/
2THainesletGh01KpKpdenoteShimuradatawherepisa12xedrationalp 2THainesletGh01KpKpdenoteShimuradatawherepisa12xedrationalp

2THainesletGh01KpKpdenoteShimuradatawherepisa12xedrationalp - PDF document

rosemary
rosemary . @rosemary
Follow
342 views
Uploaded On 2022-08-16

2THainesletGh01KpKpdenoteShimuradatawherepisa12xedrationalp - PPT Presentation

QpQpdenoteageometricFrobeniuselementThenoneseekstoproveaformulaforthesemisimpleLefschetznumberLefss8rpShKp101trss8rpH15cShKp E Qp QX 0 14c 0 14O 1KpTO14 ID: 937609

proof math w0f hro math proof hro w0f gln jwf resp wede conjecture6 rapoport kottwitz qpr trss lemma11 ann

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "2THainesletGh01KpKpdenoteShimuradatawher..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2T.Haineslet(G;h�1;KpKp)denoteShimuradatawherepisa xedrationalprimesuchthatthelevel-structuregroupfactorizesasKpKpG(Apf)G(Qp).Thisdatagivesrisetoaquasi-projectivevarietyShKp:=Sh(G;h�1;KpKp)overanumber eldEC.Letp2Gal( Qp=Qp)denoteageometricFrobeniuselement.Thenoneseekstoproveaformulaforthesemi-simpleLefschetznumberLefss(rp;ShKp)(1.0.1)trss(rp;Hc(ShKp E Qp; Q`))=X( 0; ;)c( 0; ;)O (1Kp)TO(r);(seex6:1formoredetails).Thetestfunctionrappearinghereisthemostinterestingpartoftheformula.Experiencehasshownthatwemayoften ndatestfunctionbelongingtothecenterZ(G(Qpr);Kpr)oftheHeckealgebraH(G(Qpr);Kpr),inawaythatisexplicitlydeterminedbytheE-rationalconjugacyclassfgof1-parametersubgroupsofGassociatedtotheShimuradata.InmostPELcaseswithgoodreduction,whereKpG(Qp)isahyperspecialmaximalcompactsubgroup,thiswasdonebyKottwitz(cf.e.g.[Ko92a]).WhenKpisaparahoricsubgroupofG(Qp)andwhenGQpisunrami ed,theKottwitzconjecturepredictsthatwecantakertobeapowerofptimestheBernsteinfunctionzKp�;jarisingfromtheBernsteinisomorphismforthecenterZ(G(Qpr);Kpr)oftheparahoricHeckealgebraH(G(Qpr);Kpr)(seeConjecture7.1.2andx11).InfactKottwitzformulated(again,forunrami edgroupscomingfromShimuradata)acloselyrelatedconjectureconce

rningnearbycyclesonRapoport-ZinklocalmodelsofShimuravarieties,whichsubsequentlyplayedanimportantroleinthestudyoflocalmodels(Conjecture7.1.3).ItalsoinspiredimportantdevelopmentsinthegeometricLanglandsprogram,e.g.[Ga].BothversionsofKottwitz'conjectureswerelaterprovedinseveralparahoriccasesattachedtolinearorsymplecticgroups(see[HN02a,H05]).Inarecentbreakthrough,PappasandZhu[PZ]de nedgroup-theoreticversionsofRapoport-Zinklocalmodelsforquitegeneralgroups,andprovedintheunrami edsituationstheanalogueofKottwitz'nearbycyclesconjectureforthem.Thesemattersarediscussedinmoredetailinx7andx8.Untilaround2009itwasstillnotclearhowonecoulddescribethetestfunctionsrinalldeeperlevelsituations.Inthespringof2009theauthorandKottwitzformulatedaconjecturepredictingtestfunctionsrforgenerallevelstructureKp.Thisisthetestfunctionconjecture,Conjecture6.1.1.ItpostulatesthatwemayexpressrintermsofadistributionZVEj0�;jintheBernsteincenterZ(G(Qpr))associatedtoacertainrepresentationVEj0�;j(de nedin(6.1.2))oftheLanglandsL-groupL(GQpr).Letd=dim(ShKp).ThenConjecture6.1.1assertsthatwemaytaker=prd=2�ZVEj0�;j1Kpr2Z(G(Qpr);Kpr)theconvolutionofthedistributionZVEj0�;jwiththecharacteristicfunction1KprofthesubgroupKpr.Asshowninx7,thisspecializestotheKottwi

tzconjectureforparahoricsubgroupsinunrami edgroups.Conjecture6.1.1wassubsequentlyprovedforDrinfeldcaseShimuravarietieswith�1(p)-levelstructurebytheauthorandRapoport[HRa],andformodularcurvesandforDrinfeldcaseShimuravarietieswitharbitrarylevelstructurebyScholze[Sch1,Sch2].ThedistributionsinConjecture6.1.1arebestseenasexamplesofaconstructionV ZVwhichattachestoanyalgebraicrepresentationVoftheLanglandsdualgroupLG(forGanyconnectedreductivegroupoveranyp-adic eldF),anelementZVinthestableBernsteincenterofG=F. 4T.HainesweneedinourelaborationofthestableBernsteincenterinx5.Inparticularinx5:2wedescribetheenhancement(LLC+)whichplaysasigni cantrolethroughoutthechapter,andexplainwhyitholdsforgenerallineargroupsinRemark5.2.3andCorollary5.2.6.ThedistributionsZVarede nedinx5:7,andareusedtoformulatethetestfunctionconjecture,Conjecture6.1.1,inx6:1.Intherestofx6,wedescribethenearbycyclesvariantConjecture6.1.2alongwithsomeoftheendoscopictransferconjecturesneededforthe\pseudostabilization",andassumingtheseconjecturesweproveinTheorem6.3.2theexpectedformofthesemi-simplelocalHasse-Weilzetafunctions,inthecompactandnon-endoscopiccases.Inx7wegiveaconcretereformulationofthetestfunctionconjectureinparahoriccases,recoveringtheKottwitzconjectureandgeneralizingittoallgroupsusingthematerialfromtheAp

pendix.Thepurposeofx8andx9istolistsomeoftheavailableevidenceforConjectures6.1.1and6.2.3.Inx10certaintestfunctionsaredescribedveryexplicitly.Finally,theAppendixgivesthetreatmentofBernsteinisomorphismsandthetransferhomomorphisms,alludedtoabove.Acknowledgments.IamverygratefultoGuyHenniartforsupplyingtheproofofProposition5.2.5andforallowingmetoincludehisproofinthischapter.IwarmlythankTimoRicharzforsendingmehisunpublishedarticle[Ri]andforlettingmequoteafewofhisresultsinLemma11.3.1.IamindebtedtoBrooksRobertsforprovingConjecture5.2.2forGSp(4)(seeRemark5.2.3).IthankmycolleaguesJe reyAdamsandNiranjanRamachandranforusefulconversations.IalsothankRobertKottwitzforhisin uenceontheideasinthischapterandforhiscommentsonapreliminaryversion.IthankMichaelRapoportformanystimulatingconversationsabouttestfunctionsovertheyears.Iamgratefultotherefereeforhelpfulsuggestionsandremarks.2.NotationIfGisaconnectedreductivegroupoverap-adic eldF,thenR(G)willdenotethecategoryofsmoothrepresentationsofG(F)onC-vectorspaces.Wewillwrite2R(G)irredor2(G=F)ifisanirreducibleobjectinR(G).IfGasabovecontainsanF-rationalparabolicsubgroupPwithF-LevifactorMandunipotentradicalN,de nethemodulusfunctionP:M(F)!R�0byP(m)=jdet(Ad(m);Lie(N(F)))jFwherejjFisthenormalizedabsolutevalueonF.B

y1=2P(m)wemeanthepositivesquare-rootofthepositiverealnumberP(m).For2R(M),wefrequentlyconsiderthenormalizedinducedrepresentationiGP()=IndG(F)P(F)(1=2P):Welet1SdenotethecharacteristicfunctionofasubsetSofsomeambientspace.IfSG,letgS=gSg�1.IffisafunctiononS,de nethefunctiongfongSbygf()=f(g�1g).ThroughoutthechapterweusetheWeilformofthelocalorglobalLanglandsL-groupLG.3.ReviewoftheBernsteincenterWeshallgiveabriefsynopsisof[BD]thatissuitableforourpurposes.Otherusefulreferencesare[Be92],[Ren],and[Roc].TheBernsteincenterZ(G)ofap-adicgroupGisde nedastheringofendomorphismsoftheidentityfunctoronthecategoryofsmoothrepresentationsR(G).Itcanalsoberealizedasanalgebra StableBernsteincenterandtestfunctions5ofcertaindistributions,astheprojectivelimitofthecentersofthe nite-levelHeckealgebras,andastheringofregularfunctionsonacertainalgebraicvariety.Wedescribetheseinturn.3.1.Distributions.Westartbyde ningtheconvolutionalgebraofdistributions.WewriteGfortherationalpointsofaconnectedreductivegroupoverap-adic eld.ThusGisatotallydisconnectedlocallycompactHausdor topologicalgroup.FurtherGisunimodular; xaHaarmeasuredx.LetC1c(G)denotethesetofC-valuedcompactlysupportedandlocallyconstantfunctionsonG.LetH(G;dx)=(C1c(G);dx),theconvolution

productdxbeingde nedusingtheHaarmeasuredx.AdistributionisaC-linearmapD:C1c(G)!C.Foreachf2C1(G)wede nef2C1(G)byf(x)=f(x�1)forx2G.WesetD(f):=D(f):WecanconvolveadistributionDwithafunctionf2C1c(G)andgetanewfunctionDf2C1(G),bysetting(Df)(g)=D(gf);where(gf)(x):=f(xg).ThefunctionDfdoesnotautomaticallyhavecompactsupport.WesayDisessentiallycompactprovidedthatDf2C1c(G)foreveryf2C1c(G).Wede negfbygf(x):=f(g�1xg)forx;g2G.WesaythatDisG-invariantifD(gf)=D(f)forallg;f.ThesetD(G)GecofG-invariantessentiallycompactdistributionsonC1c(G)turnsouttohavethestructureofacommutativeC-algebra.Wedescribenexttheconvolutionproductanditsproperties.GivendistributionsD1;D2withD2essentiallycompact,wede neanotherdistributionD1D2by(D1D2)(f)=D1(D2f):Lemma3.1.1.TheconvolutionproductsDfandD1D2havethefollowingproperties:(a)For2C1c(G)letDdx(sometimesabbreviateddx)denotetheessentiallycompactdis-tributiongivenbyf7!RGf(x)(x)dx.ThenDdxf=dxf.(b)Iff2C1c(G),thenD(fdx)=(Df)dx.Inparticular,D1dxD2dx=D1dx2dx.(c)IfD2isessentiallycompact,then(D1D2)f=D1(D2f).IfD1andD2areeachessentiallycompact,soisD1D2.(d)IfD2andD3areessentiallycompact,then(D

1D2)D3=D1(D2D3).(e)AnessentiallycompactdistributionDisG-invariantifandonlyifD(1Ugdx)=(1Ugdx)DforallcompactopensubgroupsUGandg2G.Here1UgisthecharacteristicfunctionofthesetUg.(f)IfDisessentiallycompactandf1;f22C1c(G),thenD(f1dxf2)=(Df1)dxf2.Corollary3.1.2.Thepair(D(G)Gec;)isacommutativeandassociativeC-algebra.3.2.Theprojectivelimit.LetJGrangeoverthesetofallcompactopensubgroupsofG.LetH(G)denotetheconvolutionalgebraofcompactly-supportedmeasuresonG,andletHJ(G)H(G)denotetheringofJ-bi-invariantcompactly-supportedmeasures,withcenterZJ(G).TheringHJ(G)hasasuniteJ=1JdxJ,where1JisthecharacteristicfunctionofJanddxJistheHaarmeasurewithvoldxJ(J)=1.NotethatifJ0J,thendxJ0=[J:J0]dxJ. StableBernsteincenterandtestfunctions7Wede neH(L)1:=ker(H)H(F)1:=ker(H)\H(F):Wealsode neH(F)1H(F)1tobethekernelofthemapH(F)!X(Z(bH))I=torsderivedfromH.IfHisanisotropicmodulocenter,thenH(F)1istheuniquemaximalcompactsubgroupofH(F)andH(F)1istheuniqueparahoricsubgroupofH(F)(seee.g.[HRo]).Sometimesthetwosubgroupscoincide:forexampleifHisanyunrami edF-torus,thenH(F)1=H(F)1.Wede neX(H):=Homgrp(H(F)=H(F)1;C);thegroupofunrami edcharactersonH(F).Thisde nitionofX(H)agreeswiththeusualoneasin[BD].Wede neXw(H):=Ho

mgrp(H(F)=H(F)1;C)andcallitthegroupofweaklyunrami edcharactersonH(F).Wefollowthenotationof[BK]indiscussingsupercuspidalsupportsandinertialequivalenceclasses.Asindicatedearlierinx3:1,forconveniencewewillsometimeswriteGwhenwemeanthegroupG(F)ofF-pointsofanF-groupG.Acuspidalpair(M;)consistsofanF-LevisubgroupMGandasupercuspidalrepresentationonM.TheG-conjugacyclassofthecuspidalpair(M;)willbedenoted(M;)G.Wede netheinertialequivalenceclasses:wewrite(M;)(L;)ifthereexistsg2GsuchthatgMg�1=Landg= forsome2X(L).Let[M;]Gdenotetheequivalenceclassof(M;)G.If2R(G)irred,thenthesupercuspidalsupportofistheuniqueelement(M;)GsuchthatisasubquotientoftheinducedrepresentationiGP(),wherePisanyF-parabolicsubgrouphavingMasaLevisubgroup.LetXGdenotethesetofallsupercuspidalsupports(M;)G.Denotebythesymbols=[M;]Gatypicalinertialclass.Foraninertialclasss=[M;]G,de nethesetXs=f(L;)Gj(L;)(M;)g.WehaveXG=asXs:WeshallseebelowthatXGhasanaturalstructureofanalgebraicvariety,andtheBernsteincomponentsXsformtheconnectedcomponentsofthatvariety.FirstweneedtorecallthevarietystructureonX(M).Asiswell-known,X(M)hasthestructureofacomplextorus.Todescribethis,we rstconsidertheweaklyunrami

edcharactergroupXw(M).ThisisadiagonalizablegroupoverC.Infact,byKottwitzwehaveanisomorphismM(F)=M(F)1=X(Z(cM)I)=X((Z(cM)I)):ThismeansthatXw(M)(C)=Homgrp(M(F)=M(F)1;C)=Homalg(C[X((Z(cM)I))];C);inotherwords,(3.3.2)Xw(M)=(Z(cM)I): StableBernsteincenterandtestfunctions94.ThelocalLanglandscorrespondenceWeneedtorecallthegeneralformoftheconjecturallocalLanglandscorrespondence(LLC)foraconnectedreductivegroupGoverap-adic eldF.LetFdenoteanalgebraicclosureofF.LetWFGal(F=F)=:�FbetheWeilgroupofF.It tsintoanexactsequenceoftopologicalgroups1// IF// WFval// Z// 1;whereIFistheinertiasubgroupof�Fandwhere,if2WFisageometricFrobeniuselement(theinverseofanarithmeticFrobeniuselement),thenval()=�1.HereIFhasitspro nitetopologyandZhasthediscretetopology.SometimeswewriteIforIFinwhatfollows.RecalltheWeil-DelignegroupisW0F:=WFnC,wherewzw�1=jwjzforw2WFandz2C,withjwj:=qval(w)FforqF=#(OF=($F)),thecardinalityoftheresidue eldofF.ALanglandsparameterisanadmissiblehomomorphism':W0F!LG,whereLG:=bGoWF.Thismeans:'iscompatiblewiththeprojectionsW0F!WFand:LG!WF;'iscontinuousandrespectsJordandecompositionsofelementsinW0FandLG(cf.[Bo79,x8]forthede nitionofJordandecompositioninthegroupWFnCandwhatitmeanstorespectJordand

ecompositionshere);if'(W0F)iscontainedinaLevisubgroupofaparabolicsubgroupofLG,thenthatparabolicsubgroupisrelevantinthesenseof[Bo79,x3:3].(ThisconditionisautomaticifG=Fisquasi-split.)Let(G=F)denotethesetofbG-conjugacyclassesofadmissiblehomomorphisms':W0F!LGandlet(G=F)=R(G(F))irredthesetofirreduciblesmooth(oradmissible)representationsofG(F)uptoisomorphism.Conjecture4.0.1(LLC).Thereisa nite-to-onesurjectivemap(G=F)!(G=F),whichsatis esthedesiderataof[Bo79,x10].The ber'over'2(G=F)iscalledtheL-packetfor'.WementionafewdesiderataoftheLLCthatwillcomeupinwhatfollows.First,LLCforGmisnothingotherthanLanglandsdualityforGm,whichwenormalizeasfollows:forTanysplittorustorusoverF,withdualtorusbT,Homconts(T(F);C)=Homconts(WF;bT)$'satis es,forevery2X(T)=X(bT)andw2WF,(4.0.4)('(w))=((Art�1F(w))):HereArt�1F:WabF!Fisthereciprocitymapoflocalclass eldtheorywhichsendsanygeometricFrobeniuselement2WFtoauniformizerinF.Next,wethinkofLanglandsparametersintwoways,eitherascontinuousL-homomorphisms':W0F!LGmodulobG-conjugation,orascontinuous1-cocycles'cocyc:W0F!bG StableBernsteincenterandtestfunctions11AssumeLLCholdsforG=F.Letbeanin nitesimalcharacterforG.De nethein nitesimalclasstobethefollow

ing niteunionofL-packets:=a' ':Here'rangesoverbG-conjugacyclassesofadmissiblehomomorphismsW0F!LGsuchthat('jWF)bG=()bG,and'isthecorrespondingL-packetofsmoothirreduciblerepresentationsofG(F).5.2.LLC+.InordertorelatetheBernsteinvarietyXwiththevarietyYofin nitesimalcharacters,wewillassumetheLocalLanglandsCorrespondence(LLC)forGandallofitsF-Levisubgroups.WeassumeallthedesideratalistedbyBorelin[Bo79].TherearetwoadditionaldesiderataofLLCweneed.De nition5.2.1.WewilldeclarethatGsatis esLLC+iftheLLCholdsforGanditsF-Levisub-groups,andthesecorrespondencesarecompatiblewithnormalizedparabolicinductioninthesenseoftheConjecture5.2.2below,andinvariantundercertainisomorphismsinthesenseofConjecture5.2.7below.LetMGdenoteanF-Levisubgroup.ThentheinclusionM,!GinducesanembeddingLM,!LGwhichiswell-de neduptobG-conjugacy(cf.[Bo79,x3]).Conjecture5.2.2.(CompatibilityofLLCwithparabolicinduction)Let2(M=F)and2(G=F)andassumeisanirreduciblesubquotientofiGP(),whereP=MNisanyF-parabolicsubgroupofGwithF-LevifactorM.Thenthein nitesimalcharacters'jWF:WF!LGand'jWF:WF!LM,!LGarebG-conjugate.Remark5.2.3.(1)Theconjectureimpliesthattherestriction'jWFdependsonlyonthesupercus-pidalsupportof.Thislatterstatementisaformalconsequen

ceofVogan'sConjecture7.18in[Vo],buttheConjecture5.2.2isslightlymoreprecise.InProposition5.5.1wewillgiveaconstructionofthemapfinVogan'sConjecture7.18,bysendingasupercuspidalsupport(M;)G(a\classicalin nitesimalcharacter"in[Vo])tothein nitesimalcharacter('jWF)bG.Withthisformulation,theconditiononfimposedinVogan'sConjecture7.18isexactlythecompatibilityintheconjectureabove.(2)TheconjectureholdsforGLn,andisimplicitinthewaythelocalLanglandscorrespondenceforGLnisextendedfromsupercuspidalstoallrepresentations(seeRemark13.1.1of[HRa]).ItwasapointofdepartureinScholze'snewcharacterizationofLLCforGLn[Sch3],andthatpaperalsoprovidesanotherproofoftheconjectureinthatcase.(3)IwasinformedbyBrooksRoberts(privatecommunication),thattheconjectureholdsforGSp(4).(4)Givenaparameter':W0F!LG,thereexistsacertainP=MNandacertaintemperedparameter'M:W0F!LMandacertainreal-valuedunrami edcharacterMonM(F)whoseparameterisintheinterioroftheWeylchamberdeterminedbyP,suchthattheL-packet'consistsofLanglandsquotientsJ(M M),forMrangingoverthepacket'M.Theparameter'isthe 12T.Hainestwistof'MbytheparameterassociatedtothecharacterM.Thisreducestheconjecturetothecaseoftemperedrepresentations.Onecanfurtherreducetothecaseofdiscreteseriesrepresentations.Thefollowingisaverynaturalkin

doffunctorialitywhichshouldbesatis edforallgroups.Conjecture5.2.4.(InvarianceofLLCunderisomorphisms)Suppose:(G;)f!(G0;0)isanisomorphismofconnectedreductiveF-groupstogetherwithirreduciblesmoothrepresentationsonthem.ThentheinducedisomorphismL:LG0f!LG(well-de neduptoaninnerautomorphismofbG),takesthebG0-conjugacyclassof'0:W0F!LG0tothebG-conjugacyclassof':W0F!LG.Proposition5.2.5.Conjecture5.2.4holdswhenG=GLn.Proof.(GuyHenniart).ItisenoughtoconsiderthecasewhereG0=GLnandisanF-automorphismofGLn.ThefunctorialpropertiesintheLanglandscorrespondenceforGLnare:(i)Compatibilitywithclass eldtheory,thatis,withthecasewheren=1.(ii)ThedeterminantoftheWeil-Delignegrouprepresentationcorrespondstothecentralchar-acter:thisisLanglandsfunctorialityforthehomomorphismdet:GLn(C)!GL1(C).(iii)Compatibilitywithtwistsbycharacters,i.e.,Langlandsfunctorialityfortheobvioushomo-morphismofdualgroupsGL1(C)GLn(C)!GLn(C).(iv)Compatibilitywithtakingcontragredients:thisisLanglandsfunctorialitywithrespecttotheautomorphismg7!tg�1(transposeinverse),sinceitisknownthatforGLn(F)thissendsanirreduciblerepresentationtoarepresentationisomorphictoitscontragredient.ThesepropertiesareenoughtoimplythedesiredfunctorialityforF-automorphismsofGLn.Whenn=1,thefunctorialityisobviousforanyF-e

ndomorphismofGL1.Whennisatleast2,anF-automorphismofGLninducesanautomorphismofSLnhenceanautomorphismoftheDynkindiagramwhichmustbetheidentityor,(whenn3)theoppositionautomorphism.HenceuptoconjugationbyGLn(F),theF-automorphismistheidentityonSLn,orpossibly(whenn3)transposeinverse.ConsequentlytheF-automorphismcanbereduced(bycomposingwithaninnerautomorphismorpossiblywithtransposeinverse)toonewhichistheidentityonSLn,henceisoftheformg7!gc(det(g))wherec2X(Z(GLn)).Butthisimpliesthatitistheidentityunlessn=2,inwhichcaseitcouldalsobeg7!gdet(g)�1.Inthatexceptionalcase,themapinducedonthedualgroupGL2(C)isalsog7!gdet(g)�1,andthedesiredresultholdsbyinvoking(ii)and(iii)above.Corollary5.2.6.LetM=GLn1GLnrGLnbeastandardLevisubgroup.Letg2GLn(F).ThenConjecture5.2.4holdsfortheisomorphismcg:Mf!gMgivenbyconjugationbyg.Proof.ItisenoughtoconsiderthecasewheregbelongstothenormalizerofMinGLn.LetTMbethestandarddiagonaltorusinGLn.Theng2NG(T)M.ThuscomposinggwithapermutationmatrixwhichnormalizesMwemayassumethatcgpreserveseachdiagonalfactorGLni.ThedesiredfunctorialityfollowsbyapplyingProposition5.2.5toeachGLni.ForthepurposesofcomparingtheBernsteincenterandthestableBernsteincenterasinPropo-sition5.5.1,weneedonlythisweakervariantofConjecture5.2.4.Conjec

ture5.2.7.(WeakinvarianceofLLC)LetMGbeanyF-Levisubgroupandletg2G(F).ThenConjecture5.2.4holdsfortheisomorphismcg:Mf!gM. 14T.HainesWecannowde nethenotionofinertialequivalence(1)bG(2)bGofin nitesimalcharacters.De nition5.3.3.Wesay(1)bGand(2)bGareinertiallyequivalentiffM1g=fM2g;thereexistsM2fM1g,and+12(1)bGand+22(2)bGwhoseimagesareminimallycontainedbyM,andanelementz2(Z(M)I),suchthat(z+1)M=(+2)M:Wewrite[]bGfortheinertialequivalenceclassof()bG.NotethatMautomaticallycontains(z+1)(WF)minimallyifitcontains+1(WF)minimally.Lemma5.3.4.Therelationisanequivalencerelationonthesetofin nitesimalcharacters.Proof.UseLemmas5.3.1and5.3.2.Remark5.3.5.Tode ne(1)bG(2)bGweusedthechoiceofbGbBbT(whichwasassumedtoformpartofa�F-invariantsplittingforbG)inordertode nethenotionofstandardLevisubgroupofLG.However,theequivalencerelationisindependentofthischoice,sinceasremarkedabove,anytwo�F-invariantsplittingsforbGareconjugateunderbG�F,by[Ko84a,Cor.1.7].Remark5.3.6.ThepropertyweneedofstandardLevisubgroupsMLGisthattheyaredecomposable,thatis,M:=M\bGisWF-stable,andM=MoWF.AnystandardLevisubgroupisdecomposable

.Inourdiscussion,wecouldhaveavoidedchoosinganotionofstandardLevi,byassociatingtoeach()bGauniqueclassofdecomposableLevisubgroupsfMg,allofwhicharebG-conjugate,suchthatfactorsminimallythroughsomeM2fMg.Now xastandardLevisubgroupMLG.WewritetMforaninertialequivalenceclassofadmissiblehomomorphismsWF!M.WewriteYtMforthesetofM-conjugacyclassescontainedinthisinertialclass.WewanttogivethissetthestructureofananealgebraicvarietyoverC.De nethetorus(5.3.1)Y(M):=(Z(M)I):ThenY(M)actstransitivelyonYtM.Fixarepresentative:WF!Mforthisinertialclass,sothattM=[]M.Lemma5.3.7.TheY(M)-stabilizerstab:=fz2Y(M)j(z)M=()Mgis nite.Proof.Thereexistsanintegerr1suchthatractstriviallyonM.Thegroupstabiscontainedinthepreimageofthe nitegroupZ(M)�F\(M)derunderthenormhomomorphismNr:(Z(M)I)!Z(M)�F;z7!z(z)r�1(z)andthekernelofthishomomorphismis nite. 16T.HainesinplaceofF,itfollowsthat(z)jWE=zfjWE,wherezfisde nedasabove.Thusthemap(z)bG7!((z)jWE)bGliftstothemap(z)M7!(zfjWE)M7!(zfjWE)bG;andbeinginducedby(5.4.1),thelatterisanalgebraicmorphism.5.5.RelationbetweentheBern

steincenterandthestableBernsteincenter.ThevarietiesXandYarede nedunconditionally.Inordertorelatethem,weneedtoassumeLLC+holds.Proposition5.5.1.AssumeLLC+holdsforthegroupG.Thenthemap(M;)G7!('jWF)bGde nesaquasi- nitemorphismofanealgebraicvarietiesf:X!Y:ItissurjectiveifG=Fisquasi-split.ThereadershouldcomparethiswithConjecture7.18in[Vo].OurvarietystructureonthesetYisdi erentfromthatputforthbyVogan,andourfisgivenbyasimpleandexplicitrule.InviewofLLC+ourfautomaticallysatis estheconditionwhichVoganimposedonthemapinhisConjecture7.18:ifhassupercuspidalsupport(M;)G,thenthein nitesimalcharacterofisf((M;)G).Proof.Itiseasytoseethatthemap(M;)G7!('jWF)bGiswell-de ned.Weneedtoshowthatanisomorphismcg:(M;)f!(gM;g)givenbyconjugationbyg2G(F)givesrisetoparameters':W0F!LM,!LGand'g:W0F!L(gM),!LGwhichdi erbyaninnerautomorphismofbG.InviewofConjecture5.2.7appliedtoM,theisomorphismL(gM)f!LMtakes'gtoancM-conjugateof'.OntheotherhandtheembeddingsLM,!LGandL(gM),!LGarede nedusingbasedrootsystemsinsuchawaythatitisobviousthattheyarebG-conjugate.Toexaminethelocalstructureofthismap,we rst xaandastandardMthroughwhichfactorsminimally.Lett=[]bG.ThenoverYtthemapftakestheform(5.5.1)asM tX

sM!Yt:HeresMrangesovertheinertialclasses[M;]Gsuchthat('jWF)bGisinertiallyequivalentto()bG.Wenow xarepresentative(M;)forsM.Givensucha',itsrestriction'jWFfactorsthroughabG-conjugateofLM.But('jWF)bG()bGimpliesthat(uptoconjugationbybG)'jWFfactorsminimallythroughM.ThuswemayassumethatMLM.ThecorrespondinginclusionZ(cM),!Z(M)inducesamorphismofalgebraictoriY(cM)=(Z(cM)I)!(Z(M)I)=Y(M):Further,recallX(M)=Y(cM)bytheKottwitzisomorphism(ortheLanglandsdualityforquasi-characters),bytherule7!zcocyc().Taking(4.0.5)intoaccount,weseethat(5.5.1)onXsM,givenby(M;)G7!('jWF)bGfor2X(M)=stab,liftstothemap(5.5.2)X(M)=stab!Y(M)=stab; 18T.HaineswheneverdoesnotfactorthroughaproperLeviinLG,thein nitesimalclassconsistsofatmostoneL-packet.45.6.Aside:whendoesanin nitesimalclassconsistonlyofsupercuspidalrepresenta-tions?Proposition5.6.1.AssumeG=Fisquasi-splitandLLC+holdsforG.ThenconsistsentirelyofsupercuspidalrepresentationsifandonlyifdoesnotfactorthroughanyproperLevisubgroupLM(LG.Proof.Ifcontainsanonsupercuspidalrepresentationwithsupercuspidalsupport(M;)GforM(G,thenbyLLC+,wemayass

ume'jWF,andhence,factorsthroughtheproperLevisubgroupLM(LG.Conversely,iffactorsminimallythroughastandardLevisubgroupM(LG,thenwemustshowthatcontainsanonsupercuspidalrepresentationofG.SinceG=Fisquasi-split,wemayidentifyM=LMforanF-LevisubgroupM(G.Nowfort=[]bG,themap(5.5.1)issurjective.ForanyF-LevisubgroupM)M,acomponentoftheformX[M;]Ghasdimensiondim(Z(cM)I)dim(Z(dM)I)=dimYt.ThustheunionofthecomponentsoftheformX[M;]GwithM)McannotsurjectontoYt.ThustheremustbeacomponentoftheformX[M;]appearinginthelefthandsideof(5.5.1).Wemayassume'factorsthroughLMalongwith.Writing()cM=(zcocyc')cMforsome2X(M),itfollowsthatcontainsthenonsupercuspidalrepresentationswithsupercuspidalsupport(M;)G.5.7.ConstructionofthedistributionsZV.Let(r;V)bea nite-dimensionalalgebraicrepre-sentationofLGonacomplexvectorspace.GivenageometricFrobeniuselement2WFandanadmissiblehomomorphism:WF!LG,wemayde nethesemi-simpletracetrss(();V)):=tr(r();Vr(IF)):Notethisisindependentofthechoiceof.ThisnotionwasintroducedbyRapoport[Ra90]inordertode nesemi-simplelocalL-functionsL(s;p;r),andisparall

eltothenotionfor`-adicGaloisrepresentationsusedin[Ra90]tode nesemi-simplelocalzetafunctionsssp(X;s);seealso[HN02a,H05].Thefollowingresultisaneasyconsequenceofthematerialinx5:3.Proposition5.7.1.Themap7!trss(();V)de nesaregularfunctiononthevarietyYhencede nesanelementZV2Zst(G)byZV(()bG)=trss(();V):WeusethesamesymbolZVtodenotethecorrespondingelementinZ(G)givenviaZst(G)!Z(G).Thelatterhastheproperty(5.7.1)ZV()=trss('();V)forevery2(G=F),whereZV()standsforZV((M;)G)if(M;)Gisthesupercuspidalsupportof. 4Noteaddedinproof(Feb.2014):Infactthisstatementholds:ifdoesnotfactorthroughaproperLevisubgroupofLG,thenthereisatmostonewaytoextendittoanadmissiblehomomorphism':W0F!LG. StableBernsteincenterandtestfunctions21FollowingRapoport'sstrategy(cf.[Ra90],[Ra05],[H05]),oneseeksto ndanaturalintegralmodelMKpoverOEforShKp,andthenrephrasetheaboveconjectureusingthemethodofnearbycyclesR :=R MKp( Q`).Conjecture6.1.2.ThereexistsanaturalintegralmodelMKp=OEforShKp,suchthat(6.1.3)Xx2MKp(kEj0)trss(rp;R x)=X( 0; ;)c( 0; ;)O(1Kp)TO(r);wherer=prd=2ZVEj0�;j1KprasinConjecture6.1.1.Remark6.1.3.Implicitinthisconjectureisthatthemethodofnearbycyclescanbeusedforcompactly-suppo

rtedcohomology.Infactwecouldconjecturethereexistsasuitablynicecompact-i cationofMKp=OEsothatthenaturalmapHic(MKp OE Fp;R ( Q`))!Hic(ShKp E Qp; Q`)isaGalois-equivariantisomorphism.ForG=GSp2gandwhereMKpisthenaturalintegralmodelforShKpforKpanIwahorisubgroup,thiswasprovedbyBenoitStroh.Ofcourse,oneisreallyinterestedinintersectioncohomologygroupsoftheBaily-Borelcompacti cation(seefootnote5),andinfactStroh[Str]computedthenearbycyclesandveri edtheanalogueoftheKottwitzconjectureonnearbycycles(seeConjecture7.1.3below)forthesecompacti cations.Remark6.1.4.SomeunconditionalversionsofConjectures6.1.1and6.1.2havebeenproved.Seex8.6.2.EndoscopictransferofthestableBernsteincenter.PartoftheLanglands-Kottwitzap-proachistoperforma\pseudostabilization"of(6.1.1),andinparticularprovethe\fundamentallem-mas"thatarerequiredforthis.Thestabilizationexpresses(6.1.1)intheformPHi(G;H)STe(h),thesumoverglobalQ-ellipticendoscopicgroupsHforGofthe(G;H)-regularQ-ellipticpartofthegeometricsideofthestabletraceformulafor(H;h)(cf.notationof[Ko90]),foracertaintransferfunctionh2C1c(H(A)).(Bycontrastin\pseudostabilization"whichisusedincertainsituations,oneinsteadwrites(6.1.1)intermsofthetraceformulaforGandnotitsquasi-splitinnerform,andthisissometimesenough,asine.g.Theorem6.3.2below.)Forstabilizationoneneeds

toproduceelementshp2C1c(H(Qp))whichareFrobenius-twistedendoscopictransfersofr.TheexistenceofsuchtransfershpisduemainlytotheworkofNg^o[Ngo]andWaldspurger[Wal97,Wal04,Wal08].Butwehopetohaveapriorispectralinformationaboutthetransferredfunctionshp.Aguidingprincipleisthatthenearbycyclesonanappropriate\localmodel"forShKpshouldnaturallyproduceacentralelementasatestfunctionr,whichshouldcoincidewiththatgivenbythetestfunctionconjecture(cf.Conjecture6.1.2);thenitsspectralbehaviorisknownbyconstruction.Inthatcaseonecanformulateaconjecturalendoscopictransferhpofrwithknownspectralbehavior.GeneralFrobenius-twistedendoscopictransferhomomorphismsZst(GQpr)!Zst(HQp)willbedescribedelsewhere.Hereforsimplicitywecontentourselvestodescribetwospecialcases:standard(untwisted)endoscopictransferofthegeometricBernsteincenter,andthebasechangetransferforthestableBernsteincenter. StableBernsteincenterandtestfunctions23somemildrestrictionsontheresiduecharacteristicofF),andthusc(ZHVj1KHn)shouldbeanexplicittransferofZGV1KGn.AFrobenius-twistedanalogueofFerrari'stheoremtogetherwiththeFrobenius-twistedanalogueofConjecture6.2.2wouldgiveanexplicitFrobenius-twistedtransferofthetestfunctionrfromConjecture6.1.1,ifKpisaprincipalcongruencesubgroup.6.2.2.BasechangeofthestableBernsteincenter.Weret

urntothesituationofProposition5.4.1,butwespecializeittocyclicGaloisextensionsofFandfurthermoreweassumeG=Fisquasi-split.LetE=Fbeany nitecyclicGaloissubextensionof F=FwithGaloisgrouphi,andwithcorrespondinginclusionofWeilgroupsWE,!WF.If2H(G(E))andf2H(G(F))arefunctionsinthecorrespondingHeckealgebrasoflocallyconstantcompactly-supportedfunctions,thenwesay;fareassociated(orfisabase-changetrans-ferof),ifthefollowingresultholdsforthestable(twisted)orbitalintegrals:foreverysemisimpleelement 2G(F),wehave(6.2.1)SO (f)=X( ;)SO()wherethesumisoverstable-conjugacyclasses2G(E)withsemisimplenormN,andwhere( ;)=1ifN= and( ;)=0otherwise.Seee.g.[Ko86],[Ko88],[Cl90],or[H09]forfurtherdiscussion.Conjecture6.2.3.Intheabovesituation,considerZ2Zst(GE),andconsideritsimage,alsodenotedbyZ,inZ(GE).ConsiderbE=F(Z)2Zst(G)(cf.Def.5.4.2)andalsodenotebybE=F(Z)itsimageinZ(G).ThenbE=F(Z)isthebase-changetransferofZ2Z(GE),inthefollowingsense:wheneverafunctionf2C1c(G(F))isabase-changetransferof2C1c(G(E)),thenbE=F(Z)fisabase-changetransferofZ.Proposition6.2.4.Conjecture6.2.3holdsforGLn.Proof.ThemostecientprooffollowsScholze'sproofofTheoremCin[Sch2]whichmakesessen-tialuseoftheexistenceofcyclicbasechangeliftsforGLn

.Let2(GLn=F)beatemperedirreduciblerepresentationwithbasechangelift2(GLn=E),atemperedrepresentationwhichischaracterizedbythecharacteridentity((g;))=(Ng)forallelementsg2GLn(E)withregularsemisimplenormNg([AC,Thm.6.2,p.51]).Here(g;)2GLn(E)oGal(E=F)andactsonbythenormalizedintertwinerI:!of[AC,p.11].Supposefisabase-changetransferof.UsingtheWeylintegrationformulaanditstwistedanalogue(cf.[AC,p.36]),weseethattr((;)j)=tr(fj):MultiplyingbytheconstantZ()=bE=F(Z)(),wegettr((Z;)j)=tr(bE=F(Z)fj):(UseCorollary3.2.1anditstwistedanalogue.)Thereexistsabase-changetransferh2C1c(GLn(F))ofZ([AC,Prop.3.1]).UsingthesameargumentasaboveforthepairZandh,weconcludethattr(bE=F(Z)f�hj)=0foreverytemperedirreducible2(GLn=F).ByKazhdan'sdensitytheorem(Theorem1in[Kaz])theregularsemi-simpleorbitalintegralsofbE=F(Z)fandhagree.Thusthe(twisted)orbitalsintegralsofbE=F(Z)fandmatchatallregularsemi-simpleelements,andhenceatallsemi-simpleelementsbyClozel'sShalikagermargument([Cl90,Prop.7.2]). 26T.HainesItfollowsthatLefss(jp;ShKp)=Xm()tr(fpf(j)pf1j)=XfX121m(f 1)tr(fpjpf)tr(f(j)pjp)tr(f1j

1)=Xfa(f)dim(Kf)pjfd=2trss('p(jp);VE0�);thelastequalityby(6.3.3).Byde nitionwehavelogLss(s;p;rp)=1Xr=1trss('p(rp);rp)p�rs r:Now(6.3.6)followsbyinvoking(6.3.5).Remark6.3.3.UnconditionalversionsofTheorem6.3.2areavailableforsomeparahoricorpro-p-Iwahorilevelcases,orforcertaincompact\Drinfeldcase"Shimuravarietieswitharbitrarylevel;thesecasesarealludedtoinx8.6.4.RelationwithgeometricLanglands.Forsimplicity,assumeGissplitoverap-adicorlocalfunction eldF.AssumeGsatis esLLC+.FromtheconstructionofZVinProposition5.7.1,wehaveamapK0RepC(bG)!Z(G;J)(6.4.1)V7!ZV1JforanycompactopensubgroupJG(F),whichgivesrisetoacommutativediagramZ(G;J)�J1I Z(G;I)�I1K K0Rep(bG)Sat// Bern55 88 H(G;K)wheneverJIKwhereIresp.KisanIwahoriresp.specialmaximalcompactsubgroup,andwherethebottomtwoarrowsaretheBernsteinresp.Satakeisomorphisms.WewarnthereaderthattheobliquearrowK0Rep(bG)!Z(G;J)isinjectivebutnotsurjectiveingeneral,andalsoitisadditivebutnotanalgebrahomomorphismingeneral.Gaitsgory[Ga]constructedthetwoarrowsSatandBerngeometricallywhenFisafunction eld,usingnearbycyclesforadegenerationoftheaneGrassmannianGrGtotheane agvarietyFlforG.Onecanhopethat,asintheIwahoricase[Ga],onecanco

nstructthearrowK0Rep(bG)!Z(G;J)categoricallyusingnearbycyclesforasimilardegenerationofGrGtoa\partialane agvariety",namelyanfpqc-quotientLJ=L+JwhereJisasmoothconnectedgroupschemeover Fp[[t]]withgeneric berJFp((t))=GFp((t))andJ(Fp[[t]])=J.HereLJ(resp.L+J)istheind-scheme(resp.scheme)overFprepresentingthesheafofgroupsforthefpqc-topologywhosesectionsforanFp-algebraRaregivenbyLJ(SpecR)=J(R[[t]][1 t])(resp.L+J(SpecR)=J(R[[t]])). 28T.HainesLemma7.1.1.Intheabovesituation,(7.1.2)ZVEj0�;j1Kpr=z�;j;wheretheBernsteinfunctionz�;j(cf.De nition11.10.2)istheuniqueelementofZ(G(F);KF)whichacts(ontheleft)onthenormalizedinducedrepresentationiGB()KFbythescalarP2W(F)(�)(),foranyunrami edcharacter:T(F)!C.Ofcoursetheadvantageofz�;jisthatunlikethelefthandsideof(7.1.2),itisde neduncon-ditionally.Arelativelyself-contained,elementary,andecientapproachtoBernsteinfunctionsisgiveninx11.ThusConjecture6.1.1inthissituationisequivalenttotheKottwitzConjecture.Conjecture7.1.2.(Kottwitzconjecture)InthesituationwhereGQprisunrami edandKpisaparahoricsubgroup,thefunctionrin(6.1.1)maybetakentobeprd=2z�;j.Conjecture7.1.2wasformulatedbyKottwitzin1998,about11yearsearlierthanConjecture6.1.1.Thereisacloselyrelate

dconjectureofKottwitzconcerningnearbycyclesonRapoport-ZinklocalmodelsMlocKpforShKp.Wereferto[RZ,Ra05]forde nitionsoflocalmodels,andto[H05,HN02a]forfurtherdetailsaboutthefollowingconjectureinvariousspecialcases.Conjecture7.1.3.(KottwitzConjectureforNearbyCycles)WriteGfortheBruhat-TitsparahoricgroupschemeoverZprwithgeneric berGQprandwithG(Zpr)=Kpr.LetGtdenotetheanalogousparahoricgroupschemeoverFpr[[t]]withthe\same"special berasG.ThenthereisanL+Gt;Fpr-equivariantembeddingofMlocKp;Fprintotheane agvarietyLGt;Fpr=L+Gt;Fpr,viawhichwecanidentifythesemisimpletraceofFrobeniusfunctionx7!trss(Frpr;R MlocKpx)onx2MlocKp(Fpr)withthefunctionpdr=2z�;j2Z(Gt(Fpr((t)));Gt(Fpr[[t]])).7.2.Thequasisplitcase.ThegroupbGIFisapossiblydisconnectedreductivegroup,withmaximaltorus(bTIF)(seetheproofofTheorem8.2of[St]).NowwemayrestricttherepresentationVE0�tothesubgroupbGIFoWFbGoWF.Letbeaweaklyunrami edcharacterofT(F);by(3.3.2)wecanview2(bTIF)F.TheonlybTIF-weightspacesof(VE0�)1oIFwhichcontributeto(7.0.4)areindexedbytheF- xedweights,i.e.bythoseinX(bTIF)F.(ItisimportanttonotethatitistheweightspacesforthediagonalizablegroupbTIF,andnotforthemaximaltorus(bTIF),whichcomeinhere.)ThisisconsistentwithTheorem11.10.1oftheAppendix,andmaybe

expressedasfollows.Proposition7.2.1.Inthegeneralquasisplitsituation,ZVEj0�;j1KpristheuniquefunctioninZ(G(Qpr);Kpr)whichactsontheleftoneachweaklyunrami edprincipalseriesrepresentationiGB()KFbythescalar(7.0.4),andthusisacertainlinearcombinationofBernsteinfunctionsz�;jwhere�2X(bTIF)FrangesovertheW(G;A)-orbitsofF- xedbTIF-weightsinVE0�.ItisaninterestingexercisetowriteoutthelinearcombinationsofBernsteinfunctionsexplicitlyineachgivencase.Oncethisisdone,theresultcanbeusedto ndexplicitdescriptionsoftestfunctionsforinnerformsofquasi-splitgroups.Thisisthesubjectofthenextsubsection.7.3.Passingfromquasisplittogeneralcasesviatransferhomomorphisms. StableBernsteincenterandtestfunctions31ThisiscompatiblewithcalculationsofRapoportofthetraceofFrobeniusonnearbycyclesofthelocalmodelsforsuchsituations,see[Ra90].Thusthenormalizedtransferhomomorphismgivesagroup-theoreticframeworkwithwhichwecouldmakefurtherpredictionsaboutnearbycyclesonthelocalmodelsattachedtonon-quasiplitgroupsG,assumingweknowexplicitlythecorrespondingtestfunctionforaquasisplitinnerformofG.Proof.Bythe nalsentenceofProposition11.12.6,wesimplyneedtointegratethefunctionprd=2z�2Z(GLn(Qpr);Kpr)overthe beroftheKottwitzhomomorphismvaldetover1m2C[Z].Thi

sisacombinatorialproblemwhichcouldbesolvedsinceweknowprd=2z�explicitly.However,itiseasiertousegeometry.Translating\integrationoverthe beroftheKottwitzhomomorphism"intermsoflocalmodelsgivesustheequalityCq=Xx2Mloc(Fq)Tr(rp;R Mloc(Q`)x):(Here`isarationalprimewith`6=p.)Butthespecial berofMlocembedsintotheane agvarietyFlGLnforGLn=Fp,andundertheprojectionp:FlGLn!GrGLntotheaneGrassmannian,MlocmapsontoGr(m;n)andRp(R Mloc(Q`))=Q`,theconstant`-adicsheafonGr(m;n)indegree0.ThusweobtainCq=Xx2Gr(m;n)(Fq)Tr(rp;(Q`)x)=#Gr(m;n)(Fq)asdesired.(ThereadershouldnotethesimilaritywithProp.3.17in[Ra90],whichisjusti edinaslightlydi erentway.)8.Overviewofevidenceforthetestfunctionconjecture8.1.Goodreductioncases.IncaseGQpisunrami edandKpisahyperspecialmaximalcompactsubgroupofG(Qp),weexpectSh(G;h�1;KpKp)tohavegoodreductionoverOEp.InPELcasesthiswasprovedbyKottwitz[Ko92a].InthesamepaperforPELcasesoftypeAorC,itisprovedthatthefunctionr=1Kpr(p�1)Kprsatis es(6.1.1),whichcanbeviewedasverifyingConjecture6.1.1forthesecases.8.2.Parahoriccases.AssumeKpisaparahoricsubgroup.WewilldiscussonlyPELShimuravarieties.HeretheapproachisviatheRapoport-ZinklocalmodelMlocKpforasuitableintegralmodelMKpforShKpandthemainideasareduetoRapoport

.Werefertothesurveyarticles[Ra90],[Ra05],and[H05]formoreabouthowlocalmodels tinwiththeLanglands-Kottwitzapproach.Formuchmoreaboutthegeometryoflocalmodels,wereferthereadertothesurveyarticleofPappas-Rapoport-Smithing[PRS]andthereferencestherein.Usinglocalmodels,the rststeptoprovingConjecture6.1.2istoproveConjecture7.1.3.The rstevidencewaspurelycomputational:in[H01],z�;jwascomputedexplicitlyintheDrinfeldcaseandtheresultwascomparedwithRapoport'scomputationofthenearbycyclesinthatsetting,provingConjecture7.1.3directly.ThisresultmotivatedKottwitz'moregeneralconjectureandalsoinspiredBeilinsonandGaitsgorytoconstructthecenterofananeHeckealgebraviaanearbycyclesconstruction,afeatcarriedoutin[Ga].Thenin[HN02a]Gaitsgory'smethodwasadaptedtoproveConjecture7.1.3forthesplitgroupsGLnandGSp2n.Thisinturnwasusedtodemonstrate StableBernsteincenterandtestfunctions33levelcases,havethefavorablepropertythattheirnearbycyclesnaturallygiverisetodistributionsintheBernsteincenter.Itremainsaninterestingproblemto ndsuchintegralmodelsinmorecases,andtobetterunderstandtheroleoftheBernsteincenterinthestudyofShimuravarieties.9.EvidenceforconjecturesontransferoftheBernsteincenterHerewepresentsomeevidenceforthegeneralprinciplethatthe(stable/geometric)Bernsteincen-terisparticularlywell-behavedwi

threspectto(twisted)endoscopictransfer.TheprimaryevidencethusfarconsistsofsomeunconditionalanaloguesofConjecture6.2.3.LetG=Fbeanunrami edgroup,andletFr=Fbethedegreerunrami edextensionofFinsomealgebraicclosureofF.In[H09,H12],theauthorde nedbasechangehomomorphismsbr:Z(G(Fr);Jr)!Z(G(F);J);whereJG(F)iseitheraparahoricsubgrouporapro-pIwahorisubgroup,andwhereJristhecorrespondingsubgroupofG(Fr).Thenwehave\base-changefundamentallemmas"ofthefollowingform.8Theorem9.0.1.Foranyr2Z(G(Fr);Jr),thefunctionbr(r)isabase-changetransferofrinthesenseof(6.2.1).ByKottwitz[Ko86],thefunction1Jisabase-changetransferof1Jr.HenceforanyVr2Rep(L(GFr)),Conjecture6.2.3predictsthatbFr=F(ZVr)1Jisabase-changetransferofZVr1Jr.ThisisaconsequenceofTheorem9.0.1,becauseofthefollowingcompatibilitybetweenthebase-changeoperationsin[H09,H12]andinthecontextofstableBernsteincenters(cf.Prop.5.4.1).Lemma9.0.2.Intheabovesituations,br(ZVr1Jr)=bFr=F(ZVr)1J.Proof.FirstassumeJisaparahoricsubgroup.Letbeanyunrami edcharacterofT(F).Itisenoughtoshowthatthetwofunctionsactontheleftbythesamescalaroneveryunrami edprincipalseriesrepresentationiGB()J.LetNr:T(Fr)!T(F)bethenormhomomorphism.Bythede nitionofbrin[H09],br(ZVr1Jr)actsbythescalarbywhichZVr1JractsoniGrBr(&

#14;Nr)Jr.ThisisthescalarbywhichZVractsoniGrBr(Nr),whichinviewofLLC+is(9.0.1)trss('TrNr(rF);Vr)=trss('T(rF);Vr):ButtherighthandsideisthescalarbywhichbFr=F(ZVr)1JactsoniGB()J.Theequality'TrNr(rF)='T(rF)weusedin(9.0.1)followsfromthecommutativityofthediagramofLanglandsdualitiesfortoriHomconts(T(F);C)// Nr H1conts(WF;LT)Res Homconts(T(Fr);C)// H1conts(WFr;LTr)whichwasprovedin[KV,Lemma8.1.3]. 8Relatingtopro-pIwahorilevel,amuchstrongerresultisprovedin[H12]concerningthebasechangetransferofBernsteincentersofBernsteinblocksfordepth-zeroprincipalseriesrepresentations. 34T.HainesNowsupposeJ=I+isapro-pIwahorisubgroup.Thenthesameargumentworksgiventhefollowingfact:foranydepth-zerocharacter:T(F)1!Candanyextensionofittoacharacter~onT(F),andanyzr2Z(G(Fr);I+r),thefunctionbr(zr)actsoniGB(~)I+bythescalarbywhichzractsoniGrBr(~Nr)I+r.Thisfollowsfromthede nitionofbrgiveninDe nition10.0.3of[H12],using[H12,Lemma4.2.1].LetusalsomentionagainScholze'sTheoremCin[Sch2],whichessentiallyprovesConjecture6.2.3forGLn(seeProposition6.2.4).10.Explicitcomputationofthetestfunctions10.1.Parahoriccases.Conjecture6.1.1impliesthattestfunctionsarecompatiblewithchangeoflevel.Thereforeforthepurpo

sesofcomputingthemforparahoriclevel,thekeycaseiswhereKpisanIwahorisubgroup.Thus,fortherestofthissubsectionweconsideronlyIwahorilevelstructure.Sincetestfunctionsattachedtoquasisplitgroupsshoulddetermine,inacomputableway,thoseforinnerforms(byConjecture7.3.1andProposition11.12.6),itisenoughtounderstandquasisplitgroups.ViaProposition7.2.1thisboilsdowntogivingexplicitdescriptionsoftheBernsteinfunctionsz�;j,assumingwehavealreadyexpressedthetestfunctionexplicitlyintermofthese{thisisautomaticforunrami edgroupsusingtheKottwitzConjecture(Conjecture7.1.2).LetusthereforeconsidertheproblemofexplicitlycomputingBernsteinfunctionszattachedtoanygroupG=FandanIwahorisubgroupIG(F)(Fbeinganylocalnon-archimedean eld).ForsimplicityconsiderthecasewhereG=Fisunrami ed,andregardasadominantcoweightinX(A).ThewhichariseinConjecture7.1.2areminuscule;however,weconsiderwhicharenotnecessarilyminusculehere.LetfWdenotetheextendedaneWeylgroupofGoverF(cf.x11).Attachedtoisanthe-admissiblesetAdm()fW,de nedbyAdm()=fx2fWjxt;forsome2W(G;A)g;wheredenotestheBruhatorderonfWdeterminedbytheIwahorisubgroupIandwheretdenotesthetranslationelementinfWcorrespondingto2X(A).The-admissiblesethasbeenstudiedfori

tsrelationtothestrati cationbyIwahori-orbitsinthelocalmodelMlocKp;formuchinformationsee[KR],[HN02b],[Ra05].ThestrongestcombinatorialresultsrelatinglocalmodelsandAdm()areduetoBrianSmithling,seee.g.[Sm1,Sm2,Sm3].Forourpurposes,thesetAdm()entersbecauseitisthesetindexingthedoublecosetsinthesupportofz.Proposition10.1.1.ThesupportofzistheunionSx2Adm()IxI.Proof.ThiswasprovedusingthetheoryofalcovewalksaselaboratedbyGortz[G],intheAppendixto[HRa].ItappliestoaneHeckealgebraswitharbitraryparameters,hencethecorrespondingresultholdsforarbitrarygroups,notjustunrami edgroups.Thefollowingexplicitformulawasprovedin[H01]andin[HP].LetTx=1IxIforx2fW.Intheformulashereandbelow,q=pristhecardinalityoftheresidue eldofF.Proposition10.1.2.Assumeisminuscule.AssumetheparametersfortheIwahoriHeckealgebraareallequal.Thenq`(t)=2z=(�1)`(t)Xx2Adm()(�1)`(x)Rx;t(x)(q)Tx; 36T.Hainesde nesadistributioninthesenseof(3.2.1).Thisdistributionisq1=2ZVwhereVisthestandardrepresentationC2oftheLanglandsdualgroupGL2(C).Inanunpublishedwork,Kottwitzgaveanotherproofofthispropositionandalsodescribedthesamedistributionintermsofafamily(n)noffunctionsn2Z(GL2(F);In)whereInrangesoverthe\barycentric"Moy-Prasad ltrationinthestandardIwahorisubgrou

pIGL2(F).Byacompletelydi erenttechnique,in[Var]SandeepVarmaextendedboththeresultsofScholzeandKottwitzstatedabove,bydescribingthedistributionsattachedtoV=Symr(C2)whererisanyoddnaturalnumberlessthanp,theresidualcharacteristicofF.11.Appendix:Bernsteinisomorphismsviatypes11.1.StatementofPurpose.AlanRocheprovedthefollowingbeautifulresultin[Roc],Theorem1.10.3.1.Theorem11.1.1(Roche).LetebeanidempotentintheHeckealgebraH=H(G(F)).ViewHasasmoothG(F)-moduleviatheleftregularrepresentation,andwritee=Ps2SesaccordingtotheBernsteindecompositionH=Ls2SHs.LetSe=fs2Sjes6=0g,andconsiderthecategoryRSe(G(F))=Qs2SeRs(G(F))anditscategoricalcenterZSe=Qs2SeZs.LetZ(eHe)denotethecenterofthealgebraeHe.Thenthemapz7!z(e)de nesanalgebraisomorphismZSef!Z(eHe).Roche'sproofisdecidedlynon-elementary:besidesthematerialdevelopedin[Roc],itreliesonsomedeepresultsofBernsteincitedthere,mostimportantlyBernstein'sSecondAdjointnessTheoremandtheconstructionofanexplicitprogeneratorforeachBernsteinblockRs(G(F)).InthischapterweuseonlytheveryspecialcaseofRoche'stheoremwheree=eJforaparahoricsubgroupJG(F).Wewillexplainamoreelementaryapproachtothisspecialcase.ItwillrelyonlyonthepartofBernstein'stheoryembodiedinProposition11.7.3below.Formally,theinputsneededare, rst,theexistenceofBernstein'scategoricaldecompositionR

(G)=QsRs(G),whichisprovedforinstancein[Roc,Thm.1.7.3.1]inanelementaryway,and,second,theinternalstructureoftheBernsteinblockRs(G)associatedtoacuspidalpairs=[(M(F);~]GwhereMisaminimalF-LevisubgroupofGand~isacharacteronM(F)whichistrivialonitsuniqueparahoricsubgroup.Forsuchcomponents,progeneratorscanbeconstructedinanelementaryway,withoutusingBernstein'sSecondAdjointnessTheorem.InfactinwhatfollowswedescribethisinternalstructureusingafewstraightforwardelementsofthetheoryofBushnell-Kutzkotypes,allofwhicharecontainedin[BK].Fore=eJRoche'stheoremgivestheidenti cationofthecenteroftheparahoricHeckealgebra,inotherwordsaBernsteinisomorphismforthemostgeneralcase,whereG=FisarbitraryandJG(F)isanarbitraryparahoricsubgroup.HoweverwewillprovideaproofonlyforthecrucialcaseofJ=I,anIwahorisubgroupofG(F).ThegeneralparahoriccaseshouldfollowformallyfromtheIwahoricase,followingthemethodofTheorem3.1.1of[H09],providedoneiswillingtorelyonsomebasicpropertiesofintertwinersforprincipalseriesrepresentations(apurelyalgebraictheoryofsuchintertwinerswasdetailedforsplitresp.unrami edgroupsin[HKP]resp.[H07],andtheextensiontoarbitrarygroupsshouldbesimilarto[H07]). 38T.HainesFurther,theBruhatorderandlengthfunction`onWa extendintheusualwaytofW,andwehaveforw2fWands2Wa representingasimplea&#

14;nere ection,theusualBN-pairrelations(11.3.2)IsIwI=8:IswI;ifwswIwI[IswI;ifsww:11.3.2.Iwahorifactorization.LetP=MNbeanF-rationalparabolicsubgroupwithLevifactorM,unipotentradicalNandoppositeunipotentradical N.LetIH=I\HforH=N; N;orM.Lemma11.3.3.Intheabovesituation,wehavetheIwahorifactorization(11.3.3)I=INIMI N:Proof.Weusethenotationof[BT2].By[BT2,5.2.4]with :=a,wehaveGa(O\)=U+\aU�\aN\a;whereN\a:=N\\Z(O\)U\a.SinceZ(O\)U\aGa(O\),wehaveN\a=N\\Ga(O\)=Z(O\):Thekeyinclusionhere,N\\Ga(O\)Z(O\);translatesinournotationtoNG(A)(F)\IM(F)1,whichcanbededucedfromLemma11.3.1(a).TranslatingagainbacktoournotationwegetI=INI NIMwhichisthedesiredequalitysinceIMnormalizesI N.11.3.3.OnM(F)1=M(F)1.Lemma11.3.4.Thefollowingbasicstructuretheoryresultshold:(a)Inthenotationof[HRo],wehaveM(F)1=M(F)1=~K=K,whichinjectsintoG(F)1=G(F)1.ThusM(F)1=M(F)1\G(F)1.(b)TheWeylgroupW(G;A)actstriviallyonM(F)1=M(F)1.(c)LetaB(G;L)denotethealcoveinvariantunderthegroupAut(L=F)hiwhichcorrespondstotheIwahoriIG(F).WeassumeIK.ThenthenaiveIwahori~I:=G(F)1\Fix(a)hasthefollowingpropertiesM(F)1=M(F)1=~I=I=~K=K.~I=IM(F)1.Proof.Part(a):inthenotationof[HRo],weknowthatM;tors=~K=K([HRo,Prop.11.1.4]).Applyi

ngthistoG=MwegetM;tors=M(F)1=M(F)1.SoM(F)1=M(F)1=~K=K.By(8.0.1)andLemma8.0.1in[HRo],thelatterinjectsintoG(F)1=G(F)1.The nalstatementfollows.Part(b):By[HRo,Lemma5.0.1],W(G;A)hasrepresentativesinK\NG(A)(F).Thusitisenoughtoshowthatifn2K\NG(A)(F)andm2M(F)1,thennmn�1m�12M(F)1.Thisfollowsfrom(a),sinceweclearlyhavenmn�1m�12M(F)1\G(F)1.Part(c):FirstnotethatM(F)1~IandM(F)1I.Thusthereisacommutativediagram~I=I// ~K=KM(F)1=M(F)1OO 88 StableBernsteincenterandtestfunctions39Theobliquearrowisbijectiveby(a).Weclaimthehorizontalarrowisinjective,thatis,~I\K=I.But~I\K=G(F)1\Fix(a)\G(F)1\Fix(vF),wherevFisthespecialvertexinB(Gad;F)correspondingtoK(cf.[HRo,Lem.8.0.1]).Thus~I\K=G(F)1\Fix(a)=IbyRemark8.0.2of[HRo].Itnowfollowsthatallarrowsinthediagramarebijective.Thisimpliesbothstatementsin(c).Remark11.3.5.LetP=MNbeasabove.Wededucefrom(c)and(11.3.3)theIwahorifactor-izationfor~I(11.3.4)~I=INM(F)1I N;usingthefactthatM(F)1normalizesINandI N.11.3.4.Iwasawadecomposition.NextweneedtoestablishasuitableformoftheIwasawadecompo-sition.LetP=MNbeasabove.Lemma11.3.6.TheinclusionNG(A)(F),!G(F)inducesbijectionsfW:=NG(A)(F)=M(F)1f!M(F)1N(F)nG(F)=I(11.3.5)W(G;A)=NG(A)(F)=M(F)f!P(F)nG(F)=I:(11.3.6)Proof.InviewofthedecompositionfW= MoW(G;A)(cf.Lemma3.0.1(III)of[HRo]plus

Lemma11.3.1(b))andtheKottwitzisomorphism Mf!M(F)=M(F)1(cf.Lemma3.0.1of[HRo]),itsucestoprove(11.3.5).Forx2B(G;F),letPxG(F)denotethesubgroup xingx.By[Land],Proposition12.9,wehaveG(F)=N(F)NG(A)(F)Px:Forsucientlygenericpointsx2a,wehavePx=~I,whichisM(F)1IbyLemma11.3.4(c).SinceM(F)1NG(A)(F),wehaveG(F)=N(F)NG(A)(F)Iandthemap(11.3.5)issurjective.Toproveinjectivity,assumen1=um0n2jforu2N(F),m02M(F)1,n1;n22NG(A)(F),andj2I.Thereexistsz2Z(M)(F)suchthatzuz�12IN(cf.e.g.[BK,Lem.6.14]).Thenzn2=(zuz�1)m0zn2j2Izn2I;andsoby(11.3.1),zn2zn2moduloM(F)1.Lemma11.3.7.Ifx;y2fWandM(F)1N(F)xI\IyI6=;,thenxyintheBruhatorderonfWdeterminedbyI.Proof.ThisfollowsfromtheBN-pairrelations(11.3.2)asintheproofoftheClaiminLemma1.6.1of[HKP].11.3.5.Theuniversalunrami edprincipalseriesmoduleM.De neM=Cc(M(F)1N(F)nG(F)=I):Thesubscript\c"meansweareconsideringfunctionssupportedon nitelymanydoublecosets.SomebasicfactsaboutMweregivenin[HKP]forthespecialcasewhereGissplit,andhereweneedtostatethosefactsinthecurrentgeneralsituation.AbbreviatebysettingH=H(G(F);I)andR=C[M].Thenf2HactsontheleftonMbyrightconvolutionsbyf,whichisde nedbyf(g)=f(g�1).Thesamegoesforthenormalized StableBernsteincenterandtestfunctions4111.5.Wh

y(I;1)isanSG-type.Wede neSG=f[t]Gj[t]M2SMg.Themap[M;~]M7![M;~]Gisinjective:if[M;~1]G=[M;~2]G,thenthereexistsn2NG(A)(F)suchthatn(~1)=~2forsomecharacteronM(F)=M(F)1.RestrictingtoM(F)1andusingn(1)=1(Lemma11.3.4(b)),wesee1=2.SoSM=SGvia[t]M7![t]G.Wesawabovethat(M(F)1;1)isanSM-type.Thefactthat(I;1)isanSG-typefollowsfrom[BK,Thm.8.3],oncewecheckthefollowingproposition.Proposition11.5.1.Thepair(I;1)isaG-coverfor(M(F)1;1)inthesenseof[BK,De nition8.1].Proof.Weneedtocheckthethreeconditions(i-iii)ofDe nition8.1.First(i),thefactthat(I;1)isdecomposedwithrespectto(M;P)inthesenseof[BK,(6.1)],followsfromtheIwahorifactorizationI=INIMI NdiscussedinRemark11.3.5.TheequalityI\M(F)=M(F)1givescondition(ii).Finallywemustprove(iii):foreveryF-parabolicPwithLevifactorM,thereexistsaninvertibleelementofH(G(F);I)supportedonIzPI,wherezPbelongstoZ(M)(F)andisstrongly(P;I)-positive.TheexistenceofelementszP2Z(M)(F)whicharestrongly(P;I)-positiveisprovedin[BK,Lemma6.14].Anycorrespondingcharacteristicfunction1IzPIisinvertibleinH(G(F);I),asfollowsfromtheIwahori-MatsumotopresentationofH(G(F);I).(Thispresentationitselfiseasytoproveusing(11.3.2).)11.6.StructureoftheBernsteinvarieties.LetR(G)denotethecategoryofsmoothrepresenta-tionsofG(F),

andletR(G)denotethefullsubcategorycorrespondingtotheinertialclass[M;~]G.Thatis,arepresentation(;V)2R(G)isanobjectofR(G)ifandonlyifforeachirreduciblesubquotient0of,thereexistsanextension~ofsuchthat0isasubquotientofIndGP(1=2P~).WereviewthestructureoftheBernsteinvarietiesXGandXM.Inthisdiscussion,foreachwe xanextension~ofonceandforall{thestructureswede newillbeindependentofthechoiceof~,i.e.uniquelydeterminedby(M;)uptoauniqueisomorphism.AsasetXG(resp.XM)consistsoftheelements(M;~)G(resp.(M;~)M)belongingtotheinertialequivalenceclass[M;~]G(resp.[M;~]M)asrangesoverthesetX(M)ofunrami edC-valuedcharactersonM(F)(unrami edmeansitfactorsthroughM(F)=M(F)1).ThemapX(M)!XM,7!(M;~)M,isabijection.SinceX(M)isacomplextorus,thisgivesXMthestructureofacomplextorus.Morecanonically,XMisjustthevarietyofallextensions~of,anditisatorsorunderthetorusX(M).Now x~again.ThereisasurjectivemapXM!XG(M;~)M7!(M;~)G:SinceW:=W(G;A)actstriviallyonM(F)1=M(F)1(Lemma11.3.4),onecanprovethatthe bersofthismaparepreciselytheW-orbitsonXM.ThusassetsWnXM=XG;andthisgivesXGthestructur

eofananevarietyoverC.HavingchosentheisomorphismX(M)=XMasabove,wecantransporttheW-actiononXMovertoanactiononX(M).Thisactiondependsonthechoiceof~andisnottheusualactionunless~isW-invariant.WeobtainXG=Wn~X(M),wherethelatterdenotesthequotientwithrespecttothisunusualactiononX(M). StableBernsteincenterandtestfunctions43Concretely,themapZ(G(F);I)!QC[XG],z7!^z,ischaracterizedasfollows:foreveryandevery(M;~)G2XG,z2Z(G(F);I)actsonIndGP(1=2P~)Ibythescalar^z(~).LetussingleoutwhathappensinthespecialcaseofG=M.WecanidentifyH(M(F);M(F)1)=C[M].LeteMdenotetheidempotentinH(M(F);M(F)1)analogoustoe,forthecaseG=M.ByPropositions11.7.2and11.7.3forG=M,wehave(11.7.1)H(M(F);M(F)1)=YeMH(M(F);M(F)1)eM=YC[XM];thelastequalityholdingsinceH(M(F);M(F)1)isalreadycommutative.Thus,theringeMH(MF);M(F)1)eMcanberegardedastheringofregularfunctionsonthevarietyXMofallextensions~of.11.8.TheembeddingofC[M]WintoZ(G(F);I).WemakeuseofthefollowingspecialcaseofageneralconstructionofBushnell-Kutzko[BK]:foranyF-parabolicPwithLevifactorM,thereisaninjectivealgebrahomomorphismtP:H(M(F);M(F)1)!H(G(F);I)whichisuniquelycharacterizedbythepropertythatforeach(;V)2RI(G),v2VI,andh2H(M(F);M(F)1),w

ehavetheidentity(11.8.1)q(tP(h)v)=hq(v):Hereq:VIf!VM(F)1Nisanisomorphism,whichisinducedbythecanonicalprojectionV!VNtothe(unnormalized)Jacquetmodule.See[BK,Thm.7.9].Itturnsoutthatitisbettertoworkwithadi erentnormalization.Wede neanotherinjectivealgebrahomomorphismP:H(M(F);M(F)1)!H(G(F);I)h7!tP(�1=2Ph):Thenusing(11.8.1)Psatis es(11.8.2)q(P(h)v)=(�1=2Ph)q(v):Weview~asavaryingelementoftheZariski-densesubsetSofthevarietyofallcharactersonthe nitely-generatedabeliangroupM(F)=M(F)1,consistingofthoseregularcharacters~suchthatV(~):=iGP(~):=IndGP(1=2P~)isirreducibleasanobjectofR(G).WeapplytheabovediscussiontotherepresentationsV:=V(~)with~2S.ByaresultofCasselman[Cas],weknowthatasM(F)-modulesVN=Mw2W1=2P(w~)andthatM(F)1actstriviallyonthismodule.Nowsupposeh2C[M]W.Then�1=2PhactsonVN=VM(F)1Nbythescalarh(~)(viewinghasaregularfunctiononXM).Itfollowsfrom(11.8.2)thatP(h)actsbythescalarh(~)oniGP(~)I,for~2S:Nowletf2Hbearbitrary,andset:=fP(h)�P(h)f2H.Weseethat(11.8.3)actsbyzerooniGP(~)Iforevery~2S. 46T.Haineswhere()designatestheGaloisactiononG(forWeyl-groupequivariancesee[HRo,x

12:2]).Since MisatorsorforMadthishomomorphismdoesnotdependonthechoiceof 02 M.Further,itdependsonlyonthechoiceofAandA,andnotonthechoiceoftheparabolicsubgroupsPMandBTwemadeinconstructingit.De nition11.12.1.LetJG(F)andJG(F)beanyparahoricsubgroupsandchoosecompatiblemaximalF-splittoriAresp.Aasabove.Thenwede nethetransferhomomorphismt:Z(G(F);J)!Z(G(F);J)tobetheuniquehomomorphismmakingthefollowingdiagramcommuteZ(G(F);J)t// o Z(G(F);J)o C[X(cT)FIF]W(G;A)tA;A// C[X(Z(cM))FIF]W(G;A);wheretheverticalarrowsaretheBernsteinisomorphisms.By[BT2,4.6.28],anytwochoicesforA(resp.A)areJ-(resp.J-)conjugate.UsingCorollary11.11.1itfollowsthattisindependentofthechoiceofAandAandisacompletelycanonicalhomomorphism.Remark11.12.2.ThemaptA;A:X(cT)FIF!X(Z(cM))FIFissurjective.ViatheKottwitzhomomorphismwemayviewthisasthecomposition(11.12.1)T(F)=T(F)1// M(F)=M(F)1 �10// M(F)=M(F)1wherethe rstarrowisinducedbytheinclusionT,!M.ItisenoughtoobservethatM(F)=T(F)M(F)1,whichinturnfollowsfromtheIwasawadecomposition(cf.(11.3.6))forM(F),whichstatesthatM(F)=T(F)UM(F)KMforan

F-rationalBorelsubgroupBM=TUMandaspecialmaximalparahoricsubgroupKMinM,andfromthevanishingoftheKottwitzhomomorphismonUM(F)KM.11.12.2.Normalizedtransferhomomorphism.Thetransferhomomorphismisslightlytoonaive,anditisnecessarytonormalizeitinordertogetahomomorphismwhichhastherequiredproperties.Weneedtode nenormalizedhomomorphismsetA;AonWeyl-groupinvariants,forwhichthefollowinglemmaisneeded.Lemma11.12.3.RecallthatT=CentG(A)isamaximaltorusinGde nedoverF;letSbetheFun-splitcomponentofT,amaximalFun-splittorusinGde nedoverFandcontainingA.WehaveT=CentG(A)=CentG(S).ChooseamaximalFun-splittorusSGwhichisde nedoverFandwhichcontainsA,andsetT=CentG(S).Choose 02 Msuchthat 0isde nedoverFunandsatis es 0(S)=Sandhence 0(T)=T.ThenthediagramW(G;A) \0// o W(G;A)=W(M;A)o W(G;S)=W(M;S)F 0// W(G;S)=W(M;S)F 48T.HainesSettingt= 0(n0)�1tandusingat=at(whichfollowsfromW(G;A)-invariance),wewritetheaboveasXt7!mat�1=2B( 0(n0)t)1=2P(n0m):TheindexsetisstableundertheW(M;A)-actiononT(F)=T(F)1.IfwelookatthesumovertheW(M

;A)-orbitofasingleelementt0,withstabilizergroupStab(t0),weget(11.12.4)1 jStab(t0)jat0Xy�1=2BM( 0(n0)yt0);whereyrangesoverW(M;A).Nown2NG(S)(L)FNG(A)(F)=NG(M)(F).Hence 0(n)mn= 0(n0)normalizesMaswellasT,andthusconjugationby 0(n0)takesBMtoanotherF-rationalBorelsubgroupofMcontainingT.Usingthisitisclearthat(11.12.4)isunchangedifthesuperscript 0(n0)isomitted,andthisprovesourclaim.Forthesamereason(11.12.3)isindependentofthechoiceofPandB,andsimilarly~tA;AisindependentofthechoiceofPandB,andofthechoiceofFun-rational 02 M.NowwegiveanormalizedversionofDe nition11.12.1.De nition11.12.5.Wede nethenormalizedtransferhomomorphism~t:Z(G(F);J)!Z(G(F);J)tobetheuniquehomomorphismmakingthefollowingdiagramcommuteZ(G(F);J)~t// o Z(G(F);J)o C[X(cT)FIF]W(G;A)~tA;A// C[X(Z(cM))FIF]W(G;A);wheretheverticalarrowsaretheBernsteinisomorphisms.Aswasthecasefort,thehomomorphism~tisindependentofthechoiceofAandA,anditisacompletelycanonicalhomomorphism.Thefollowingshowsitiscompatiblewithconstanttermhomomorphisms.11.12.3.Normalizedtransferhomomorphismsandconstantterms.Weusethenotationofx11:11.WriteL=CentG(AL)forsometorusA

LA.LetL=CentG(AL)forasubtorusALA.Withoutlossofgenerality,wemayassumethatourinnertwistG!GrestrictstogiveaninnertwistL!L.Proposition11.12.6.Intheabovesituation,thefollowingdiagramcommutes:(11.12.5)Z(G(F);J)cGL ~t// Z(G(F);J)cGL Z(L(F);JL)~t// Z(L(F);JL):TakingL=M,thediagramshowsinordertocompute~titisenoughtocomputeitinthecasewhereGadisanisotropic.Inthatcaseifz2Z(G(F);J),thefunction~t(z)isgivenbyintegratingzoverthe bersoftheKottwitzhomomorphismG(F). 50T.Haines[HRa1]T.Haines,M.Rapoport,Appendix:Onparahoricsubgroups,AdvancesinMath.219(1),(2008),188-198;appendixto:G.Pappas,M.Rapoport,Twistedloopgroupsandtheirane agvarieties,AdvancesinMath.219(1),(2008),118-198.[HRa]T.Haines,M.Rapoport,Shimuravarietieswith�1(p)-levelviaHeckealgebraisomorphisms:theDrinfeldcase,Ann.Scient.EcoleNorm.Sup.4eserie,t.45,(2012),719-785.[HRo]T.Haines,S.Rostami,TheSatakeisomorphismforspecialmaximalparahoricHeckealgebras,RepresentationTheory14(2010),264-284.[Hal]T.Hales,Onthefundamentallemmaforstandardendoscopy:reductiontounitelements,Canad.J.Math.,Vol.47(5),(1995),974-994.[Kal]T.Kaletha,EpipelagicL-packetsandrectifyingcharacters.Preprint(2012).arXiv:1209.1720.[Kaz]D.Kazhdan,Cuspidalgeo

metryofp-adicgroups,J.AnalyseMath.,47,(1986),1-36.[KL]D.KazhdanandG.Lusztig,RepresentationsofCoxetergroupsandHeckealgebras,Invent.Math.53(1979),165-184.[KV]D.Kazhdan,Y.Varshavsky,OnendoscopictransferofDeligne-Lusztigfunctions,DukeMath.J.161,no.4,(2012),675-732.[Ko84a]R.Kottwitz,Stabletraceformula:cuspidaltemperedterms,DukeMath.J.51,no.3,(1984),611-650.[Ko84b]R.Kottwitz,,Shimuravarietiesandtwistedorbitalintegrals,Math.Ann.269(1984),287-300.[Ko86]R.Kottwitz,BasechangeforunitelementsofHeckealgebras,Comp.Math.60,(1986),237-250.[Ko88]R.Kottwitz,Tamagawanumbers,AnnalsofMath.127(1988),629-646.[Ko90]R.Kottwitz,Shimuravarietiesand-adicrepresentations,inAutomorphicforms,ShimuravarietiesandL-functions.ProceedingsoftheAnnArborconference,AcademicPress1990.[Ko92a]R.Kottwitz,PointsofsomeShimuravarietiesover nite elds,J.Amer.Math.Soc.5,(1992),373-444.[Ko92b]R.Kottwitz,Onthe-adicrepresentationsassociatedtosomesimpleShimuravarieties,Invent.Math.108,(1992),653-665.[Ko97]R.Kottwitz,Isocrystalswithadditionalstructure.II,CompositioMath.109,(1997),255-339.[KR]R.Kottwitz,M.Rapoport,MinusculealcovesforGLnandGSP2n,ManuscriptaMath.102,no.4,(2000),403-428.[Land]E.Landvogt,Acompacti cationoftheBruhat-Titsbuilding,LectureNotesinMathematics1619,Springer1996,152pp.+vii.[L1]R.P.Langlands,Shimu

ravarietiesandtheSelbergtraceformula,Can.J.Math.29,(1977),1292-1299.[L2]R.P.Langlands,Onthezeta-functionsofsomesimpleShimuravarieties,Can.J.Math.31,(1979),1121-1216.[Mil]J.S.Milne,ThepointsonaShimuravarietymoduloaprimeofgoodreduction,In:ThezetafunctionsofPicardmodularsurfaces,ed.R.P.LandlandsandD.Ramakrishnan,CRM,(1992),151-253.[MV]I.Mirkovic,K.Vilonen,GeometricLanglandsdualityandrepresentationsofalgebraicgroupsovercommu-tativerings,Ann.ofMath.(2)166,no.1,(2007),95143.[Mor]S.Morel,Onthecohomologyofcertainnon-compactShimuravarieties,Ann.Math.Studies173,PrincetonUniv.Press,2010,217pp.+xi.[Ngo]B.C.Ng^o,ThelemmafondamentalpourlesalgebresdeLie,LelemmefondamentalpourlesalgbresdeLie,Publ.Math.IHESNo.111,(2010),1-169.[PRS]G.Pappas,M.Rapoport,B.Smithling,LocalmodelsofShimuravarieties,I.Geometryandcombinatorics,toappearintheHandbookofModuli,84pp.[PZ]G.Pappas,X.Zhu,LocalmodelsofShimuravarietiesandaconjectureofKottwitz,toappear,Invent.Math.[PrRa]Prasad,D.,Ramakrishnan,D.Self-dualrepresentationsofdivisionalgebrasandWeilgroups:acontrast,Amer.J.Math.134,no.3,(2012),749767.[Ra90]M.Rapoport,OnthebadreductionofShimuravarieties,inAutomorphicforms,ShimuravarietiesandL-functions.ProceedingsoftheAnnArborconference,AcademicPress1990.[Ra05]M.Rapoport:AguidetothereductionmodulopofShimuravarieties.

Asterisque298,(2005),271-318.[RZ]M.Rapoport,T.Zink,Periodspacesforp-divisiblegroups,AnnalsofMath.Studies141,PrincetonUniversityPress1996.[Ren]D.Renard,Representationsdesgroupesreductifsp-adiques.CoursSpecialises,17.SocieteMathematiquedeFrance,Paris,2010.vi+332pp. StableBernsteincenterandtestfunctions51[Ri]T.Richarz,OntheIwahori-Weylgroup,availableathttp://www.math.uni-bonn.de/people/richarz/.[Roc]A.Roche,TheBernsteindecompositionandtheBernsteincentre,OttawaLecturesonadmissiblerepresen-tationsofreductivep-adicgroups,3-52,FieldsInst.Monogr.26,Amer.Math.Soc.,ProvidenceRI,2009.[Ro]S.Rostami,TheBernsteinpresentationforgeneralconnectedreductivegroups,arXiv:1312.7374.[Sch1]P.Scholze,TheLanglands-Kottwitzapproachforthemodularcurve,IMRN2011,no.15,3368-3425.[Sch2]P.Scholze,TheLanglands-KottwitzapproachforsomesimpleShimuravarieties,Invent.Math.192(2013),no.3,627-661.[Sch3]P.Scholze,ThelocalLanglandscorrespondenceforGLnoverp-adic elds,Invent.Math.192(2013),no.3,663-715.[Sch4]P.Scholze,TheLanglands-Kottwitzmethodanddeformationspacesofp-divisiblegroups,J.Amer.Math.Soc.26(2013),227-259.[SS]P.Scholze,S.W.Shin,OnthecohomologyofcompactunitarygroupShimuravarietiesatrami edsplitplaces,J.Amer.Math.Soc.26(2013),261-294.[Sh]S.W.Shin,Galoisrepresentationsaris

ingfromsomecompactShimuravarieties,Ann.ofMath.(2)173,no.3,(2011),16451741.[Sm1]B.Smithling,Topological atnessoforthogonallocalmodelsinthesplit,evencase,I.Math.Ann.35,no.2,(2011),381-416.[Sm2]B.Smithling,Admissibilityandpermissibilityforminusculecocharactersinorthogonalgroups,ManuscriptaMath.136,no.3-4,(2011),295-314.[Sm3]B.Smithling,Topological atnessoflocalmodelsforrami edunitarygroups.I.Theodddimensionalcase,Adv.Math.226,no.4,(2011),3160-3190.[St]R.Steinberg,Endomorphismsoflinearalgebraicgroups,Mem.Amer.Math.Soc.80(1968),1-108.[Str]B.Stroh,SuruneconjecturedeKottwitzaubord,Ann.Sci.Ec.Norm.Sup.(4)45,no.1,(2012),143-165.[Var]S.Varma,OncertainelementsintheBernsteincenterofGL2,Represent.Theory17,(2013),99-119.[Vo]D.Vogan,ThelocalLanglandsconjecture,In:RepresentationTheoryofGroupsandAlgebras,Contemp.Math.145,(1993),305-379.[Wal97]J.-L.Waldspurger,Lelemmefondamentalimpliqueletransfert,CompositioMath.105,(1997),153-236.[Wal04]J.-L.Waldspurger,Endoscopieetchangementdecaracteristique,J.Inst.Math.Jussieu5,no.3,(2006),423525.[Wal08]J.-L.Waldspurger,L'endoscopietorduen'estpassitordue,Mem.Amer.Math.Soc.194no.198(2008),261+ix.[Zhu]X.Zhu,ThegeometricSatakecorrespondenceforrami edgroups,arXiv:1107.5762.UniversityofMarylandDepartmentofMathematicsCollegePark,MD20742-4015U.S.A.email:tjh@

Related Contents


Next Show more