/
CLOUDTYPECLASSIFICATIONBYGMS5INFRAREDSPLITWINDOWMEASUREMENTSWITHMILL CLOUDTYPECLASSIFICATIONBYGMS5INFRAREDSPLITWINDOWMEASUREMENTSWITHMILL

CLOUDTYPECLASSIFICATIONBYGMS5INFRAREDSPLITWINDOWMEASUREMENTSWITHMILL - PDF document

skylar
skylar . @skylar
Follow
342 views
Uploaded On 2021-08-15

CLOUDTYPECLASSIFICATIONBYGMS5INFRAREDSPLITWINDOWMEASUREMENTSWITHMILL - PPT Presentation

CorrespondingauthoraddressAtsushiHamadaDepartmentofGeophysicsGraduateSchoolofScienceKyotoUniversityKyoto6068502JapanemailhamadakugikyotouacjpFig1CloudtypeclassicationtabledevelopedbyInoue1987forNO ID: 863356

1999 fig 1987 vis fig 1999 vis 1987 kyoto sky millimeter kyotouniversity troposphericcirriformclouds utcc etal 1991 2004 res inthistable

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "CLOUDTYPECLASSIFICATIONBYGMS5INFRAREDSPL..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 CLOUDTYPECLASSIFICATIONBYGMS-5INFRAREDSP
CLOUDTYPECLASSIFICATIONBYGMS-5INFRAREDSPLIT-WINDOWMEASUREMENTSWITHMILLIMETER-WAVERADARANDTRMMOBSERVATIONSINTHETROPICSAtsushiHamada,NoriyukiNishi,HidejiKida,MasatoShiotani,SuginoriIwasaki,AkihideKameiYuichiOhno,HiroshiKuroiwa,HiroshiKumagai,andHajimeOkamoto1:GraduateSchoolofScience,KyotoUniversity,Kyoto,Japan2:ResearchInstituteforSustainableHumanosphere,KyotoUniversity,Kyoto,Japan3:InstituteofObservationalResearchforGlobalChange,Japan4:NationalInstituteforEnvironmentalStudies,Ibaraki,Japan5:NationalInstituteofInformationandCommunicationsTechnology,Japan6:GraduateSchoolofScience,TohokuUniversity,Sendai,Japan1.INTRODUCTIONInthetropics,theupper-troposphericcirriformclouds(UTCC),whichisdetrainedfromlarge-scaleconvectiveactivity,oftenextendsuptoafewthousandkilometersandremainsmorethanaday.AccordingtonumericalexperimentsonthelifecycleofUTCC,dissipationprocessstronglydependonthesedimentationofcloudice.Con-sequently,UTCCbecomesopticallythinwithtimeandeffectiveradiativeheightislowered(e.g.,etal.,1999).Thepossibleprocessesformaintainingorre-developingUTCCarelarge-scaleupwardmotionassociatedwiththeequatorialwaves,small-scaleupwardmotionwithgravitywaves,destabilizationbythedifferenceofradiativebudgetinUTCC,verticaldiffusion,andmore.However,numeri-calsimulationsconcludedthattheseprocessescanmaintainUTCC,butcannotredevelopUTCCe.g.,ChurchillandHouze,1991).etal.(2004)madethecasestudyonthetropicallargeclouddisturbance,andshowedthatthedecreaseofequivalentblackbodytemper-ature()withtimeisoftenobservedinapartoflong-lastingUTCCdetachedfromconvectiveac-tivity.ThedecreaseofimpliestheincreaseofopticalthicknessofUTCCduetoredevelop-ment.Thedifferenceonthedissipationprocessbetweenobservationandnumericalsimulationisinterestingissueandneedsfurtheranalysis.TheanalysisonthetimevariationofUTCCneedstrackthesamecloudpatchintime.SincegeosynchronoussatellitedatahavelargeÞeldofviewandÞnetimeresolution,itisuse-fultotrackthecloudpatches.Toidentifycloudtypes,Inoue(1987,hereafterI87)developedthe Correspondingauthoraddress:AtsushiHamada,DepartmentofGeophysics,GraduateSchoolofSci-ence,KyotoUniversity,Kyoto606-8502,Japan;e-mail:hamada@kugi.kyoto-u.ac.jp Fig.1.CloudtypeclassiÞcationtabledevelopedbyInoue(1987)forNOAAAVHRR.Theabscissaandordinateshowsandthediffer-encebetween,re-spectively.Theclear-skyregionisdeÞnedas.Hatchedarearepresentsnon-classiÞedregion.cloudtypeclassiÞcationtablewithsplit-window(Figure1).Inthistab

2 le,eachobservedpixelcategorizedintoaclou
le,eachobservedpixelcategorizedintoacloudtypebythetwopa-rameters,11andthedifferencebetweenand12.However,sincethistableisdevelopedforNOAAAVHRRmeasure-ments,somemodiÞcationisneededtodevelopthistableforothersatellites.Indeed,forthetrack-ingofUTCC,thethresholdfortheexistenceofprecipitationisneeded,sinceanothercumulusdevelopedbeneaththeUTCCcanalsodecreaseInthisstudy,cloudtypeclassiÞcationtableisdeveloped,focusingthefollowingtwopoints.ModifyI87ÕscloudtypeclassiÞcationtablewithNOAAAVHRRforGMS-5VISSR,sincethesetwosensorshavedifferentspectralre-sponsefunctions.Identifythethresholdfortheexistenceofpre-cipitation,whichisnotshowninI87Õstable. High rainMid/Low rain If no echo observed Clear sky UTCC Not classifiedStart YYN Fig.2.FlowchartforthecloudtypeclassiÞcationbymillimeter-waveradarecho.Toidentifycloudtypebyground-baseobserva-tion,millimeter-wavecloudradarisusedinthisstudy.Millimeter-wavecloudradarhasgreatad-vantageforobservationoftheverticalstructureofgeometricaloropticalthicknon-precipitatingiceclouds,whichishardtobeobservedbyprecipita-tionradarandlidar.2.DATATomakethecloudtypeclassiÞcationtable,weusethemillimeter-wavecloudradar(SPIDER)dataandGMS-5infrareddata.TheSPIDERis95-GHzairbornecloudproÞlingradarwith82.5-mrangeresolution.Weusethedataduringtheperiodfrom9Novemberto9December2001,whentheSPIDERwasÞxedattheresearchves-selMiraiandmadeverticalobservationsaround(138E,2N).GMS-5dataprovideshourly11-and12-infrared,with0.05resolution.TovalidatetheclassiÞcationtable,wealsouseTRMMMicrowaveImager(TMI)2A12surfacerain3.CLOUDTYPECLASSIFICATIONFigure2showstheßowchartforcloudtypeclassiÞcation.Inthisstudy,theverticalproÞlesofmillimeter-radarechoaveragedover5minutesarecategorizedintoÞvetypes.Whennoechoisobservedvertically,theechoproÞleisidentiÞedasclear-sky.Ifthestrongechoreachesontheground,theproÞleisidentiÞedasprecipitatingcloud.Precipitatingcloudsarefur-thercategorizedbytheechotopheight.EchotopheightinthiscaseisdeÞnedastheheightwherereßectivityfactorÞrstreachesnoiselevel.Cloudswithechotophigherthan8kmiscategorizedintohighprecipitatingclouds,andcloudswithechotoplowerthan8kmiscategorizedintomid-dle/lowones.Highandmiddle/lowprecipitatingcloudsimpliescumulonimbusandcumuluscon-gestusorshallowcumulus,respectively(John-sonetal.,1999).Notethatmiddle/lowprecipitat-ingcloudsmayincludethemulti-layeredcloudssuchascumulusoverlappedbyhighcirrus.Forcloudswithoutprecipitation,thecloudswithechobottomhigher

3 than6kmisidentiÞedasupper-troposphericci
than6kmisidentiÞedasupper-troposphericcirriformclouds.OtherechoproÞlesareoutofclassiÞcationinthisstudy.Suchcloudsincludeliquidormixedphasecloudsinthemiddletroposphere.Toestimatetheopticalthicknessofthenon-precipitatingcirriformcloud,atÞrstthereßectiv-isconvertedintoicewatercontent(IWC)bythefollowingequationsuggestedbyLiuandIlling-worth(2000):IWCNext,cloudicewaterpath(IWP)iscalculatedbyintegratingIWCfromthebottomtothetopofthecloud.Finally,opticaldepthinvisiblewavelengthsisestimatedbythefollowingrelationshipbasedonobservations(HeymsÞeldetal.,2003):vis065IWP4.RESULTSDuringtheanalysisperiod,therewas783radarechoproÞlesinwhichthedifferenceofobserva-tiontimeiswithin1minutebetweenGMS-5andSPIDER.ForeachproÞle,thecloudtypeisiden-tiÞed.Correspondingiscalculatedastheav-erageoverfourpixelsincludingtheobservationFigure3showsthescatterplotofcloudtypes.BrokenlinesshowthethresholdsforcloudtypeclassiÞcationbyI87.Intheareawithlow,mostofprecipitat-ingcloudshavethevaluelessthan1.8K.Thisfactshowsthatwecanusethevalueasthethresholdfortheex-istenceofprecipitation.Itshouldbenotedthatsomenon-precipitatingcirriformcloudsalsohavethevalueComparingwithI87,cloudswhichareclassiÞedasdensecirrusbyI87includemanyprecipitat-ingclouds.ThethresholdusedinI87Õstableimpliesthethresholdbetweenconvectiveandstratiformprecipitationintheta-bledevelopedinthisstudy,butfurtheranalysisisForthenon-precipitatingUTCC,cloudswithlargeropticalthicknesshavelower.Note CbD-CiCiCu Fig.3.ScatterplotofcloudtypesclassiÞedbymillimeter-waveradar.Theabscissaandordinateshowsandthedifferencebetween,respectively.Thelabelrepresentshighprecipitatingclouds,+middle/lowprecipitatingclouds,clear-sky,andnon-classiÞedclouds.Numbers(1-6)representsnon-precipitatingUTCCandlargernumbershowsopticallythickerUTCC.BrokenlinesshowthethresholdsfortheclassiÞcationbyI87,whereCbisclassi-Þedascumulonimbus,D-Ciasdensecirrus,Ciasthincirrus,Cuascumulus.that,whileinI87opticallythickandthincirrusisclassiÞedinloweranduppersideoftheline,respectively,inFig.3opti-calthicknessofUTCCisrelatedwithrather.Figure4showsthehis-togramofnon-precipitatingthick(vis)andthin(vis)UTCCineach10KbinofInthisstudy,wechoose250KasthethresholdbetweenthickandthinUTCC.5.VALIDATIONWITHTRMMThecloudtypeclassiÞcationtablesuggestedinthisstudy,isvalidatedwithrainobservationbyTRMM.Figure5showsGMS-5andTMIsurfacerainatthealmostsametime.TheareaclassiÞedashigh-precipitatingcloudsisindicatedbycontourssuperp

4 osedonthesurfacerainÞeld.ClassiÞedareaen
osedonthesurfacerainÞeld.ClassiÞedareaencompassesthewholeareawithheavyrain,whiletheareawithnorainispartlyin-cluded. Fig.4.Histogramofnon-precipitatingthickvis)andthin(vis)UTCCineach10Kbinof6.DISCUSSIONMiddle/lowprecipitatingcloudsover-lappedbyhighicecloudsFigure6showstheexampleofthecloudsclas-siÞedasmiddle/lowprecipitatingcloudsbycloudradar,whichlocatedaround260KinFig.3.These Fig.5.(Left)GMS-5at21UTC7December2001.(Right)TMI2A12surfacerain(grayscale)andtheareaclassiÞedashigh-precipitatingcloud(solidcontours) Fig.6.Time-heightcrosssectionofcloudradarreßectivityfactordBZ,from03:30UTC8De-cember2001.CorrespondinglocaltimeatR/VMiraiisalsoshown.ThelabelsresentstheconvertedheightsofestimatedbyandclimatologicalverticalproÞleoftemperature,respectively.cloudsaremulti-layeredwheremiddleprecipitat-ingcloudsarecoveredbyhighnon-precipitatingcirriformclouds.Itisimpliedthatoverlappedhighicecloudsincreasethevalue,fur-theranalysisisneededaboutthefrequencyofoccurrenceofsuchmulti-layeredcloudsintheTropics,andradiativecharacteristicsinthesplit-windowwavelengths.7.CONCLUSIONSCloudtypeclassiÞcationtablewithGMS-5split-windowisdeveloped.Millimeter-wavecloudradarisusedtoidentifyeachcloudtype.Inthistable,pixelsobservedbyGMS-5arecategorizedintoÞvetypesbythetwoparameter,thedifferencebetweenForcloudswithlow,theexistenceofpre-cipitationisidentiÞedasifcloudsarenotmulti-layered.Notethattheareaincludessomenon-precipitatingcirriformclouds.Non-precipitatingUTCCisclassiÞedasthick(vis)andthinvis)withthethreshold250KReferencesBoehm,M.T.,J.Verlinde,andT.P.Ackerman,1999:Onthemaintenanceofhightropicalcirrus.J.Geo-phys.Res.,24423-24433.Churchill,D.D.,andR.A.Houze,Jr.,1991:Effectsofradiationandturbulenceonthediabaticheat-ingandwaterbudgetofthestratiformregionofatropicalcloudcluster.J.Atmos.Sci.,903-922.Hamada,A.,N.Nishi,andH.Kida,2004:Deforma-tionoflargeclouddisturbanceoverthewesterntropicalPaciÞc.inrevision.HeymsÞeld,A.J.,S.Matrosov,andB.Baum,2003:Icewaterpath-opticaldepthrelationshipsforcir-rusanddeepstratiformicecloudlayers.J.Appl.Meteor.,1369-1390.Inoue,T.,1987:AcloudtypeclassiÞcationwithNOAA7split-windowmeasurements.J.Geophys.Res.,3991-4000.Johnson,R.H.,T.M.Rickenbach,S.A.Rutledge,P.E.Ciesielski,andW.H.Shubert,1999:Trimodalcharacteristicsoftropicalconvection.J.Climate,2397-2418.Liu,C.-L.,andA.J.Illingworth,2000:Towardmoreaccurateretrievalsoficewatercontentfromradarmeasurementsofclouds.J.Appl.Meteor.,1130-1146.

Related Contents


Next Show more