/
2022-03-24 Development of high pixel density hard X-ray spectroscopic imagers for the 2022-03-24 Development of high pixel density hard X-ray spectroscopic imagers for the

2022-03-24 Development of high pixel density hard X-ray spectroscopic imagers for the - PowerPoint Presentation

sylvia
sylvia . @sylvia
Follow
0 views
Uploaded On 2024-03-13

2022-03-24 Development of high pixel density hard X-ray spectroscopic imagers for the - PPT Presentation

keV Elbereth conference 2022 Hugo Allaire CEAIRFUDAPLSIS amp ED127 Science case thermonuclear supernovae Page 2 H ALLAIRE DRFIRFUDAPLSIS ELBERETH 20220324 Low ID: 1046995

allaire 2022 irfu dap 2022 allaire dap irfu drf lsiselbereth ray hard kev astronomy signal d2r2 specific photon current

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "2022-03-24 Development of high pixel den..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1. 2022-03-24Development of high pixel density hard X-ray spectroscopic imagers for the direct imaging of astrophysical sources and solar flares beyond 30 keVElbereth conference 2022Hugo Allaire, CEA/IRFU/DAP/LSIS & ED127

2. Science case: thermonuclear supernovaePage 2H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Low mass star end-of-lifeRed giant phase (H decrease)SOHO picture of the Sun in extreme UV

3. Science case: thermonuclear supernovaePage 3H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Low mass star end-of-lifeRed giant phase (H decrease)Planetary nebulae (external layers ejected in ISM)White dwarf (T° decrease)Cat’s Eye planetary nebula optical/X-ray composite

4. Science case: thermonuclear supernovaePage 4H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Low mass star end-of-lifeRed giant phase (H decrease)Planetary nebulae (external layers ejected in ISM)White dwarf (T° decrease)Binary systemCaptures companion star materialReaches Chandrasehkar limitThermonuclear conflagrationBinary system artistic view

5. Science case: thermonuclear supernovaePage 5H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Low mass star end-of-lifeRed giant phase (H decrease)Planetary nebulae (external layers ejected in ISM)White dwarf (T° decrease)Binary systemCaptures companion star materialReaches Chandrasehkar limitThermonuclear conflagrationType Ia supernovaDisperse materialNi to Co to Fe decayLines Co57 @ 122 keVFe fluorescence @ 6.4 keV)Standard candleChandra observation of Tycho supernova

6. Hard X-ray astronomy sourcesPage 6H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Most violent phenomena of the UniverseType Ia and type II supernovaeCrab nebula X-ray emissionsTi-44 lines at 67.9 and 78.4 keV in Cas A observed with INTEGRAL/ISGRI

7. Hard X-ray astronomy sourcesPage 7H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Most violent phenomena of the UniverseType Ia and type II supernovaePulsarsPulsar emission principle

8. Hard X-ray astronomy sourcesPage 8H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Most violent phenomena of the UniverseType Ia and type II supernovaePulsarsAccretion around compact objectSolar flaresArtistic view of a black hole accreting from companionSolar Orbiter/STIX instrument X-ray location, light curve and spectrum from flare event

9. Hard X-ray astronomy sourcesPage 9H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Most violent phenomena of the UniverseType Ia and type II supernovaePulsarsAccretion around compact objectSolar flaresActive galactic nuclei (AGN)Gamma-ray burst (GRB)AGN high energy emission from the Milky WayGRB: illustration of the « Fireball » model

10. Hard X-ray astronomy sourcesPage 10H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Most violent phenomena of the UniverseType Ia and type II supernovaePulsarsAccretion around compact objectSolar flaresActive galactic nuclei (AGN)Gamma-ray burst (GRB)Signatures of emission processesSpectrum: particle acceleration and energy transferImaging: structures of close sources (solar flares), location of distant onesPolarimetry: magnetic field geometry and emission regionXMM-Newton spectrum from the active Seyfert 2 galaxy NGC 1068 Observations of flare by RHESSI and EOVSA

11. Hard X-ray astronomy sourcesPage 11H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Most violent phenomena of the UniverseType Ia and type II supernovaePulsarsAccretion around compact objectSolar flaresActive galactic nuclei (AGN)Gamma-ray burst (GRB)Signatures of emission processesSpectrum: particle acceleration and energy transferImaging: structures of close sources (solar flares), location of distant onesPolarimetry: magnetic field geometry and emission regionXMM-Newton spectrum from the active Seyfert 2 galaxy NGC 1068 Observations of flare by RHESSI and EOVSAHard X-ray wavelengths blocked by atmosphere Go to space !

12. Hard X-ray astronomy missionsPage 12H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Started in 1960’s, major breakthrough in the 1990’sSigma Telescope (onboard Granat)35 keV – 1.3 MeV15 arcmin8% ΔE @ 511 keVImaging capabilityCoded maskSingle photon detectionScintillators detectorsDrawing of the Granat satellite

13. Hard X-ray astronomy missionsPage 13H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24INTEGRAL/ISGRI15 keV to 1.5 MeV13 arcmin angular resolution8% ΔE @ 60 keVCas A Ti-44 linesImaging capabilityCoded maskSingle photon detectionScintillators detectorsSemiconductor detectors (CdTe)Illustration of the INTEGRAL spacecraft

14. Hard X-ray astronomy missionsPage 14H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24INTEGRAL/JEM-X3 to 35 keV3 arcmin angular resolutionComplements main instrumentImaging capabilityCoded maskSingle photon detectionScintillators detectorsSemiconductor detectorsGaseous detectorJEM-X instrument gaseous chamber

15. Hard X-ray astronomy missionsPage 15H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Swift/Bat15 keV to 150 keV17 arcmin angular resolution5% ΔE @ 60 keVGamma ray burstsImaging capabilityCoded maskSingle photon detectionScintillators detectorsGaseous detectorSemiconductor detectors (CZT)Swift artistic view

16. Hard X-ray astronomy missionsPage 16H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24XMM-Newton and ChandraUp to 10 keVFew to 15 arcsec resolution5% ΔE & 1% @ 1 keVVery hot region of UniverseImaging capabilityCoded maskGrazing mirrorsSingle photon detectionScintillators detectorsGaseous detectorSemiconductor detectors (CCD)XMM-Newton artistic representationChandra artistic representation

17. Hard X-ray astronomy missionsPage 17H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Observations of flare by RHESSI and EOVSAImaging capabilityCoded maskGrazing mirrorsSingle photon detectionGaseous ionization detectorsScintillators detectorsSemiconductor detectorsGoal: improve sensitivityObservational timeCollection areaDetector efficiencyEnergy resolution

18. Hard X-ray astronomy missionsPage 18H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Imaging capabilityCoded maskGrazing mirrorsSingle photon detectionGaseous ionization detectorsScintillators detectorsSemiconductor detectorsGoal: improve sensitivityObservational timeCollection areaDetector efficiencyEnergy resolution Longer focal length  better angular resolution for 1 – 150 keV

19. Hard X-ray astronomy missionsPage 19H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Imaging capabilityCoded maskGrazing mirrorsSingle photon detectionGaseous ionization detectorsScintillators detectorsSemiconductor detectorsGoal: improve sensitivityObservational timeCollection areaDetector efficiencyEnergy resolution Large field of viewEnergy resolutionSpatial resolutionLonger focal length  better angular resolution for 1 – 150 keV

20. Semiconductor detectors and CdTePage 20H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Semiconductor detectorsHigh density (low volume for same efficiency)High quantum efficiencyBetter spectral performances

21. Semiconductor detectors and CdTePage 21H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Semiconductor detectorsHigh density (low volume for same efficiency)High quantum efficiencyBetter spectral performancesProcesses of photon-matter interactionPhotoelectric absorptionCompton scatteringPair production* At 77K** @ 100 keV, 5mm thickness

22. Semiconductor detectors and CdTePage 22H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Semiconductor detectorsHigh density (low volume for same efficiency)High quantum efficiencyBetter spectral performancesProcesses of photon-matter interactionPhotoelectric absorptionCompton scatteringPair productionChoice of semiconductorSi: 10-15 keV detectionGe: cryogenic coolingCdTe: low leakage current, high Z (more likely to have photoelectric absorption) and high density (compact)SiGeCdTeZ143248, 52EPair (eV)3,622,96*4,42Density2,335,335,85Qe**19%77%99%ExempleXMMSPIISGRI* At 77K** @ 100 keV, 5mm thicknessWe are here !

23. MC²: Mini-Cdte on ChipPage 23H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Spectral resolution: 670 eV @ 60 keVSpatiale resolution: 625µmPixels: 256 (16x16)Detection area: 1 cm²Caliste-HDFWHM: 0.5 keV @ 60 keVPixels: 64x64 de 0.25x0.25mm²MC2-4KWhat are the ultimate hard X-ray performances for imaging spectroscopy one can achieve ?

24. MC²: Mini-Cdte on ChipPage 24H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Spectral resolution: 670 eV @ 60 keVSpatiale resolution: 625µmPixels: 256 (16x16)Detection area: 1 cm²Caliste-HDFWHM: 0.5 keV @ 60 keVPixels: 32x32 de 0.25x0.25mm²Abutable for a 64x64 pixels versionMC2-1KWhat are the ultimate hard X-ray performances for imaging spectroscopy one can achieve ?

25. Detector signal acquisitionPage 25H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24x 1024IdeF-X D2R2:32 x 32 matrix Application Specific Integrated Circuit (ASIC)Read low leakage current semiconductors250 x 250 µm² pixels

26. Detector signal acquisitionPage 26H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24x 1024IdeF-X D2R2:32 x 32 matrix Application Specific Integrated Circuit (ASIC)Read low leakage current semiconductors250 x 250 µm² pixelsFull spectroscopic chainTemps (µs)Current (A)Charge

27. Detector signal acquisitionPage 27H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24x 1024IdeF-X D2R2:32 x 32 matrix Application Specific Integrated Circuit (ASIC)Read low leakage current semiconductors250 x 250 µm² pixelsFull spectroscopic chainCharge Sensitive AmplifierTemps (µs)Tension (V)Integrate+ continous reset

28. Detector signal acquisitionPage 28H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24x 1024IdeF-X D2R2:32 x 32 matrix Application Specific Integrated Circuit (ASIC)Read low leakage current semiconductors250 x 250 µm² pixelsFull spectroscopic chainCharge Sensitive AmplifierPole Zero CancelationTemps (µs)Tension (V)Band pass filter

29. Detector signal acquisitionPage 29H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24x 1024IdeF-X D2R2:32 x 32 matrix Application Specific Integrated Circuit (ASIC)Read low leakage current semiconductors250 x 250 µm² pixelsFull spectroscopic chainCharge Sensitive AmplifierPole Zero CancelationPeak DetectorTemps (µs)Tension (V)Keeps Vmax

30. Detector signal acquisitionPage 30H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24x 1024IdeF-X D2R2:32 x 32 matrix Application Specific Integrated Circuit (ASIC)Read low leakage current semiconductors250 x 250 µm² pixelsFull spectroscopic chainCharge Sensitive AmplifierPole Zero CancelationPeak DetectorTemps (µs)Tension (V)Keeps VmaxEphoton ∝ (Vmax – VBL)

31. Detector signal acquisitionPage 31H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24x 1024IdeF-X D2R2:32 x 32 matrix Application Specific Integrated Circuit (ASIC)Read low leakage current semiconductors250 x 250 µm² pixelsFull spectroscopic chainCharge Sensitive AmplifierPole Zero CancelationPeak DetectorDiscriminatorTemps (µs)Tension (V)TriggersTriggerThreshold

32. Detector signal acquisitionPage 32H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24x 1024IdeF-X D2R2:32 x 32 matrix Application Specific Integrated Circuit (ASIC)Read low leakage current semiconductors250 x 250 µm² pixelsFull spectroscopic chainCharge Sensitive AmplifierPole Zero CancelationPeak DetectorDiscriminatorTest bench setupZedBoard FPGAGeneric test boardDaughter boardSpy analysis via external ADC

33. D2R2 performancesPage 33H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24ASIC 1ASIC 2Gain [µV/e-]15.7 +- 0.215.3 +- 0.1ENC median [e- R.M.S]54 (CdTe: 654 eV @ 31 keV)ENC computation at the filter output and associated map

34. D2R2 performancesPage 34H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24ASIC 1ASIC 2Gain [µV/e-]15.7 +- 0.215.3 +- 0.1ENC median [e- R.M.S]54 (CdTe: 654 eV @ 31 keV)Functionnal pix discriminators [%]85.686.3ENC computation at the filter output and associated mapPixel’s internal low energy threshold calibration

35. D2R2 performancesPage 35H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24ASIC 1ASIC 2Gain [µV/e-]15.7 +- 0.215.3 +- 0.1ENC median [e- R.M.S]54 (CdTe: 654 eV @ 31 keV)Functionnal pix discriminators [%]85.686.3No injection: 9.2% pixels triggersConsequences: unstable global trigger signal output  « frame » acquisition modeENC computation at the filter output and associated mapPixel’s internal low energy threshold calibration

36. OWB-1 ADC:32 channels Analog-to-Digital converted13 bits resolution0.84V to 2.84V (adjustable)Detector signal acquisition & conversionPage 36H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-2413 bits valuePixel voltage

37. OWB-1 ADC:32 channels Analog-to-Digital converted13 bits resolution0.84V to 2.84V (adjustable)Full system « frame » acquisitionRolling shutter modeColumn by column muxSelect specific areasDetector signal acquisition & conversionPage 37H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24x 32

38. OWB-1 ADC:32 channels Analog-to-Digital converted13 bits resolution0.84V to 2.84V (adjustable)Full system « frame » acquisitionRolling shutter modeColumn by column muxSelect specific areasFirst experimentsCalibration of channelsD2R2 baselines acquisitionInjection over given pixelsDetector signal acquisition & conversionPage 38H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24Noisy pixel !

39. System characterization setupPage 39H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24

40. what’s next ?Page 40H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24First tests and characterization of MC2-1K in the complete acquisition setupImaging spectroscopy capability demonstration of the hybrid detectorTemperature and polarisation voltage effects on spectrales performances and stabilitySimulation of subpixels measurements capability and comparison to experimental data

41. Thank you for your attention !Page 41H. ALLAIRE DRF/IRFU/DAP/LSISELBERETH – 2022-03-24