/
Cluster formation and breaking, and cluster excitation in light Cluster formation and breaking, and cluster excitation in light

Cluster formation and breaking, and cluster excitation in light - PowerPoint Presentation

priscilla
priscilla . @priscilla
Follow
343 views
Uploaded On 2022-06-07

Cluster formation and breaking, and cluster excitation in light - PPT Presentation

nuclei Y KanadaEnyo Kyoto Univ Collaborators Y HidakaRIKEN T IchikawaYITP M KimuraHokkaido F KobayashiKyoto T Suhara Matsue Y TaniguchiTsukuba ID: 914129

gas cluster excitation energy cluster gas energy excitation neutron correlation nuclei states formation chain rich orbital state amd shell

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Cluster formation and breaking, and clus..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Cluster formation and breaking, and cluster excitation in light nuclei

Y.

Kanada-En’yo

(Kyoto Univ.)

Collaborators:

Y

.

Hidaka(RIKEN),

T. Ichikawa(YITP),

M

.

Kimura(Hokkaido), F. Kobayashi(Kyoto),

T.

Suhara

(Matsue)

,

Y. Taniguchi(Tsukuba)

Slide2

1.Introduction

Slide3

Cluster & Mean field

Single-particle motion

v.s

.

Many-body correlation

Rich phenomena

in ground and excited states

Energy/nucleon~constant

1. Independent-particle feature in self-consistent mean-field2.Strong nucleon-nucleon correlations 3.Saturation properties

Nuclear system

orbit, shell

s.p

. in mean field

rotation

deformation

1p-1h, vibration

r

elative motion

c

luster

Excitations

cluster

Slide4

Cluster states in low energy

12

C

Liquid drop

6 protons

6 neutrons

0 MeV

100 MeV

Nucleon gas

Energy

10

MeV

3

a

-cluster

a

a

a

a

a

a

triangle

c

hain ?

Cluster gas

Saturation

density

a

a

a

Shell & cluster

formation(correlation)

l

ow

density

cluster

excitation

+

n

ucleon breakup

12

C(0

+

2

)

Hoyle state

Impact to nuclear

synthesis

Slide5

Coexistence of cluster and MF features

Fermions in MF

12

C

developed

3

a

Cluster excitation

Shell structure

・MFCluster

Cluster formation

m

any-body correlation

3

a

12

C

12

C ground state

12

C excited states

No

fermi

surface

fermi

surface

Slide6

Cluster structures

in stable and unstable nuclei

Typical

cluster structures known in

s

table nuclei

8

Be

12

C

20

Ne

a

+

a

3

a

16

O +

a

16

O*

12

C +

a

7

Li

a

+ t

a

-cluster

40

Ca

*,

28

Si*,

32

S*

36

Ar-

a

,

24

Mg-

a

,

28

Si-

a

Si-C, O-C, O-O

Molecular

orbital

Be, C, O, Ne, F

a

-cluster

excitation

14

C*

3

a

linear chain

Unstable nuclei

Heavier nuclei

a

Slide7

History of cluster physics with development of theoretical framework

coexistence of

  

cluster &

 

  

mean-field

1930’s

Weakly

Interacting

a

-particles

shell model,

mean-field1949

1960’s

1970-80’s

microscopic cluster models

(

RGM,OCM,GCM)

cluster

&

scatteringi

n very light nuclei

(A<8

)

a

+(n,d,t,a)clusters in p-shell, sd-shell

nuclei3a,16O+a,12C+a

1990’s-

c

lusters in

unstable nuclei

cluster

formation

valence

neutrons

2

a (3a

)+Xn,16O+a+2n

Unstable nuclei

sd

,

pf

-shell

Models with no(less) cluster assumption

(

GCM,FMD,SVM,AMD,.)

New-type

cluster structures

Ab

initio calculations

GFMC, NCSM, SVM, UCOM,

EFT

2000’s-

A<10

cluster & scattering

a+(

n,d,t,a)

Slide8

Models and ab initio calculations

1960’s: cluster models (RGM)

a

+

a

,

a

+(

N,d,t

)

scattering

2

a in

8Be2000’s: ab initio calculationsStructure

GFMC : 2

a formation in the 8-body system

FMD(UCOM),NCSM, EFT... clusters in A~10

Scattering GFMC:

a+N scattering

NCSM+RGM: a+(N,d,t

) scattering SVM: d+d scattering

FMD(UCOM

)+RGM

by

wiringa

et al. PRC (2000)

VMC

calc.

Slide9

An approach for nuclear structure to study

cluster and mean-field aspects

Stable and unstable nuclei

Ground and excited states

2.

A theoretical

model: AMD

Slide10

Model wave fn.

Effective nuclear force

phenomenological)

Energy Variation

AMD wave fn.

Variational

parameters:

  

Gauss centers, spin orientations

spatial

isospin

Intrinsic spins

Slater

d

et.

Gaussian

det

Gaussian wave packet

AMD method for structure study

Similar to FMD wave fn.

Slide11

AMD

model space

A variety of cluster

st.

Shell

structure

Energy variation

Model space

(Z plane)

Randomly chosen

Initial states

Energy minimum

states

det

det

Energy

s

urface

Cluster and MF

formation/breaking

Slide12

3. Some topics of cluster phenomena

Slide13

Topics of cluster phenomena

Cluster gas, chain states

in C and B isotopes

Cluster structures in Be isotopes

Slide14

Topics of cluster phenomena

Cluster gas,

chain states

in C and B isotopes

Cluster structures in Be isotopes

Slide15

Cluster gas states in excited states

a

condensation

12

C

Tohsaki

et

al

.(2001)

0

1

+

02+

7.65 MeV

8

Be+a

2

2

+

0

3

+

cluster gas

3

a

Dilute cluster gas

Bosonic behavior:a particles condensate in the same orbit.

BEC

in nuclear matter

Roepke et al., PRL(1998)+

4a condensation in 16Osuggested by Funaki et al.

(2008,2010)cluster excitation

+

Hoyle

st.

Funaki et al. (2003)

Uegaki

et al. (1977)

Slide16

2a+t cluster in 11

B

(

3/2

-3)

11

B,

11C

7

Li+a2a+t

3/2

1

-

3/22-

3/23

-

8.5

AMD

by Y.K-E., Suhara

Strong E0

Weak M1,GT

0

1

+

0

2

+7.65 MeV12C

8

Be+

a

Kawabata et al.PLB646, 6 (2007) cluster gas of 3a

2

a

+t gas

PRC75, 024302 (2007)

PRC85, 054320 (2012)

2

2

+

0

3

+

triangle

2

a

+t chain?

3

1

-

+

Slide17

Rotational

band from

cluster gas

s

pin J(J+1)

s

pin J(J+1)

Excitation energy (MeV)

a

a

a

a

Spherical gas

d

eformation

rotation

a

a

Itoh

et al.(2011)

2

2

+

4

+

Freer et al.(2011)

0

2+

9/22

-

3/23-

Yamaguchi et al.(2011) 12C

11B

Non-geometric

geometric

s

pin

r

otation of 3a

, 4a gasOhkubo et al., PLB684(2010)

Funaki et al. PTPS196 (2012)

discussed in D3 session

Slide18

Linear chain state in

14

C*

14

C

AMD

 

by

T.Suhara and Y.K-E,Phys.Rev.C82:044301,2010.

3a linear chain

proton

neutron

Neutron-rich

14C

Energy (Mev)

14,16

C

Linear chain?

v

on

Oertzen

et al.

Itagaki

et al.

Y.K-E.et a.

Suhara

et al.

12

C

g.s

.

14

C

g.s

.

+

12

C*

n

ot linear

12

C

14

C*,

16

C

*

0

2

+

0

3

+

Y.K-E.et al.,

T. Neff et al.

Slide19

Topics of cluster phenomena

Cluster gas, chain states

in C and B isotopes

Cluster structures in Be isotopes

Slide20

Excitation

energy

0

3

+

Cluster structures

in neutron-rich Be

0

1

+

0

2

+

Normal state

Molecular orbital

(MO bond)

Exp

:

Millin

et al.

’05,

Freer

et al. ’06

10

Be: energy levels

J(J+1)

0+

2+

4+

0+(

g.s

.)

2+

4+

10

Be

6

He+

4

He

Ito et al

.

Kobayashi

et al.

Kuchera

et al

.

MeV

AMD

exp

Slide21

+

-

+

-

+

s

-orbital

α

α

α

α

±

p

-

orbital

Molecular orbital(MO) structure

in Be

MO state

Normal state

2

a

-core formation

MO formation

Low-lying MO states

in

11,12,13

Be

Gain kinetic energy

in developed 2α syste

m

vanishing of magic number in

11

Be,

12

Be,

13

Be

MO formation

Seya et al. Von

Oertzen

et al.,

N.

Itagaki

et al., Y. K-E. et al. Ito et al.

Recent exp. for

13

Be

Kondo et al. PLB690(2010)

Slide22

N

Excitation

energy

0

1

+

0

2

+

10

Be

11

Be,

12Be, 13

BeVanishing of N=8 magic number in neutron-rich Be

0

1

+

0

2

+

Normal state

Normal state

8

Be

2

a

MO

d

eformed

g.s

.

Intruder

vanishing

of

neutron magic number

Inversion

Y.K-E.PRC85

(2012) ;

68

(2003

)

12

Be

g.s

. 0+

13

Be

g.s

. 1/2-

p

s

s

p

Slide23

4. Discussion

Slide24

Cluster formation, breaking, excitation, and MO

+

12

C*

n

ot linear

0

2

+

0

3

+

MO

 

6

He+

4

He

10

Be

12

C

14

C

10

Be+

4

He

linear

c

luster

breaking

2

a

system

+

-

+

α

α

+

-

α

α

s

-orbital

 

p

-orbital

 

0

2

+

0

1

+

0

1

+

4-body

(a)

correlation

a

correlation

2

a

-cluster

breaking

2

a

cluster

weakening

p

-orbital

 

Slide25

Cluster & shapes: symmetry breaking(SB) and restoration

nucleons in MF

12

C

developed

3

a

Cluster excitation

MF

Cluster

Cluster formation

m

any-body correlation at surface

3

a

12

C

No

fermi

surface

fermi

surface

Triangle

Spherical

Oblate

Spherical

a

gas

12

C*(0

+

2

)

12

C

gs

(0

+

),

12

C

gs

(3

-

)

O(3)

O(2)

No

correlation

D3h

O(3)

Strong

a

correlation

Slide26

Cluster correlation and SB

Density wave(DW)

F

ermi gas

Triangle

Spherical

Oblate

Spherical

a

gas

Strong

a

correlation

Y. K-E. and Y. Hidaka, PRC

84, 014313 (2011)

BEC: alpha cond.

Infinite matter

k=0

2k periodicity

r

otational/axial symmetry

broken

restored

Translational symmetry

b

roken phase

restored

Angular DW

(

low dimension, Z=N light nuclei)

2L

z

+1

periodicity

Slide27

SummaryTopics of cluster phenomena

Light nuclei: cluster

gas,

chain, molecular orbital in Be, B, C

Heavier system:

studied by Kimura et al., Taniguchi et al.shape coexistence, superdeformation in Si-Cr isotopes

breaking of neutron Magic number around 30Ne, 32

Mg, molecular orbital structure in Be, F, NeCoexistence of cluster and MF features brings

rich phenomena as functions of proton/neutron numbers and excitation energy.Cluster and symmetry breaking

analogy with other quantum many-fermion systems (cold atoms, quark systems)

Slide28

Rich phenomena in

unstable nuclei

Excitation energy

neutron

 

N

proton

 

Z

 *

proton number

* neutron number

 * excitation energy

Unbalanced proton-neutron ratioNew RI F

acility

Slide29

Many-body correlations at low density

a

-cond.

in low density

12

C(0

2

)

+

16O*Dilute a

-cluster gas

BEC-BCS

BCS

Unbound

α

α

α

Neutron matter

N

uclear matter

Dineutron

at surface of

neutron-rich nuclei

Itagaki et al.,

Von Oertzen et al.

α

α

α

14-16

C*

α

α

α

Price et al.

Geometric

crystal

?)

Matsuo

et al

.

PRC73 044309 (‘06)

Cluster

gas, chain ?

Dineutron

correlation ?

Slide30

Ground

state

Resonances, cluster decay

α-

caputure

Liquid-gas

phase

Fusion/fission

cluster

Heavy-ion

collision

Threshold

a

condensation

Nuclear matter

deformation

High spin

vibration

Giant resonance

Weak-binding

Stable

nuclei

Super-heavy

element

Particle-hole

neutron

halo/skin

2

neutron

Resonance

, continuum

Shell

evolution

Rich phenomena in nuclear many-body system

s

Temperature/Excitation

energy

neutron-rich

proton-rich

Nucleon number

Slide31

Slide32

Rotational

band from

cluster gas

s

pin J(J+1)

s

pin J(J+1)

Excitation energy (MeV)

a

a

a

a

Spherical

gas

deformation

rotation

a

a

Itoh

et al.(2011)

2

2

+

4

+

Freer et al.(2011)

0

2+

9/22

-

3/23-

Yamaguchi et al.(2011) 12C

11B

geometric

s

pin

r

otation of 3

a, 4a gas

Ohkubo et al., PLB684(2010)Funaki et al. PTPS196 (2012)

discussed in D3 session

0

3

+

a

a

a

bending

chain

03

+

02

+

Slide33

Deformation

b

Energy

16

O-

16

O

d

iabatic

path

adiabatic path

SD

Deformtions

and cluster resonances

MR

R

h

igher nodal

R

R

32

S:SD

32

S:ND

Slide34

DW on the edge of the oblate state

Pentagon in

28

Si

due to 7

a

-cluster

SSB from axial symmetric

oblate shape

to axial asymmetric shape

D5h symmetry

constructs

K=0+, K=5- bands

DW in nuclear matter

is a SSB(spontaneous symmetry breaking)

for translational invariance

i.e. transition from uniform matter

to

non-uniform matter

Origin of DW: Instability of Fermi surface due to correlation

k

Correlation between particle (k) and hole (-k)

has non-zero expectation value

wave number 2k periodicity (non-uniform)

Other kinds of two-body correlation(condensation)

are translational invariant

BCS

exciton

DW

in

28

Si

?

-k

Slide35

Energy levels of

13

Be with

12

Be+n calculation

1/2-

5/2+

3/2+

3p-2h

1p-0h

2p-1h

AMD+”RGM”

Density distribution of

VAP calculations

Slide36