaveragestatistics.NetworkdelayandjitterwereemulatedusingLinuxNetem[20].Thenetworkdelaywasemulatedus-ingParetodistributionswithameanof25msandstandarddeviations()of0,0.1,0.2,0.3,0.5,1and2msineachdirection,sincepreviousresearchsuggestedthatnetworkjitterisheavy-tailed[21],andNetemonlysupportsUniform,GaussianandParetojitterdistributions.Settingthekernelticktimerfrequencyto10kHzensureddelayemulationwasaccurateto100µs.Figure5showsCDFsoftheabsoluteIPDelayVariation(IPDV[22]),bothinthetestbedwithParetodistributionswithdi erentandmeasuredacrosstwoInternetpaths.The8-hopInternetpath'sRTTwasapproximately32ms,andthe13-hoppath'sRTTwasapproximately46ms.Weestimatedtheone-waydelaytohalfthemeasuredRTT.BothInternetpath'sIPDVCDFsliebetweenthetestbedCDFsfor=[0:3;0:5].TheIPGmodelswerebuiltasfollows.First,wemeasuredtheIPGdistributionofeachapplicationatthesource,una ectedbytimingjitter.Wethenaddedasmallamountofnoise.Withouttheaddednoisethecovertchannelwouldnotworkwellforapplica-tionswithverynarrowIPGdistribution,suchasQ3client-to-serverandscptrac.Thenoiserepresentstimingjittercausedbythenetwork,orahighCPUornetworkinterfaceloadofthesourcehost,whichthewardenwouldalsoencounterinreality.Ourmodelswerehistogramswithsmallbinsizesof100µs,asourtracsourcescannotbemodelledwellwithstandardstatisticaldistributions.ForQ3andSSHtraf-cthelocationofthesub-bandswaschosensuchthatpeaksinthedistributionsareapproximatelyinthemiddleofbands.6.3MaximumtransmissionratesWemeasuredtheerrorratesofthechannelbasedonthenetworkjitterandcomputedthemaximumtransmissionratesusingEquations11and12.Figure6showsthemaximumratesforsub-bandencodingforasub-bandsizeofl=5ms.Weselectedthissizebecauseitprovidesacceptablenoiselevelsfor0:5msatareasonablylowdetectionaccuracy(seeSection5).NotethatforTCPtracthechannelcanonlybeencodedinonedirectionduetothetimingdependenciesbetweenpacketsinbothdirections.MultipleTCPowscouldbeusedtoachievefull-duplexcommunication.Sub-bandencodinghassignicantlyhighererrorrateswithQ3client-to-servertraf-corscpcomparedtoQ3server-to-clienttracorSSH(notshown).However,thetransmissionratesarestillmuchhigherforQ3client-to-servertracandscpbecauseofthemuchhigherpacketrates.Sub-bandencodinghaslowerrorratesandreason-ablyhighcapacitiesatlowlevelsofjittertypicalofuncongestedpaths.Transmissionratesareuptooverhundredbitspersecond.Ifthenetworkjitterishighthecapacityis References1.S.Zander,G.Armitage,P.Branch.ASurveyofCovertChannelsandCountermeasuresinComputerNetworkProtocols.IEEECommunicationsSurveysandTutorials,9(3):44–57,October2007.2.S.Gianvecchio,H.Wang,D.Wijesekera,S.Jajodia.Model-BasedCovertTimingChan-nels:AutomatedModelingandEvasion.InRecentAdvancesinIntrusionDetection(RAID),September2008.3.S.H.Sellke,C.-C.Wang,S.Bagchi,N.B.Shro .CovertTCP/IPTimingChannels:TheorytoImplementation.InConferenceonComputerCommunications(INFOCOM),April2009.4.V.Paxson.End-to-endInternetPacketDynamics.IEEE/ACMTransactionsonNetworking,7(3):277–292,1999.5.M.A.Padlipsky,D.W.Snow,P.A.Karger.LimitationsofEnd-to-EndEncryptioninSecureComputerNetworks.TechnicalReportESD-TR-78-158,MitreCorporation,August1978.6.V.Berk,A.Giani,G.Cybenko.DetectionofCovertChannelEncodinginNetworkPacketDelays.TechnicalReportTR2005-536,DartmouthCollege,November2005.7.G.Shah,A.Molina,M.Blaze.KeyboardsandCovertChannels.InUSENIXSecurity,August2006.8.S.Gianvecchio,H.Wang.DetectingCovertTimingChannels:AnEntropy-BasedApproach.InACMConferenceonComputerandCommunicationSecurity(CCS),November2007.9.X.Luo,E.W.W.Chan,R.K.C.Chang.TCPCovertTimingChannels:DesignandDetec-tion.InIEEE/IFIPConferenceonDependableSystemsandNetworks(DSN),June2008.10.Y.Liu,D.Ghosal,F.Armknecht,A.-R.Sadeghi,S.Schulz,S.Katzenbeisser.HideandSeekinTime–RobustCovertTimingChannels.InEuropeanSymposiumonResearchinComputerSecurity,September2009.11.Quake3.http://www.idsoftware.com.12.P.Branch,A.Heyde,G.Armitage.RapidIdenticationofSkypeTrac.InACMNetworkandOperatingSystemSupportforDigitalAudioandVideo(NOSSDAV),June2009.13.M2CMeasurementDataRepository,December2003.http://traces.simpleweb.org/.14.C.Henke,C.Schmoll,T.Zseby.EmpiricalEvaluationofHashFunctionsforPacketIDGen-erationinSampledMultipointMeasurements.InPassiveandActiveMeasurement(PAM)Workshop,pages197–206,2009.15.N.Williams,S.Zander,G.Armitage.APreliminaryPerformanceComparisonofFiveMa-chineLearningAlgorithmsforPracticalIPTracFlowClassication.SIGCOMMCom-puterCommunicationReview,36(5),October2006.16.R.Kohavi,J.R.Quinlan.Decision-treeDiscovery,chapter16.1.3,pages267–276.OxfordUniversityPress,2002.17.I.H.Witten,EibeFrank."DataMining:PracticalMachineLearningToolsandTechniques–2ndEdition.MorganKaufmann,SanFrancisco,2005.18.T.M.Cover,J.A.Thomas.ElementsofInformationTheory.WileySeriesinTelecommuni-cations.JohnWiley&Sons,1991.19.S.Zander.CCHEF-CovertChannelsEvaluationFramework,2007.http://caia.swin.edu.au/cv/szander/cc/cchef/.20.LinuxFoundation.Netem,2008.http://www.linuxfoundation.org/en/Net:Netem.21.L.Rizo,D.Torres,J.Dehesa,D.Muñoz.CauchyDistributionforJitterinIPNetworks.InInternationalConferenceonElectronics,CommunicationsandComputers,pages35–40,2008.22.C.DemichelisandP.Chimento.IPPacketDelayVariationMetricforIPPerformanceMet-rics(IPPM).RFC3393,IETF,November2002.http://www.ietf.org/rfc/rfc3393.txt.

Related Contents


Next Show more