/
QuanticationofthedierencesbetweenquenchedandannealedaveragingforRNAs QuanticationofthedierencesbetweenquenchedandannealedaveragingforRNAs

Quanti cationofthedi erencesbetweenquenchedandannealedaveragingforRNAs - PDF document

phoebe-click
phoebe-click . @phoebe-click
Follow
389 views
Uploaded On 2017-11-22

Quanti cationofthedi erencesbetweenquenchedandannealedaveragingforRNAs - PPT Presentation

2whicharemuchclosertothequenchedresultsthantheannealedonesusingthismethodThispaperisorganizedasfollowsInSecIIwebrieryreviewtheRNAsecondarystructureandintroducethegeneralRNAfoldingproblemwithseque ID: 607242

2whicharemuchclosertothequenchedresultsthantheannealedonesusingthismethod.Thispaperisorganizedasfollows:InSec.II webrie\ryreviewtheRNAsecondarystructureandintroducethegeneralRNAfoldingproblemwithseque

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Quanti cationofthedi erencesbetweenquenc..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Quanti cationofthedi erencesbetweenquenchedandannealedaveragingforRNAsecondarystructuresTsunglinLiuandRalfBundschuhDepartmentofPhysics,OhioStateUniversity,191WWoodru Av.,ColumbusOH43210-1117Theanalyticalstudyofdisorderedsystemisusuallydicultduetothenecessitytoperformaquenchedaverageoverthedisorder.Thus,onemayresorttotheeasierannealedensembleasanapproximationtothequenchedsystem.InthestudyofRNAsecondarystructures,weexplicitlyquantifythedeviationofthisapproximationfromthequenchedensemblebylookingatthecorrela-tionsbetweenneighboringbases.Thisquanti eddeviationthenallowsustoproposeaconstrainedannealedensemblewhichpredictsphysicalquantitiesmuchclosertotheresultsofthequenchedensemblewithoutbecomingtechnicallyintractable.PACSnumbers:87.14.Gg,87.15.v,05.70.FhI.INTRODUCTIONHeteropolymerfoldingisofcrucialsigni canceinmolecularbiology.Itisthebasisforthemechanismwithwhichcellscanproducethreedimensionalbuild-ingblocksoutoftheone-dimensionalinformationstoredintheirgenome.Cellsachievethisbyforming(stillone-dimensional)polymers(proteinsandRNA)bystringingtogetherdi erentmonomerswithcovalentbonds.Allmonomersshareacompatiblebackbonebuttheyhavedi erentsidechainsandoccurinaprede nedorderalongthesequence.Physicalinteractionsbetweenthesemonomersforcethepolymertostablyfoldintoathreedimensionalstructure.Thisstructureiscrucialforthefunctionofthemolecule;itisdeterminedbythespeci csequenceofthepolymer[1{4].Inadditiontoitsbiologicalrelevance,heteropolymerfoldingisalsoaveryinterestingproblemofstatisticalmechanics[5{17].Thecompetitionbetweenthecon gu-rationalentropyofthepolymer,theoveralltendencyofthemonomerstosticktoeachother,thesequencedisor-der,andthepreferenceoffoldingtowardabiologicallyactivenativestate,leadstoaveryrichthermodynamicphasediagram.WhilethesamequalitativebehaviorisexpectedforproteinsandRNA,wewillhereconcentrateonRNAsinceRNAfoldingismoreamenabletoanalyt-icalandnumericalapproachesthanproteinfolding.TherelativesimplicityoftheRNAfoldingproblemcomparedtotheproteinfoldingproblemdoesnotstemfromthefactthatRNAconsistsofonlyfourdi erentbasesversusthetwentyaminoacidstheproteinsarecomposedof,butitcomesfromthesimplerinteractionrules:Thedomi-nantinteractionbetweenthefourbasesA,U,G,andCofanRNAmoleculeisWatson-Crick(G{CandA{U)pairformation,i.e.,iftwobaseshaveformedapairtheyto rstorderdonottakepartinanyfurtherinteractions.Everyaminoacidofaproteinonthecontraryinteractswithallitsspatialneighbors,i.e.,withontheorderoftenotheraminoacidsatatime.Fromastatisticalphysicspointofview,thepossibilityofaglassphaseatlowtemperaturesdrivenbysequencedisorder,isofspecialinterestintheheteropolymerfold-ingproblem[6{12].Unfortunately,evenforthecaseofRNAfoldingananalyticquantitativedescriptionoftheglassphaseisstilloutstanding.Thus,quantitativestud-ieshavetoeitherrelyonnumericsortheyhavetousewhatisknownastheannealedaverage.Intheannealedaverage,thefreeenergyofthesystemisapproximatedasthelogarithmoftheensembleaveragedpartitionfunc-tion(insteadoftakingtheensembleaverageoverthelogarithmofthepartitionfunctioncalledthequenchedaverage).Physically,thisapproximationcorrespondstotreatingthesequencedegreesoffreedomasdynamicalinsteadoffrozenvariables.Thus,theannealedsystemrepresentsasequenceensemblethatiscoupledtothestructuralensemblebywayoftheinteractionenergies.Thissequenceensemblemaybedi erentfromtheorigi-nalsequenceensembleofuncorrelatedrandomsequencesoverwhichthefreeenergyissupposedtobeaveraged.Duetothesedi erencesbetweentheannealedandthequenchedsequenceensembletheannealedfreeenergyisonlyanapproximationtothetrue(quenched)freeenergyofadisorderedsystem.Thepurposeofthismanuscriptisto rstquantifythedi erencesbetweentheannealedandthequenchedse-quenceensembles.Speci cally,wewilllookatcorrelationbetweenneighboringbases.Weshowthatwhilethiscor-relationisstrictlyzerointhecorrect(quenched)sequenceensemble,theyarenon-zerointheannealedsequenceen-sembleandincreasewithdecreasingtemperature-uptocompletecorrelationincertainmodelsofRNAfolding.Thisclearlyunderlinesandquanti esthefundamentalshortcomingsoftheannealedaverageintheRNAfold-ingproblematlowtemperatures.Basedonthequanti ednon-zeronearestneighborcor-relations,wethentrytodiminishthedi erencesbe-tweentheannealedandquenchedensemblesbyforcingtheannealedensembletopresentzeroneighboringcor-relation.Thisconstrainedannealedensemblebehavesmuchmoresimilartothequenchedensemblethantheannealedensemble.Althoughtheglassphaseitselfcannotbeidenti edusingtheconstrainedannealedensem-blewhichonlypartiallycorrectstheoverallnon-randomcorrelations,onecanobtainthermodynamicquantities 2whicharemuchclosertothequenchedresultsthantheannealedonesusingthismethod.Thispaperisorganizedasfollows:InSec.II,webrie\ryreviewtheRNAsecondarystructureandintroducethegeneralRNAfoldingproblemwithsequencedisorder.InSec.III,wequantifythedeviationofnearestneighborcorrelationsoftheannealedensemble.Finally,weim-provethepureannealedensemblebyapplyingacon-straintofrandomcorrelationsinSec.IV.II.RNAFOLDINGPROBLEMWITHSEQUENCEDISORDERA.RNAsecondarystructuresRNAisasingle-strandedbiopolymeroffourdi erentbasesA,U,C,andG.ThestrandcanfoldbackontoitselfandformhelicesconsistingofstacksofstableWatson-Crickpairs(AwithUorGwithC).ThiscomparativelysimpleinteractionschememakestheRNAfoldingprob-lemveryamenabletotheoreticalapproacheswithoutlos-ingtheoverall\ravorofthegeneralbiopolymerfoldingproblem[5].AnRNAsecondarystructureSischaracterizedbyitssetofWatson-Crickbasepairs(i;j)whereiandjdenotetheithandjthbaseoftheRNApolymerrespectively(conventionallyij).Here,wefollowmanypreviousstudies[5{17]andapplythereasonableapproximationtoexcludeso-calledpseudoknots[18],i.e.,fortwoWatson-Crickpairs(i;j)2Sand(k;l)2S,con gurationswithikjlarenotallowed.Thisapproximationisjus-ti ed,becauseshortpseudoknotsdonotcontributemuchtotheoverallenergyandlongpseudoknotsarekineticallydiculttoform.B.QuenchedaveragingThepropertiesofRNAfolding,especiallythepossibil-ityofaglassphasedrivenbythesequencedisorder,havebeenachallengingproblemfromthestatisticalphysicspointsofview.Tounderstandthestatisticsofthisdis-orderedsystem,one rsthastoassignanenergyE(;S)toeverysecondarystructureSforagivensequence.Thiscould,e.g.,simplybethenegativeofthetotalnum-berofWatson-Crickbasepairs.ThisthenallowsustocalculatethepartitionfunctionZ()=XS\(;S)eE(;S)=T(1)foragivensequencewhere\(;S)isonewhenthesecondarystructureSiscompatiblewiththesequenceandzerootherwise.Finally,onehastocalculatethequenchedaverageFq=kBThlnZ()i(2)overallsequences.C.AnnealedaveragingUnfortunately,thequenchedfreeenergyFqisverydif- culttocalculate.Thus,onecantrytoapproximatethequenchedfreeenergybythemucheasiercomputedan-nealedfreeenergy,whichtreatsthedisorderedsequencesasdynamicvariables.Thisannealedfreeenergyisonlyalowerboundofthequenchedfreeenergy,Fa=kBTlnhZ()iFq:(3)Itcanbequitedi erentfromthequenchedfreeen-ergysincetheannealedensemblefavorsthosesequenceswheremorebindingpairsareallowed.Moreimportantly,physicalquantitiesderivedfromthisannealedfreeenergycanbeverydi erentfromtheirquenchedcounterpartsaswewillshowexplicitlyinthefollowingsections.Tobespeci c,wewillmeasurethecorrelationbetweenneigh-boringbaseswhichareknowntovanishinthequenchedcase.D.EnergymodelsInthispaper,westudythesimplestmodelofdisor-deredRNAsequenceswhichcontainonlythetwobasesAandU.Inassigningfreeenergiestosecondarystructures,weneglectanyloopentropiesandfocusonthebasepairsalone.Besides,formostpartsofthismanuscript,wedonotconsidertheminimalhairpinlengthconstraintwhichrequiresthetwobasesofabindingpairtobeseparatedbyatleastthreebasesinarealRNAmolecule.Withintheseapproximationswedoconsidertwodi erentenergymodels.Inthebindingenergymodel,wesimplyassignanen-ergy=1toeachAU(orUA)bindingpair.WedenotethecorrespondingBoltzmannfactorbyq=e1=T.Thismodelcapturesthemainfeaturesoftheenergeticsandissimpleenoughforanalyticalandnumericalstudies.Wealsostudyasomewhatmorerealisticenergymodel,namelythestackingenergymodel.Inthismodel,weas-signenergiestothestackingoftwobasepairsratherthantoindividualbasepairs.Thisstackingenergydependsinrealityontheidentitiesofallfourbasesinvolved.Weimplementthise ectbyassociatingaBoltzmannfactors1withstackingsoftypesAAUUandUUAAwhileassociatingadi erentBoltzmannfactors2withstackingsoftypesAUAandUAAU.Tobespeci c,wewillchoosetheseBoltzmannfactorsass1=e2=Tands2=e1=Tfortheremainderofthiscommunication.Themainreasontostudythestackingenergymodelisthatthesimplebindingenergymodelisknowntobepathologicalwithoutaglassphaseatlowtemperatureinthedisorderedsequenceensemble[7{9].Asimplereasonisthatwhateverthesequence,eachbaseAcanalways ndanotherbaseUtopairwithprovidedwehavethesameamountofbasesAandU.Thus,sequencesdisorder 3doesnotcausefrustration.Incontrast,theenergydis-tributionofthestackingenergymodelisgreatlya ectedbysequences,andastructureinwhichallbasepairsarestackedcaningeneralnotbefoundforeverysequence.Thus,sequencedisorderisexpectedtocausefrustration,andaglassphaseisexpectedinthisenergymodelforlowenoughtemperature.III.NEARESTNEIGHBORCORRELATIONSOFTHEANNEALEDENSEMBLEInthissection,wecalculatequantitativelyhowthenearestneighborcorrelationsintheannealedensembledeviatefromtheirtruevaluesintherandomsequenceensemble.Tothisend,wehavetocalculatetheannealedpartitionfunctionforsequenceswithlengthN-1,whichisde nedasZa(N)=12N1XS X\(;S)eE(;S)=T!:(4)1NNN-11Nk1Sk=1N-1AAUFIG.1:RecursiverelationexploringallpossiblesecondarystructuresforahomogeneoussequenceoflengthN.Thewavylinesstandsforcontributionfromallpossiblestructuresandsequences.Thestraightlinestandsfornon-pairedbases.Forthebindingenergymodel,thisannealedpartitionfunctioncanbeeasilyobtainedviatherecursiverelationshowninFig.1alongthelinesofpreviousstudies[10,19{22]buttakingthesequencesintoaccountexplicitly.Theideaistoseparatethetwocasesforthelastbase,whichiseitherunboundorboundtoacertainbasek,andthenrelatethepartitionfunctiontotheshorterlengthoneasZa(N+1;q)=Za(N;q)(5)+q2N1X=1Za(k;q)Za(Nk;q):Withthisrelation,onecanobtainananalyticalformulafortheannealedpartitionfunctioninthelargeNlimitbyperformingthez-transform,whichisde nedascZa(z;q)=1XN=1Za(N;q)zN;(6)ontherecursiverelation.AftersolvingtheresultingquadraticequationforcZa(z;q),wecanobtaintheparti-tionfunctionbydoingtheinversez-transform,Za(N;q)=12iIcZa(z;q)zN1dz:(7)Thisapproachcanbeeasilygeneralizedtothestackingenergymodel.Inordertokeeptrackofthecorrelationsbythean-nealedensemble,weassignanadditionalBoltzmannfac-torLtoallAAandUUneighborswithinthesequence.Themodi edannealedpartitionfunctionisthenZa(N;q;L)=12N1XS X\(;S)qnq(S)LnL()!;(8)wherenq(S)isthenumberofbindingpairsinasecondarystructureS,andnL()isthenumberofconjugateneigh-bors,i.e.,AAandUUneighborsinthesequence.TheadditionalBoltzmannfactorcomplicatesthecal-culationofthepartitionfunctionsincedi erentbasesAandUcontributedi erently.However,wecanstillformu-laterecursiverelationsbynoticingthatthetwoendbasesofasequencepiecedeterminethecorrelationswithotherpieces.Thus,wecanseparateasequenceintotwocaseswheretheendbasesareeitherofthesametypeornot,andformulatetherecursiverelationforeachcaseinde-pendently.TheannealedpartitionfunctionZa(N;q;L)isthenobtainedviaz-transformasbefore.Sincethefor-mationoftherecursiverelationsisquitetechnical,weonlyaddresstheresulthere,anddeferthedetailstoAp-pendixA.Fromthepartitionfunctionwecanobtainthenear-estneighborcorrelationsbylookingatthedeviationoftheaveragedfractionofAU(orUA)neighborsfromtheexpectedvalue1/2inthedisorderedsequenceensemble.Thisdeviationisobtainedbytakingthederivativeas=121NL@Lln(Za(N;q;L))jL=1:(9)A.BindingenergymodelFig.2showstheneighborcorrelationsforthebindingenergymodel.We ndthatthedeviationmovesfurtherawayfromzeroastemperaturedecreases.Thisisadi-rectresultfromthefactthatatlowtemperature,themaincontributionstotheannealedpartitionfunctioncomefromthosesequenceswhichallowalotofbind-ingpairs,unlikethequenchedcasewheresequencesareequallyweighted.Theexactwaythattheneighborcorrelationsarebi-asedcanbeunderstoodasfollows.Inthisbindingenergymodel,theonlythingthatbiasesthenearestneighborcorrelationsistheformationofminimalhairpinssincetheyenforcetheneighboringbasestobedi erent,whichareeitherAUorUA.Thus,thedegreeofbiasisdirectlycoupledtothefractionofsmallesthairpinsinasequence.Thisassertioncanbeveri edbystudyingthefractionofminimalhairpins.Asanexample,westudythezerotemperaturecasewhereallthebasesareexpectedtobepaired.Amongallpossiblepairingstructures,weexplic-itlycalculatethefractionofsmallesthairpins(withthe 400.511.522.53T00.0250.050.0750.10.125 dFIG.2:DeviationofthefractionofAU(orUA)nearestneigh-bors.Thedeviationisplottedasafunctionoftemperatureinunitsofthebindingenergyforthebindingenergymodel.Noticethatthedeviationmovesfurtherawayfromzeroandstopsata xedconstantastemperaturedecreases.Italsoapproachesalimitlargerthanzeroathightemperatureindi-catedbythedashedline.detailsshowninAppendixB).Asaresult,everyfourthbaseispartofaminimalsizehairpin.Thus,wehave1=4AU(orUA)nearestneighborsfromthesehairpinsandanother1=23=4=3=8fromtherestofthebasessincetheydonotshownearestneighborcorrelationbias.ThedeviationofthefractionofAU(orUA)neighborsisthenexpectedtobe5=81=2=1=8,whichmatchesexactlythezerotemperaturelimitinFig.2.Inthiscase,thesequence,asadynamicvariable,adjustsitselftoallthebindingpairs.Eveninthehightemperaturelimit,althoughallal-lowedsequencesareequallyweighted,therestillexistsa nitefractionofminimalsizehairpinsonaverage.Asaresult,thedeviationofneighborcorrelationsapproachesaconstantlargerthanzero.Theassertionthatthedeviationiscoupledtotheformationofminimalsizehairpinsisagainveri edasweadditionallyrequireallthehairpinsbeingoflengthlargerthanone.Inthiscase,thecorrelationbetweennearestneighborsbecomesrandomatalltemperatures.How-ever,thesecondnearestneighborcorrelationsbecomenon-trivial.Thissimplebindingenergymodelgivesusatastehowthenearestneighborcorrelationsarecoupledwiththeen-ergythroughthestructure,i.e.,theformationofminimalhairpins.Thiscorrelationisbiasedsincetheannealeden-sembleputsmoreweightonlowerenergysequences.B.StackingenergymodelFollowingthesameapproach,wecheckthesamedevi-ationasafunctionoftemperatureinthemorerealisticstackingenergymodel.Again,onlytheresultisquotedhereinFig.3(interestedreaderscancheckthedetailedcalculationsinAppendixC).0.511.52T-0.5-0.4-0.3-0.2-0.100.1 dFIG.3:DeviationofthefractionofAU(orUA)nearestneigh-borsfortheenergymodelinvolvingstackingenergies.Unlikeinthecaseofthebindingenergymodel,theAU(orUA)neighborcorrelationsarecompletelybiasedatzerotempera-tureinthestackingenergymodel.Athightemperature,thisdeviationapproachesthesamelimitasthebindingenergymodel.Unlikethebindingenergymodel,atzerotemperature,thenearestneighborcorrelationsofthestackingenergymodelarecompletelybiased.AlmostnoAU(orUA)neighborscanbefoundinthisannealedsystem.Thiscanbeunderstoodsinceatzerotemperature,theonlydominatingstructureisalongsteminwhichallstack-ingloopsareoftypes1.Thus,theonlytwoimportantsequencesaretheonesmadeofhalfconsecutiveAbasesandtheotherhalfofUbases.Toverifythisstructure,weadditionallyintroducean-otherBoltzmannfactorhforeachhairpinloopformation.WiththisBoltzmannfactorwecankeeptrackofthefrac-tionofhairpinsfhintheannealedsystembycalculatingfh=1Nh@hln(Za(N;s1;s2;h;L=1))jh=1:(10)FromFig.4,wedoseethatthefractionofhairpinsofthisannealedsystemindeedgoestozeroastemperaturegoestozero,whichisafeatureofthelongstemstructure.Athightemperature,however,theenergymodeldoesnotmattersinceentropydominates.Thus,theAU(orUA)fractionapproachesthesamelimitasinthebindingenergymodel.Fromthisstackingenergymodel,welearnthatthestrongertheenergyiscoupledtothenearestneighborcorrelations,thelargerdeviationinnearestneighborcor-relationsoftheannealedsystemwillbepresentatlowtemperature.IV.CONSTRAINEDANNEALINGSofarwehaveonlyobservedthesequencecorrela-tionsarti ciallyintroducedthroughtheannealedensem- 50.10.20.30.40.50.60.70.80.91T00.050.10.150.2fhannealedconstrained annealedquenchedFIG.4:Fractionofhairpinsinthestackingenergymodelforthreedi erentensembles.ble.However,ourapproachcaninfactbeusedtogener-atemorerealisticensembleswithintheannealedframe-work.Theideaistoforcethenearestneighborcorrela-tionstoberandomwhenperformingtheannealedaver-age[23,24].Wesimplyenforcethisrandomdisorderconstraint,i.e.,thefractionofAU(orUA)neighborsbeingonehalfbysettingtheBoltzmannfactorL,whichcontrolsthenear-estneighborcorrelations,towhatevervalueitneedstohaveforthecorrelationsoftheannealedensembletovan-ish.Thisconstrainedannealingturnsouttopredictther-modynamicquantitiesmuchclosertothequenchedre-sults.Anditcanbedoneimmediatelyfollowingourquanti eddeviationsindisorder.A.BindingenergymodelTheconstraintforthebindingenergymodelisreadas1NL@Lln(Za(N;q;L))jL=Lc=12:(11)Inthisenergymodel,weexpectthesequenceswithmoreAU(orUA)nearestneighborstobesuppressedsincetheannealedsystemfavorsthoseneighbors.Asaresult,Lc,whichfavorsAA(orUU)neighbors,isexpectedtobelargerthanoneinordertomeettheconstraint.Further-more,Lcshouldbelargeratlowertemperaturessincetheneighborcorrelationismorebiasedatlowertemper-atures.Oneimportantnoteisthattheresultingfreeenergyisonlyde neduptoanadditiveconstant,i.e.,addingaconstantbackgroundpotentialdoesnotchangethere-sultatall.Thus,theabsolutevalueofthisconstrainedannealedfreeenergyaswellastheBoltzmannfactorLchasnorealmeaning.Forexample,onecouldassigntheBoltzmannfactorLtoAU(orUA)neighborsinsteadofAA(orUU)neighbors.Theresultingchemicalpotentialwouldthenchangeasignandthefreeenergywoulddif-ferbyaconstantamount.However,thethermodynamicquantities,whicharecalculatedbytakingderivativesoftheconstrainedfreeenergy,willnotseethisconstantandareexpectedtobeclosertothequenchedresult.Toverifythisassertion,wearegoingtocomputetheaveragefractionofbindingpairsforthebindingenergymodelviaq=N@qln(Za(N;q;L))asafunctionoftem-perature.Then,wecomparethecasesoftheannealed(L=1),theconstrainedannealed(L=Lc)andthequenchedensembles.Astothequenchedresult,wenumericallycalculatethepartitionfunctiongivenrandomsequencesoflength1280andcollectthedatafrom1000randomsequences.Inor-dertoavoidthetrivial nitesizee ectsdueto\ructuationofthefractionofAbasesawayfromitsexpectedvalue1/2,weonlychoosesequencesthatcontainexactly640A'sand640U's.TheresultisshowninFig.5.Thesta-tisticalerrorsofthequenchedresultsarealwayssmallerthanthesizeofthecorrespondingsymbol,suchthatwithintheerrorbarsthequenchedresultsneveroverlapothercurves.Thisconditionholdsforallotherquenchedresultsinthismanuscript.0.20.30.40.50.60.70.80.91T0.340.360.380.40.420.440.460.48fqannealedconstrained annealedquenchedFIG.5:Fractionofbindingpairsinthebindingenergymodel.Theconstraintofrandomnearestneighborsbringstheannealedquantityclosertothequenchednumericalesti-mate.Thestatisticalerrorsofthequenchedresultsarealwayssmallerthanthesizeofthesymbol.Weseethattheconstrainedannealedresultisindeedveryclosetothequenchednumericalestimate.However,allthreeresultsareratherclosetoeachotheranyway.Thereasonforthesethreecasesbeingsoclosetoeachotherissimplythatunderthisenergymodelthesystemisnotglassy,andeverybaseisableto ndanotherbaseforpairinginthisbindingenergymodel.Thus,atzerotemperature,allthebasesarepairedinallthreesystems.Thefactthatthenearestneighborcorrelationsarenotbi-asedalotcanalsobeveri edaswe ndthatatT=0.1,Lctobejust1.59.Thus,thechemicalpotentialintroducedfromtheconstraintiscomparativelysmallanddoesnota ecttheresulttoomuch. 6B.stackingenergymodelThesituationforthestackingenergymodelisverydi erentfromthatofthebindingenergymodel.Here,wefollowthesameapproachandcomputetheaveragedfractionofstackingloopsoftypeAAUU(orUUAA)andAU(orUAUA)asafunctionoftemperatureundertheconstraint,1NL@Lln(Za(N;s1;s2;h=1;L))jL=Lc=12:(12)Similarly,inordertoavoidthetrivial nitesizee ectsforthequenchednumericalestimate,we xthenumberofAA,AU,UA,UUneighborsintherandomlychosensequencestobe320each[25].0.10.20.30.40.50.60.70.80.91T00.10.20.30.40.50.6fs1annealedconstrained annealed2 constrained annealedquenchedFIG.6:FractionofstackingloopsAAUU(orUUAA)inthestack-ingenergymodel.Theconstraintofrandomnearestneigh-bors xesthisquantitymuchbetterthanaveragednumberofpairsinthebindingenergymodel.Thephenomenolog-icalconstraint,i.e.,a xedfractionofhairpins,bringsthisquantityonlyabitclosertothequenchedresult.FromFigs.6and7,weseethattheconstrainedan-nealedresultsaregreatlyimprovedovertheplainan-nealedresults.Thisveri estheideathatlargerdevia-tionsfromtherandomdisorderresultinabettercor-rectionviatheconstraintoftherandomdisorder.Forthisstackingenergymodel,atT=0.1,Lc=0.0067ismuchmoredi erentfrom1thaninthebindingenergymodel.Fromtheseresults,wecanseethattheconstrainedannealedensembleofthestackingenergymodelbehavesinthefollowingway.SincetheensembleisforcedtohavethesamenumberofAA(orUU)andAU(orUA)neighbors,atzerotemperature,thedominatingstructureisstillalongstemstructure,butwithhalfthestackingloopsbeingoftypes1andtheotherhalfbeings2.ThisisconsistentwiththefactthatfractionofhairpinsgoingtozeroastemperaturegoestozerofortheconstrainedannealedsystemasshowninFig.4.Onedi erencebetweenthequenchedensembleandtheconstrainedannealedensembleisthatnotallthebasesofarandomsequencecanformstackingloops.Thus,wehavea nitefractionofhairpinsinthequenchedensem-ble(Fig.4).Thisdi erencecanusedasanadditional0.10.20.30.40.50.60.70.80.91T00.050.10.150.20.25fs2annealedconstrained annealed2 constrained annealedquenchedFIG.7:FractionofstackingloopsAUA(orUAAU)inthestack-ingenergymodel.Again,theconstraintofrandomnearestneighborsgreatlyimprovestheresult.However,unlikethecaseinFig.6,theconstraintofa xedfractionofhairpinsalsocontributesinbringingtheannealedquantityclosertothequenchedresult.phenomenologicalconstrainttoimprovetheconstrainedannealedsystemevenfurther.Weapplythisadditionalphenomenologicalconstraintbyrequiringthefractionofhairpinsfhto tthequenchednumericalestimatesandneighboringbasestobeuncor-relatedatthesametime,i.e.,toenforceLN@Lln(Za(N;s1;s2;h;L))jh=hc;L=Lc=12(13)hN@hln(Za(N;s1;s2;h;L))jh=hc;L=Lc=fh(T);(14)wherefh(T)isthequenchednumericalestimateinthisequation.FromFigs.6and7,weseethatthisadditionalcon-straintslightlyimprovethefractionofstackingloopss1,butsigni cantlyimprovesthefractionofstackingloopss2.Thiscanbeunderstoodsincetheexistenceofhair-pinsintroducesAU(orUA)neighbors,ifthefractionofAU(orUA)neighborsisalsorequiredtobeonehalf,itwilldecreasethefractionofstackingloopss2amongthestemstructures.V.CONCLUSIONWeconcludethatthedeviationoftheannealeden-semblefromthequenchedensembleisstronglyrelatedtotheenergymodelandcanbecompletelybiasedwhenthecorrelationisstronglycoupledtotheenergyofthesystem.Quantifyingthisdeviationallowsustodocon-strainedannealingwhichbringsthepredictionsofther-modynamicquantitiesmuchclosertotherealvaluesinthequenchedensemble.Asthedeviationislarger,theconstraintisstrongerandthusbringstheannealeden-sembleevenclosertothequenchedresults.Unfortu-nately,thebiasingtowardthequenchedensembleisnot 7strongenoughtoactuallydrivethesystemintotheglasstransition.Besidesthenearestneighborcorrelations,onecouldalsoconsiderthecorrelationsfornextnearestneighborsoreventwobasesseparatedbyarbitrarydistances.Inprinciple,allthesecorrelationstogetherwouldbringustotheexactquenchedresultsandthustotheglasstransi-tion.However,thecalculationsbecomemuchmorecum-bersomeasoneincreasesthedistancebetweenthetwobases,andareleftforfuturework.VI.APPENDIXA.AnnealedpartitionfunctionforthebindingenergymodelTheannealedpartitionfunctionisobtainedby rstsummingoverallcompatiblesequencesgivenasecondarystructureSandthensummingoverallpossiblestructuresS,whichcanbedoneviatherecursiverelationinFig.1.Wede netheannealedpartitionfunctionforasequenceoflengthNasZa(N+1).Inaddition,theannealedpartitionfunctionforasequenceoflengthNwithitstwoendbasespairedisde nedasAe(N1).TherecursiverelationinFig.1isthenreadasZa(N+1)=1+L2Za(N)+N1Xk=11+L4Za(k1)Ae(Nk):(15)Thefactor(1+L)=2forthe rsttermontherighthandsidecomesfromthecontributioninnearestneighborcor-relationsbetweenthefreebaseNandbaseN-1,andthe2takescareofaveragingoverthenumberofsequences.Wehaveasimilarfactorinthesecondtermcomingfromthecorrelationbetweenbasekofthearchandbasek-1.InthelaterpartwewillshowthatthebehavioroftheannealedpartitionfunctionismainlydeterminedbythearchtermAe,sowewillonlylookatthisquantityhere.The rstbaseofAeisalsospeci edtobeAandthelastbasetobetheconjugatebaseU.1NAUEE1NN1AUEE1kN1NAUSk=2N2FIG.8:Recursiverelationfortheannealedpartitionfunc-tionoverheterogeneoussequenceswherethe rstandthelastbasesformaconjugatepair.Aletter'E'isusedtodenotethatthetwobasesattheendsofthearchareconjugatebases.Again,theannealedpartitionfunctionforthearchcanbeobtainedthroughasimilarrecursiverelation(Fig.8).Thetwotermsontherighthandsidearefurtherdecom-posedinFigs.9and10.Intheserelations,weneedtokeeptrackoftwofactors:theenergycontributionsandthenearestneighborcorre-E1NN1AU1EUN1N1N1NAOFIG.9:Decompositionofanarchwithitslastbaseinsidebeingafreebase,whichcanbeeitherAorU,intotwocases.Theletter'O'isusedtodenotethatthetwobasesattheendsofthearcharenon-conjugate.1NN1kEEAUk+11kOAAkN1EAUFIG.10:Separationofarches.lations.Fromtheenergeticpointofview,anarchcanbethoughtofsimplycontributingaBoltzmannfactorqandneednotstandforarealbindingpair,eventhoughinitiallyitisusedtorepresentarealbindingpair.Thus,inFig.9,aswetrytorelatetheannealedpartitionfunc-tiontoitsshorterlengthones,weassumeane ectivebindingpairbetweenbases1andN-1simplytoconservetheenergycontribution.Inthiscase,thetwobasesarenotreallypaired.Inordertokeeptrackofthecorrectnearestneigh-borcorrelations,weusealetterEonanarchtodenotethatthetwobasesattheendsofthearchareconju-gatebases.Similarly,aletterOisusedtorepresenttwonon-conjugatebasesattheendsofthearch.Thus,inFig.9,thetwocaseswherebaseN-1iseitherAorUareseparatedandaredenotedbyletterEandO,whichisdeterminedbywhetherthebases1andN-1areconjugateornot.Thesenotationsenableustoconnectthedecom-posedtermsrecursivelybacktotherelationinFig.8.InFig.10,aninnerarchcanbetreatedasafreebaseinconsideringtheenergyandcorrelationsfortherestofthebasesoutsidetheinnerarch.However,thereisadi er-enceincountingneighborcorrelationsforthistreatmentbecausethefreebaselooksasabaseAfromtheright,butasabaseUfromtheleft.Thecorrectcorrelationscanbeobtainedifweshiftthisdiscrepancytothelastbaseand\ripitfromUtoA.Thus,thelasttermcarriesaletterOonthearchinsteadofE.TheserecursiverelationsarethenreadasAe(N1)=L2Ae(N2)+12Ao(N2)+(16)14N2X=2Ae(Nk1)[LAo(k1)+Ae(k1)];Ao(N1)=L2Ao(N2)+12Ae(N2)+(17)14N2X=2Ae(Nk1)[LAe(k1)+Ao(k1)]: 8Togetherwiththeinitialconditions,Ae(1)=q,Ae(2)=qL,Ao(1)=qL,Ao(2)=q(1+L)=2,onecansolveforAe(N)byperformingthez-transformcAe(z)=1XN=1Ae(N)zN;(18)cAo(z)=1XN=1Ao(N)zN;(19)ontherecursiverelations.AftersolvingforcAe(z),Ae(N)canbeobtainedthroughtheinversetransformAe(N)=12iIcAe(z)zN1dz:(20)Frompreviousstudies[10],weknowthatinthethermo-dynamiclimit,thepartitionfunctionhasananalyticalformasAe(N)/N3=2zc(q;L)N,wherezc(q;L)isthegreatestrealpartamongthebranchpointsobtainedfromthesolutionofcAe(z).Similarly,ifweperformz-transformonequation15,wecanrelatethez-transformoftheannealedpartitionfunctioncZa(z)tothatofthearchcAe(z).Sincethesetwosharethesamebranchpoints,theasymptoticbehavioroftheannealedpartitionfunctionisdi erentfromtheaboveformulaforthearchbyjustadi erentprefactor,whichdoesnotplayaroleinthethermodynamiclimit.ThefractionofAA(orUU)neighboringbasesperbaseoftheannealedsystemistheneasilycalculatedasL@Lln(zc(q;L))jL=1.Unfortunately,theanalyticalsolu-tionofthissetofpolynomialequationsistoocumber-sometoconveyanyusefulinformation.Thus,weresorttonumericalevaluationofthisanalyticalsolutioninthispaper.B.FractionofminimalhairpinsatzerotemperatureAsdiscussedinthemaintext,thefractionofminimalsizehairpinscanbeeasilyobtainedoncewe gureoutthepartitionfunction.Atzerotemperature,thepartitionfunctionissimplerthanthe nitetemperatureonesinceweonlyneedtoconsiderthegroundstateswhereallbasesarepaired.ThispartitionfunctionisobtainedthroughtherecursiverelationinasimilarwayasshowninFig.11.12NSN12k12N112N12NFIG.11:Recursiverelationforthepartitionfunctionwhereallthebasesarepaired.Wede nethepartitionfunctionforasequenceoflength2(N-1)asZm(N;h),wherehistheBoltzmannfactorforaminimalsizehairpin.TherecursiverelationisthenreadasZm(N+1)=N1Xk=1Zm(k)Zm(Nk+1)+hZm(N):(21)Togetherwiththeinitialconditions,Zm(1)=1andZm(2)=h,onecanobtaintheasymptoticbehaviorthroughz-transform.Aftersimplealgebra,wehavethelargestpolezc(h)=h+2ph+1forthez-transformofpartitionfunctioncZm(z;h).ThepartitionfunctionZm(N)isthenproportionaltozc(h)N.Thefractionofminimalsizehairpinspertwobasesistheneasilycalculatedas@hlnzc(h)jh=1=1+1=phh+2ph+1jh=1=1=2:(22)Thus,thefractionofminimalsizehairpinsperbaseis1/4.C.AnnealedpartitionfunctionforthestackingenergymodelThecalculationforthestackingenergymodelfollowsthesameapproache.However,itisabitmorecompli-catedsinceweneedtokeeptrackofstackingloopsin-volvingfourbaseswhichleadsustotherecursiverelationdepictedinFig.12.E1NN1AU1NAUES1AU2N1NAUUASSEE1kN1NAUSESk=2N2FIG.12:Recursiverelationforthestackingenergymodel.Intheserecursiverelations,weuseanadditionalletterSonthearchtodenotethefactthatweconsiderthestackingenergyofthestackingloopformedpartlybythatbindingpair.Independentofthetypeofthearch,allthestackingenergiesinsidethearchesarestillconsideredinallcases.Thus,the rsttermontherighthandsideinFig.12doesnotcontainanSbecauseitsbaseN-1isunbound,andnostackingloopcanbeformedwiththebindingpairofthearch.E1NN1AU1EUN1N1N1NAO1N1AUES12N2N1AAUUAUESEESL1N1A12N2N1AAUUAESOSOSOAAFIG.13:Decompositionoftheannealedpartitionfunctionwhichlastbaseinsidethearchisafreebase.Similartotherecursiverelationinprevioussection,wethendiscardthelastbaseasafreebaseasshown 9inFig.13.Again,thearchesontherighthandsidearemeanttopreservetheenergycontributionsonly.Inthesecondlineoftherelation,wefurtherdecomposethetermsinordertorelatethesetermswiththe rstrecur-siverelationinFig.12.ESAkN1E1kUESAN1N(1/h1)k+11kO1k+1OAAFIG.14:Separationofarchesconsideringthehairpincontri-bution.InFig.14,wealsoseparatethecontributionsoftheinnerarchfromtherestpartasinFig.10.Onedi er-enceisthatweconsiderthecontributionfromthehairpinloopsinthiscase.Thus,thehairpinloopcontainedintheouterarchtermisnotarealhairpinloopbecauseoftheexistenceoftheinnerarch.Thecorrectresultisobtainedbyaddingthelasttermintherelation.Inthisstackingenergymodel,wedenotetheannealedpartitionfunctionforanarchoflengthN-1asAes(N).TherecursiverelationsarethenreadasfollowsAes(N1)=L2Aes(N2)(s11)(1+L2)4Aes(N4)+12Aos(N2)(s21)2L4Aes(N4)+s1L2+s24Aes(N3)(23)+14N2Xk=3Aes(Nk1)LAos(k1)(s11)2L4Aes(k3)+Aes(k1)(s21)1+L24Aes(k3)+2(1h1)Ho(k);Aos(N1)=L2Aos(N2)(s11)2L4Aes(N4)+12Aes(N2)(s21)1+L24Aes(N4)+s1L+s2L4Aes(N3)(24)+14N2Xk=3Aes(Nk1)LAes(k1)(s11)1+L24Aes(k3)+Aos(k1)(s21)2L4Aes(k3)+2(1h1)He(k);wherethetermsHeandHostandforthecontributionfromahairpin.TheyareobtainedseparatelyfromarecursiverelationsimilartotheoneinFig.9,byjustreplacingthewavylinebyastraightline,whichmeansthatbasesarenotbound.OnecantheneasilyformulatetherecursiverelationsforHeandHo.Togetherwiththeinitialconditions:Aes(1)=h,Aes(2)=hL,Aes(3)=h(1+3L2+s2+s1L2)=4,Aos(1)=hL,Aos(2)=h(1+L2)=2,Aos(3)=h(3L+L3+s1L+s2L)=4,wecanperformz-transformtoob-taintheasymptoticbehavioroftheannealedpartitionfunctionforthestackingenergymodel.[1]K.A.Dilletal.,ProteinSci.4,561(1995).[2]J.N.Onuchic,Z.Luthey-Schulten,andP.G.Wolynes,Annu.Rev.Phys.Chem.48,545(1997).[3]T.Garel,H.OrlandandE.Pitard,J.Phys.I(France)7,1201(1997).[4]E.I.Shakhnovich,Curr.Opin.Struct.Biol.7,29(1997).[5]P.G.Higgs,Q.Rev.BioPhys.33,199(2000).[6]P.G.Higgs,Phys.Rev.Lett.76,704(1996).[7]A.Pagnani,G.ParisiandF.Ricci-Tersenghi,Phys.Rev.Lett.84,2026(2000).[8]A.K.Hartmann,Phys.Rev.Lett.86,1382(2001).[9]A.Pagnani,G.ParisiandF.Ricci-Tersenghi,Phys.Rev.Lett.86,1383(2001).[10]R.BundschuhandT.Hwa,Phys.Rev.E65,031903(2002).[11]F.Krzakala,M.MezardandM.Muller,EuroPhys.Lett.57,752(2002)[12]E.Marinari,A.PagnaniandF.Ricci-Tersenghi,Phys.Rev.E.65,041919(2002)[13]M.Muller,F.KrzakalaandM.MezardEuro.Phys.J.E.9,67(2002).[14]H.Orland,andA.Zee,Nucl.Phys.B.620,456(2002)[15]R.Mukhopadhyay,E.Emberly,C.TangandN.S.Wingreen,Phys.Rev.E.68,041904(2003)[16]M.Baiesi,E.OrlandiniandA.L.Stella,Phys.Rev.Lett.91,198102(2003)[17]P.LeoniandC.Vanderzande,Phys.Rev.E.68,051904(2003)[18]I.TinocoJr.andC.Bustamante,J.Mol.Biol.293,271(1999),andreferencestherein.[19]P.G.deGennes,Biopolymers6,175(1968).[20]M.S.Waterman,AdvancesinMathematics,Supplemen-tarystudies,editedbyG.-C.Rota(Academic,NewYork,1978),pp.167-212.[21]J.S.McCaskill,Biopolymers29,1105(1990)[22]M.ZukerandD.Sanko ,Bull.Math.Biol.46,591(1984)[23]T.Morita,J.Math.Phys.5,1401(1964)[24]E.Orlandini,A.RechnitzerandS.G.Whittington,J.Phys.A.35,7729(2002)[25]S.F.AltschulandB.W.Erickson,Mol.Biol.Evol.2,526(1985)