/
Development  of O xygen Development  of O xygen

Development of O xygen - PowerPoint Presentation

sistertive
sistertive . @sistertive
Follow
343 views
Uploaded On 2020-07-03

Development of O xygen - PPT Presentation

E lectrodes for High Temperature and Pressure Alkaline Electrolysis Cells HTPAEC Jens Q Adolphsen jenquidtudk Bhaskar R Sudireddy Vanesa Gil Christodoulos Chatzichristodoulou ID: 794064

nio electrode µm electrochemical electrode nio electrochemical µm 2017 oxygen stability processing lnf lanio soc chemical 4o3 lani0 porous

Share:

Link:

Embed:

Download Presentation from below link

Download The PPT/PDF document "Development of O xygen" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Development of Oxygen Electrodes for High Temperature and Pressure Alkaline Electrolysis Cells (HTP-AEC)

Jens Q Adolphsen (

jenqui@dtu.dk

), Bhaskar R. Sudireddy,

Vanesa Gil

, Christodoulos Chatzichristodoulou

(

ccha@dtu.dk

)

Slide2

OutlineECerS conference 2017, Budapest2Motivation for the workSelection of materialsElectrochemical activity towards the OERChemical stability of materials at high temperatureProcessing porous LaNi0.6Fe0.4O3 electrodes

2017-07-13

Slide3

High Temperature and Pressure Alkaline Electrolysis Cells (HTP-AEC)ECerS conference 2017, Budapest3Mesoporous Electrolyte matrixRecord data from earlier work3.75 A/cm2 at 1.75 V with

η

el

= 85 % (

200ºC

, 20 bar)

C.

Chatzichristodoulou

et al. J.

Electrochem

.

Soc

, 163, 2016

2017-07-13

Slide4

Selection of materials for the OERElectrochemical activityElectrochemical stabilityElectronic conductivity4

Activity

Stability

Electrode materials for

t

he

Oxygen Evolution

R

eaction (OER

)

4

OH

-

aq

O

2(g)+2H2O(l)

4e

-

?

Slide5

Electrochemical CharacterizationMaterialsConditionsRTP, N2 atmosphere, 1 M KOH, MeasurementsChronopotentiometry at 0.5, 1.0, 2.0, 5.0, 10, 25 and 50 mA·cm-2Amperostatic EIS 5Reference electrode (RHE from Gaskatel)

Working

electrode

(

Au

current collector

)

Counter electrode (Pt mesh)

Separator

LaNiO

3

La

0.97

NiO

3

LaNi

0.6

Fe

0.4

O

3

La

0.97

Ni

0.6

Fe

0.4

O

3

La

2

Ni

0.9

Fe

0.1

O

4

Slide6

Electrochemical Characterization6

Slide7

Electrochemical Characterization7Materialb (V/dec)

η

(V)

@

10 mA/cm

2

LaNiO

3

0.083

0.38

La

0.97

NiO

3

0.092

0.44

La

Ni

0.6

Fe

0.4

O

3

0.13

0.44

La

Ni

0.6

Fe

0.4

O

3

0.11

0.45

La

2

Ni

0.9

Fe

0.1

O

4

0.079

0.40

IrO

x

[1]

-

0.32

Ni

0.9

Fe

0.1

O

x

[2]

0.030

0.34

Pr

BaCo

2

O5+x [3]~0.07~0.38

[1]

C. C. L.

McCrory

, S. Jung, J. C. Peters, T. F.

Jaramilllo

, J. Am.

Chem

. Soc. 135 (16977-16987), 2013

[2]

L.

Trotochaud

, J. K.

Ranney

, K. N. Williams, S. W.

Boettcher

, J. Am.

Chem

Soc. 134 (17253-17261), 2012

[3]

A.

Grimaud

, K. J. May, C. E. Carlton, Y-L. Lee, M.

Risch

, W. T. Hong, J. Zhou, Y.

Shao

-Horn, Nat.

Commun

. 4 (2439-2445), 2013

Slide8

Electrochemical Characterization8

Slide9

1 µmSample roughness factors9Initial polished surfacePolished surface after electrochemical testing1 µm

1 µm

Sample

R

RMS

(pre) [µm]

R

RMS

(post)

[µm]

LaNiO

3

0.41

0.79

La

0.97

NiO

3

0.44

0.92

LaNi

0.6

Fe

0.4

O

3

0.37

0.68

La

0.97

Ni

0.6

Fe

0.4

O

3

0.38

0.49

La

2

Ni

0.9

Fe

0.1

O

4

0.20

0.81

Slide10

Chemical StabilityPorously sintered pellets and as-received powders exposed toconcentrated KOH for a week at 100°C/220°C 10

Slide11

Chemical Stability – XRD 11○LaNiO3 ● LaNi0.6Fe0.4O3 Δ La2Ni0.9Fe0.1O4 + La2O3 ♦ LaO(OH) ♠ La(OH)3

*

NiO

NiO

(OH

)

Ni(OH)

2

× Fe

2

O3 ◊ FeO(OH) ♣ Fe(OH)2

Slide12

Chemical Stability – XRD12○LaNiO3 ● LaNi0.6Fe0.4O3 Δ La2Ni0.9Fe0.1O4 + La2O3 ♦ LaO(OH) ♠ La(OH)3

*

NiO

NiO

(OH

)

Ni(OH)

2

× Fe

2

O3 ◊ FeO(OH) ♣ Fe(OH)2

Slide13

Processing of LNF electrode layersProcessing of porous structures for the oxygen evolution reaction - 40-50% total porosity - Hierachical porosity  macropores & mesoporesOptimization of the microstructure of the porous electrode: - Allow transport of oxygen leaving the pores - Allow transport of OH- species to reactive sitesOptimal pore size distributionPercolating phases (gas, solid)13MesoporosityMacroporosity

Slide14

Processing of LNF electrode layers1410 µm200nm

2

00 µm

Slide15

Processing of LNF electrode layers1510 µm10 µmTop surface

Cross section

Slide16

AcknowledgementsBent F. HansenJeanette KrambechJens ØstergaardKaren BrodersenKjeld B. AndersenLene KnudsenSøren ChristensenSøren P. V. Foghmoes16Thank you for your attention