/
Supercritical Supercritical

Supercritical - PowerPoint Presentation

phoebe-click
phoebe-click . @phoebe-click
Follow
414 views
Uploaded On 2016-10-06

Supercritical - PPT Presentation

CO 2 for Green Polymer Chemistry by Silvio Curia International Conference on Biopolymers and Bioplastics 10 August 2015 San Francisco REFINE project REnewable ID: 472199

polymer viscosity curia 2015 viscosity polymer 2015 curia pressure bar pcl shear high synthesis kda co2 enzyme green 2014

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Supercritical" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Supercritical CO2 for Green Polymer Chemistry

bySilvio Curia

International Conference on

Biopolymers

and

Bioplastics

10

August 2015,

San FranciscoSlide2

REFINE project: REnewable FunctIoNal matErialsfor a sustainable polymer industry

Plastic industry is heavily reliant on petrochemicals.REFINE

aims

to combine:

green raw materialsgreen synthesisgreen processing and modificationSlide3

Plastics: the facts (2014)

Plastics – the Facts 2014

, PlasticsEurope and European Plastics Converters, 201

4

57 Mtonnes in EU

300 Mtonnes globallySlide4

Plastics: the facts (2014)

Plastics – the Facts 2014

, PlasticsEurope and European Plastics Converters, 201

4

<10%

derived from

biodegradable polymers

1

[1] C. Rolando, Biodegradation – Life of Science, 2013 Slide5

CO2 for polymer chemistry

Reduce theviscosity

Energy saving

New green routesSlide6

Polymer processing & synthesis:high viscosity problem

Major obstacle

High Viscosity!Slide7

Major obstacle

High Viscosity!

Solutions

Solvents

Toxic

Polymer processing & synthesis:

high viscosity problemSlide8

Major obstacle

High Viscosity!

Solutions

Solvents

High T

Toxic

Thermal degradation + expensive

Polymer processing & synthesis:

high viscosity problemSlide9

Major obstacle

High Viscosity!

scCO

2

Temporary plasticiser

Non-toxic

Inexpensive

Accessible T

c

& p

c

Solutions

Polymer processing & synthesis:

high viscosity problemSlide10

CO2-induced polymer plasticisation- how does it work?

Polymer chainsSlide11

scCO

2

Polymer chains

CO

2

molecule

Lower viscosity

Lower melting point

CO

2

-induced polymer plasticisation

- how does it work?Slide12

CO

2

-induced polymer plasticisation

- how does it work?

Poly(lactic acid) at 35

o

CSlide13

High Pressure Rheometer

Max Pressure: 300 barSlide14

Oscillatory vs rotational experiments

Oscillation

Full rotation

Stiffness

Melting point

Shear-Viscosity

Flow properties

PolymerSlide15

Elastic modulus of PCL – ambient pressure

P

amb

S. Curia

et al.

,

Polymer

,

2015

Semi-crystalline

Biodegradable

Used for packaging

Suitable for medical applicationsSlide16

P

amb

Soaking time

50 mins

50 bar

Elastic modulus of PCL – in CO

2

S. Curia

et al.

,

Polymer

,

2015Slide17

100 bar

120 bar

70 bar

50 bar

P

amb

Soaking time

50 mins

∼23

o

C

Elastic modulus of PCL – in CO

2

S. Curia

et al.

,

Polymer

,

2015Slide18

Viscosity of PCL 10 kDa: ambient pressure

80

o

C

S. Curia

et al.

,

Polymer

,

2015Slide19

PRESSURE

Viscosity reduction under CO

2

: PCL 10 kDa

80

o

C

S. Curia

et al.

,

Polymer

,

2015Slide20

PRESSURE

Viscosity reduction under CO

2

: PCL 10 kDa

80

o

C

96%

S. Curia

et al.

,

Polymer

,

2015Slide21

Q: can CO2 plasticise higher MW PCL?Slide22

Viscosity: PCL 80

kDa

vs

10

kDa

10

kDa

(ambient

pressure)80 oCShear Rate (s-1)Viscosity (Pa.s)

Longer chains = higher viscosity

S. Curia

et al.

,

Polymer

,

2015Slide23

Polymers: non-Newtonian fluids

log Shear Rate

log Viscosity

Zero Shear ViscositySlide24

80 °C

Viscosity of PCL 80 kDa: ambient pressure

Shear Rate (s

-1

)

Viscosity (Pa.s)

S. Curia

et al.

,

Polymer

,

2015Slide25

PRESSURE

Viscosity reduction under CO

2

: PCL 80 kDa

Shear Rate (s

-1

)

Viscosity (Pa.s)

S. Curia

et al.

,

Polymer

,

2015

, in press

Slide26

PRESSURE

Viscosity reduction under CO

2

: PCL 80 kDa

80

o

C

95%

Shear Rate (s

-1

)Viscosity (Pa.s)

S. Curia

et al.

,

Polymer

,

2015Slide27

Viscosity

vs

pressure

80

o

C

Pressure (bar)

Zero Shear Viscosity (Pa.s)

PCL80

CO

2

Q: can we use another gas?

S. Curia

et al.

,

Polymer

,

2015Slide28

80

o

C

Pressure (bar)

Zero Shear Viscosity (Pa.s)

PCL80

CO

2

vs

N

2

N

2

CO

2

S. Curia

et al.

,

Polymer

,

2015Slide29

CO

2

vs

N

2

80

o

C

Pressure (bar)

Zero Shear Viscosity (Pa.s)

S. Curia

et al.

,

Polymer

,

2015Slide30

Viscosity of PCL vs T

80 oC1/Temperature (1/K)

180

o

C

Without CO

2

S. Curia

et al.

,

Polymer

,

2015

Zero Shear Viscosity (Pa.s)Slide31

Viscosity of PCL

vs

T

180

o

C

80 kDa

80

o

C

CO2 300 bar10 kDa80 oCCO2 300 bar80 o

C

1/Temperature (1/K)

Zero Shear Viscosity (Pa.s)

300 bar at 80

o

C

in CO

2

= 250

o

C

without CO

2

!

S. Curia

et al.

,

Polymer

,

2015Slide32

Fossil-based resources

Green resources

Monomers

High T

Organic solvents

Toxic catalysts

Polyesters

Low T

No solvents

Enzyme catalysedSlide33

Oleic acid

Barley, rye, wheat

Azelaic acid

Extraction

Ozonolysis

Bio-derived

Non-harmful

✓Slide34

Polymerisation of azelaic acid

T>200

o

C

Metal catalystsSlide35

Oleic acid

Barley, rye, wheat

Azelaic acid

Extraction

Ozonolysis

T

m

≈110

o

C

Insoluble in

apolar

solvents

✗Slide36

Polymerisation of azelaic acid

Can a

green lower T

approach be achieved

in CO2?Slide37

\

CO

2

in

CO

2

out

Mechanical stirrer

HP reaction vessel

(60 mL or 20 mL base)Slide38

Naturally derived

 100% bio-content

Low T:

Save €€€/£££

Preserve enzyme

Preserve functionalities

Green Route to Green Functional Materials

S. Curia

et al.

,

Phil Trans A

,

2015

,

accepted

Lipase

Molecular sievesSlide39

End-capped

MW

No side reactions

Sorbic alcohol end-capping: NMR

3

S. Curia

et al.

,

Phil Trans A

,

2015

,

acceptedSlide40

m/z

Intensity (a.u. x 10

4

)

270.4 g/mol

Sorbic alcohol end-capping: MALDI-ToF

S. Curia

et al.

,

Phil Trans A

,

2015

,

acceptedSlide41

m/z

Intensity (

a.u

. x 10

4

)

A=

B=

A

3

A

4

A

5

A

6

A

7

A

8

B

4

Sorbic alcohol end-capping: MALDI-ToF

S. Curia

et al.

,

Phil Trans A

,

2015

,

acceptedSlide42

Further reaction: Diels Alder chain extension

+

Chain extended interpenetrated network

DA

RT, 24 h

2n

n

DA

Swollen in

CHCl

3Slide43

Thermal analysis

40 °C

25 °C

Before curing

After curing

Heat Flow (

endo

down)

Decreased

crystallinitySlide44

Enzyme recycling: propyl oleate synthesis

Fresh enzyme

Enzyme used at 35

o

C/275 bar (CO2)Enzyme used at 110 oC (melt synthesis)Slide45

Enzyme recycling: propyl oleate synthesis

Fresh

S. Curia

et al.

,

Phil Trans A

,

2015

,

acceptedSlide46

Enzyme recycling: propyl

oleate

synthesis

Fresh

CO

2

(35

o

C, 275 bar)

S. Curia

et al.

,

Phil Trans A

,

2015

,

acceptedSlide47

Enzyme recycling: propyl oleate synthesis

Fresh

CO

2

(35

o

C, 275 bar)

Melt process (110

o

C)

S. Curia

et al.

,

Phil Trans A

,

2015

,

acceptedSlide48

ConclusionsCO2 is able to plasticise

PCL with varied MWUsed CO2 as a reaction medium

to achieve a

green low T route

to functional materialsRecycling tests showed that the high-pressure reactions

are

commercially sustainableSlide49

Next StepsTest cross-linking of the green functional polymers (DSC, DMA) + efficiency test (

real time FTIR etc.) (collaboration with KTH)

S. Torron

et al.

,

Macromol Phys and Chem

,

2014Slide50

Next Steps & future outlookRadical chain extension of telechelicA-B-A block copolymer synthesis + analysis

Hydrophilic

Hydrophilic

Hydrophobic

Micelle?

Hydrogel?

Drug delivery?Slide51

Acknowledgments:Prof Steven M Howdle and Dr Derek J IrvineKTH people: Prof Karl Hult, Prof Mats Johansson, Prof Mats Martinelle, Susana Timhagen

, Stefan Semlitsch Mark Guyler, Pete Fields and Richard WilsonHelen CarsonEU, 7th FP and MC

actions

for

fundingSlide52

Thank you!… any questions?