/
U.FEIGE,M.LANGBERG,ANDG.SCHECHTMANmaximumdegree,thenforeverypositivei U.FEIGE,M.LANGBERG,ANDG.SCHECHTMANmaximumdegree,thenforeverypositivei

U.FEIGE,M.LANGBERG,ANDG.SCHECHTMANmaximumdegree,thenforeverypositivei - PDF document

tabitha
tabitha . @tabitha
Follow
345 views
Uploaded On 2021-01-11

U.FEIGE,M.LANGBERG,ANDG.SCHECHTMANmaximumdegree,thenforeverypositivei - PPT Presentation

log3n UFEIGEMLANGBERGANDGSCHECHTMANsubjectto ijCOLMinimizesubjectto ij ijThefunctionCOListhevectorchromaticnumberofasde ID: 828489

x0000 log poly connected log x0000 connected poly proof cientlylargeconstant andlet insection5 pairwiseornot leta c2z2 connectedgraph finally colorable 1000

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "U.FEIGE,M.LANGBERG,ANDG.SCHECHTMANmaximu..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 log3n U.FEIGE,M.LANGBERG,ANDG.SCHECHTMAN
log3n U.FEIGE,M.LANGBERG,ANDG.SCHECHTMANmaximumdegree,thenforeverypositiveintegeritalsoholdsforsomegraphverticesandthesamemaximumdegree.(Simplymakedisjointcopiesoftheoriginalgraph.)Hencethetheorembecomesstrongerasbecomeslargerincomparisonto.Weguaranteethatcanbetakenatleastaslargeasforsomethatdependson.Forevery“xed,thevalueofcanbetakenasa“xedconstantboundedfrom0andindependentof.Wehavenotmadeanattemptto“ndthetightestpossiblerelationbetweenProoftechniques.Thegraphsthatweuseareessentiallythesamegraphsthatwereusedin[FS02]toshowintegralitygapsforsemide“niteprogramsforMax-Cut.Namely,theyareobtainedbyplacingpointsatrandomona-dimensionalunitsphereandconnectingtwopointsbyanedgeiftheinnerproductoftheirrespectivevectorsisbelow1).Suchgraphsarenecessarilyvector-colorable,astheembeddingonthesphereisavector-coloring.Sothebulkoftheworkisinprovingthattheyhavenolargeindependentset.Forthisweuseatwo-phaseplan.Firstweconsideracontinuous(in“nite)graph,whereeverypointonthesphereisaverte

2 xandtwoverticesareconnectedbyanedgeifthe
xandtwoverticesareconnectedbyanedgeiftheinnerproductoftheirrespectivevectorsisbelow1).Onthiscontinuousgraphweusecertainsymmetrizationtechniquesinordertoanalyzeitsproperties.Speci“cally,weprovecertaininequalitiesregardingitsexpansion.Inthesecondphase,weconsidera(“nite)randomvertexinducedsubgraphofthecontinuousgraph.Basedontheexpansionpropertiesofthecontinuousgraph,weshowthattherandomsamplehasnolargeindependentset.Tworemarksareinorderhere.Oneisthatitisveryimportantforourboundsthatthe“nalrandomgraphdoesnotcontaintoomanyverticescomparedtothe.Asmallnumberofverticesimplieslowdegree,andallowsforamorefavorablerelationbetweenthemaximumdegreeandthechromaticnumber.Forthisreasonwecannotusethecontinuousgraph(ora“nitediscreteapproximationofthecontinuousgraph)asis.Itsdegreeisverylargecomparedtoitschromaticnumber.Wethusconsiderthegraphobtainedbyrandomlysamplingtheverticesofthecontinuousgraph.Insection7,wefollowasuggestionofLucaTrevisan(privatecommunication)andpresentanalternativepro

3 ofofTheorem1.2(1)byconsideringthegraphob
ofofTheorem1.2(1)byconsideringthegraphobtainedbyrandomlysamplingtheedgesofthecontinuousgraph.Itappearsthatparts(2)and(3)ofTheorem1.2cannotbeprovenusingedgesampling.Theotherremarkisthatwedonotgetanexplicitgraphasourexample,butratherarandomgraph(oradistributionongraphs).Thisistosomeextentunavoid-able,giventhattherearenoknownecientdeterministicconstructionsofRamseygraphs(graphsinwhichthesizeofthemaximumindependentsetandmaximumcliquearebothboundedbysomepolylogin).Thegraphsweconstruct(when=logloglog)areRamseygraphs,becauseitcanbeshownthatthemaximumcliquesizeisneverlargerthanthevectorcoloringnumber.Propertytesting.ThefollowingprobleminpropertytestingisaddressedbyGol-dreich,Goldwasser,andRon[GGR98].Forsomevalueof1,consideragraphwiththefollowingpromiseŽ:eitherithasanindependentsetofsize,oritisfarfromanysuchgraph,inthesensethatanyvertex-inducedsubgraphofverticesinducesatleastedges.Onewantsanalgorithmthatsamplesasfewverticesaspossible,looksatthesubgraphinducedonthem,and,base

4 donthesizeofthemaximuminde-pendentsetint
donthesizeofthemaximuminde-pendentsetinthatsubgraph,decidescorrectly(withhighprobability)whichofthetwocasesabovehold.In[GGR98]itisshownthatasampleofsizeproportionaltosuces.Weareinasomewhatsimilarsituationwhenwemovefromthecontinuousgraphtoourrandomsample.Thecontinuousgraphisfarfromhavinganindepen- U.FEIGE,M.LANGBERG,ANDG.SCHECHTMANsubjectto i,jCOL)Minimizesubjectto i,j i,jThefunctionCOL)isthevectorchromaticnumberofasde“nedin[KMS98].ThefunctionCOL)isthestrictvectorchromaticnumberofandisequaltotheLov´functionon[Lov79,KMS98],whereisthecomplementgraphof.Finally,thefunctionCOL)willbereferredtoasthestrongvectorchromaticnumberasde“nedin[Sze94,Cha02].Let)denotethesizeofthemaximumclique;inthefollowingweshowthatCOLCOLCOLItisnothardtoverifythatCOLCOLCOL).Toshowtheotherinequalitiesweneedthefollowingfact.Foreveryinteger,theunitvec-thatminimizethevalueofmaxmax,...,k]vi,vjaretheverticesofasimplexincenteredattheorigin.Foreachi,jj,...,k],thesevectorssatisfy NowtoprovetheinequalityC

5 OL),considera.Thepartitionsthevertexseti
OL),considera.Thepartitionsthevertexsetintocolorclasses.Assigningeachcolorclasswiththecorrespondingvectorabove,weobtainavalidassignmentCOL).ToshowthatCOL),consideragraphwithmaximumcliquesize).ToobtainavalidassignmentofvectorstoCOL)ofvaluerequirethatallpairsofvectorscorrespondingtotheverticesofthemaximumcliquewillhaveinnerproductofvalueatmost .Asmentionedabove,thiscanhappenonlyifRemarkTheresultsofourworkshowalargegapbetweenCOL)and)(Theorem1.2).Combiningtheseresultswithcertainprooftechniquesappearingin[Sze94],asimilargapbetween)andCOL)canalsobeobtained.Detailsareomitted.3.Thecontinuousgraph.bealargeconstant,andletbethe-dimensionalunitsphere.LetV,E)bethecontinuousgraphinwhich(a)thevertexsetconsistsofallthepointsontheunitsphereand(b)theedgesetconsistsofallpairsofverticeswhoserespectivevectors(fromtheorigin)formanangleofatleastarccos(1)).Asthesizeofisin“nite(anduncountable),termssuchasthenumberofverticesinwillbereplacedbythecontinuousanaloguemeasureInthissectionweanalyzev

6 ariouspropertiesof.Speci“cally,weshowtha
ariouspropertiesof.Speci“cally,weshowthathascertainexpansionproperties.Wethenusethisfactinsection4toprovethemaintheoremofourwork.Inouranalysis,wewillassumethatthedimension(atleast)averylargeconstant(ourproofsrelyonsuch).AdditionalconstantsthatwillbepresentedintheremainderofthissectionaretobeviewedasindependentofDefinition3.1(spheremeasureLetbethenormalizednaturalmeasureon,andletbetheinducedmeasureon.Forany U.FEIGE,M.LANGBERG,ANDG.SCHECHTMAN vC(a,b) azN Fig.1Projectingontothetwo-dimensionalsubspace,weobtainthecircleabove.istheprojectionofan-capcenteredat(whereisthedistanceofthecapfromtheorigin).Thevertex isontheboundaryofistheprojectiononthesphereofthesetofpointsthatareadjacentto(i.e.,formanangleofatleast).Theshadedsectionisprojectionof).Thepointa,bistheclosestpointoftheprojectionoftotheorigin.Itisnothardtoverifythat=(11)+.Finally,wedenotethevalue .Claimaddressesthemeasureofandstatesthatitisessentiallythemeasureofa-cap.Thisisdonebystudyingthepointsinwhoseprojectionf

7 allsa,b.Roughlyspeaking,we“rstshowthatsu
allsa,b.Roughlyspeaking,we“rstshowthatsuchpointsarein;then,usingClaim,weshowthatthemeasureofthesepointsisessentiallythemeasureofa-cap.Proof.Let.Letbean-capcenteredat.W.l.o.g.wewillassume=(10).Consideravertexontheboundaryof.Letbethesetofverticesadjacentto.Westartbycomputingthemeasureofverticesthatareneighborsofandareinthecap,i.e.,themeasureofv,uClaim3.7.Leta,kbeasinTheorem.Let avertexontheboundaryof.Letbethesetofneighborsof.Let a2+(1/(kŠ1)+a2)2 .Finallylet log( forasucientlylargeconstant.Themeasureofverticesin 21Šz2dŠ1 2µ(N(v))1Šz2dŠ1 Claim3.7addressesthemeasureof),andstatesthatitisessentiallythemeasureofa a2+(1/(kŠ1)+a2)2 .ToproveClaim3.7westudythemeasureofcertainrestrictedsetsin.ThesesetsarestudiedinClaim9.7ofsection9.Claims3.7and9.7aredepictedinFigure1andproveninsection9.TocompletetheproofofTheorem3.6,leta,z,beasinClaim3.7.Foravertexbethesetofverticesadjacentto.Fortheupperbound,noticethatofallverticesin,theverticesinwhich)islargestaretheverticesontheboundar

8 yof.ByClaim3.7,forthesevertices)isbounde
yof.ByClaim3.7,forthesevertices)isboundedby(1 .Wethusconcludethat)isboundedbythemeasureof GRAPHSWITHTINYVECTORCHROMATICNUMBERSverticesintimes(1 .Thatis, 1)+ 1Ša2dŠ1 Asforthelowerbound,let)beavertexinwith“rstcoordinateofvalue.Consideranyvertexwith“rstcoordinateofvaluelessthan.Itisnothardtoverifythatthemeasureofisgreaterthanthemeasureof.UsingananalysissimilartothatofClaim3.7,wehavethat)isgreaterthanorequalto 1)+ 1Š(a+)2dŠ1 2(1Šc)dŠ1 21Šz2dŠ1 forasucientlylargeconstant(whichchangesvaluesbetweenbothsidesofthesecondinequality).Furthermore,forourchoiceof,themeasureofvertices)inisatleast2(Claim9.3).Hence,weconcludethat)isatleast 2(1Šc)dŠ1 21Šz2dŠ1 Simplifyingtheaboveexpression,weconcludeourassertion. Theorem3.6addressesthecaseinwhichisconstantandthecapsconsideredarebothofmeasure)foraconstantvalueof.FortheproofofTheorem1.2(2)wealsoneedtoaddressnonconstantvaluesofwhichdependonTheorem3.8.Let=(log( .Let1)=.Letandletbean-capcenteredat.Letbethevalueof.Thevalueofisint

9 herange poly kŠ2a2dŠ1 2,1Š2(kŠ1) kŠ2a2
herange poly kŠ2a2dŠ1 2,1Š2(kŠ1) kŠ2a2dŠ1 TheoutlineoftheproofofTheorem3.8issimilartothatofTheorem3.6.Afullproofappearsinsection9.Definition3.9.Let.AgraphV,Eissaidtobepairwise,connectedieverytwo(notnecessarilydisjoint)subsetsofmeasureA,BCombiningTheorems3.5,3.6,and3.8weobtainthefollowingresult.Corollary3.10.Leta,kbede“nedasinTheorem.Thegraphispairwise-connected.Roughlyspeaking,Corollary3.10addressestheexpansionpropertiesofthecon-tinuousgraph.Insection5,weshowthatthesepropertiesimplycertainupperboundsontheindependencenumberofasmallrandomsampleof.Namely,weprovethefollowingtheorem.Theorem3.11.Leta,kbede“nedasinTheorem.Letbearandomsampleofverticesof(accordingtotheuniformdistributiononLetbeasucientlylargeconstant.If ,thentheprobabilityisatmostInthefollowingsection,Theorem3.11isusedtoprovethemainresultofthiswork,Theorem1.2.TheproofofTheorem3.11willbepresentedinsection5.2.4.ProofofTheorem1.2.Recallthatwearelookingforagraphforwhichboththevectorchromaticnumberandthesiz

10 eofthemaximumindependentsetare GRAPHSWIT
eofthemaximumindependentsetare GRAPHSWITHTINYVECTORCHROMATICNUMBERSClaim4.1, )withprobability4.ItislefttoanalyzethemaximumdegreeofClaim4.2.Withprobabilitygreaterthan,themaximumdegreeofthesubgraphisintherange Proof.Consideravertex.Letbethedegreeof.Aseveryvertexinisofdegree,theexpectedvalueofis(1).Thus(usingstandardbounds)theprobabilitythatdeviatesfromitsexpectationbymorethanaconstantfractionofitsexpectationisatmost2.Theprobabilitythatsomevertexinhasdegree ]isthusatmost2log(4forourchoiceof The“rstassertionofTheorem1.2nowfollowsusingbasiccalculations. ProofofTheorem1.2(2).Letbealargeconstant.Let log().Let .LetV,E)bethecontinuousgraphfromsection3.Recall(Corollary3.10)thatispairwise-connected.Let).Thisimplies(Theorem3.11)thatwithprobability4arandomofsize )satis“esisasucientlylargeconstant).AsbeforewestartbysimplifyingtheexpressionboundingClaim4.3.Thereexistsaconstants.t.withprobabilityatleastarandomofsize withprobabilityProof.Recallthat log( .Asbefore,itsucestobound).

11 ByTheorem3.8,wehave poly kŠ2dŠ1 Further
ByTheorem3.8,wehave poly kŠ2dŠ1 Furthermore,usingClaims9.1and9.2(ofsection9),weobtain kŠ2dŠ1 2=1Ša2 kŠ2dŠ1 21 poly polyWeconcludethatthereexistsaconstantsuchthat d. bearandomsubsetofverticesofofsize ).Noticethatlog( )and ).Byde“nition,vectorcolorable.Thisimpliesthatanysubgraphof(includingthatinducedby)islog( log(log(vectorcolorable,whichcompletestheproofofthe“rstpartofourassertion.Forthesecondpartofourassertion,byClaim4.3thesubsetdoesnothaveanindependentsetofsize)withprobabilityatleast34(forsomedierentconstant ProofofTheorem1.2(3).Theprooffollowsthelineofproofappearingabove.Ingeneral,weusethegraph,butthistimethevalueofissettobe36.Again,ispairwise-connected,where)canbeboundedbyapproximately( 4(1Š4a2))dŠ1 .Let)and).ByTheorem3.11,arandomsubsetofsize )doesnothaveanindependentsetof(withprobability4).Computingthevalueoflog,weobtainourassertion.Wewouldliketonotethatresultsofasimilarnaturecanbeobtainedusingtheabovetechniquesforanyvalueof 5.Randomsampling.Wenowturnto

12 provingTheorem3.11statedinsec-tion3.This
provingTheorem3.11statedinsec-tion3.Thisisdoneintwosteps.Insection5.1weproveresultsanalogoustothosepresentedinTheorem3.11whenthegraphsconsideredare“nite.Insection5.2we GRAPHSWITHTINYVECTORCHROMATICNUMBERSThen,usingthestandardunionboundonallsubsetsofsizegreaterthanweboundtheprobabilitythat�sThroughoutthissectionweanalyzethepropertiesofrandomsubsetswhichareassumedtobesmall.Namely,weassumethatthevalueofandtheparameters,andsatisfy(a) and(b)scnforasucientlysmallconstant.Inourapplications(andalsoinstandardones)theseassumptionshold.Insection5.1weanalyzetheaboveproofstrategyandshowthatitsucestoboundaconditionslightlyweakerthanthecondition&#x-277;&#x.800;s.Namely,usingthisscheme,weareabletoboundtheprobabilityforwhich&#x-277;&#x.800;sforsucientlylargeconstants.ThisresultisusedtoproveTheorem3.11ofsection3.Insection5.3were“neourschemeandobtainthemainresultofthissection.Theorem5.4.Letbea,-connectedgraph.Letbearandomsampleofofsize.Foranyconstantthereexistsaconstan

13 t(dependingonalone)s.t. 3log thenthep
t(dependingonalone)s.t. 3log thentheprobabilitythathasanindependentsetofsize�sisatmost ispairwise,-connected,and 3log log( thentheproba-bilitythathasanindependentsetofsize�sisatmostlog(1 5.1.Thenaivescheme.V,E)bea,-connectedgraph(pairwiseornot).Inthissectionwestudytheprobabilitythatarandomsubsetisanindependentset.Wethenusethisresulttoboundtheprobabilitythatarandomsubsetofsizehasalargeindependentset.Wewouldliketobound(fromabove)theprobabilitythatinducesanindepen-dentset.Letbetheverticesof.ConsiderchoosingtheverticesofonebyonesuchthatateachsteptherandomsubsetchosensofarisAssumethatatsomestageisanindependentset.Wewouldliketoshow(withhighprobability)thatafteraddingtheremainingverticesof,the“nalsetwillnotbeanindependentset.)(forindependent)bethesetofverticesinwhicharenotadjacenttoanyverticesin,andlet)bethesetofverticesthatareadjacenttoavertex.Considerthenextrandomvertex.Ifischosenfromisnolongeranindependentset(implyingthatneitheris),andweviewthis

14 roundasasuccess.Otherwise,happenstobein)
roundasasuccess.Otherwise,happenstobein),andisstillanindependentset.Butifalsohappenstohavemanyneighborsin),thenaddingittowillsubstantiallyreducethesizeof),whichworksinourfavor.ThislatercaseisalsoviewedasasuccessfulroundregardingMotivatedbythediscussionabove,wecontinuewiththefollowingde“nitions.Asbefore,letV,E)bea,-connectedgraph(pairwiseornot),letbeasetofverticesin,andlet.Eachsubsetde“nesthefollowingpartition(,HI)ofbetheverticesthatarenotadjacenttoanyvertexin(noticethatitmaybethecasethatisnowpartitionedintotwoparts:verticesinwhichhavedegree,denotedastheset,andverticesofdegree,denotedas.Namely,isde“nedtobetheverticesofwithminimaldegree(inthesubgraphinducedby),andisde“nedtobetheremainingverticesof.Tiesarebrokenarbitrarilyorinverticesin(namely,verticesinareplacedinbeforeotherverticesofidenticaldegree).Ifitisthecasethat,thenisde“nedtobe GRAPHSWITHTINYVECTORCHROMATICNUMBERSNowtoproveourlemma,considerthesubsetsandtheircor-respondingpartitions(,HI).Let.Let)betheverticesad

15 jacentto.Wewouldliketoboundthenumberofve
jacentto.Wewouldliketoboundthenumberofverticesthatarein.Westartwiththecaseinwhich,-connected.Consideravertex.ByClaim5.6,itsdegreein .Eachvertexincreasesthesizeofbyatleast.Initially,isempty,andafterchosen,.Weconcludethatthereareatmost verticeswhichare.Thisboundcanbefurtherimprovedbyafactorofapproximatelylog(1 usingtighteranalysiswhenisalsopairwise,-connected;detailsfollow.0beaninteger,andlet 2x+1,n Wewouldliketoboundthesizeofforallpossiblevaluesof.Westartbyconsideringvaluesofbetween0andlog(11.Consideravertexinwhich.Thatis, 2xiŠ1|�n .ByClaim5.6,thedegreeof 22|IiŠ1 22n .Eachvertexinwhichincreasesthesizeofbyatleast.Forsuchvertices,isofsizeatleast atmost .Weconcludethatisofsizeatmost Forlog(1,thesetisasubsetofRecallthatwhenever.Thisimpliesthatinthesecases.Insum,weconcludethatlog(1 ,whichconcludesourproof. Theorem5.7.Letbea,-connectedgraph(pairwiseornot).LetbeasinLemma.Let.Theprobabilitythatrandomverticesofinduceanindependentsetisatmost Proof.Letbeasetofrand

16 omvertices.Asmentionedprevi-ously,thepro
omvertices.Asmentionedprevi-ously,theprobabilitythatisatmost.Thisfollowsfromthefactthat(1)thesizeofisatmost,(2)(byourde“nitions),and(3)thevertexisrandominNowinorderfortobeanindependentset,everyvertexmustbeinthe.Furthermore,byLemma5.5allbutverticesmustsatisfyHence,theprobabilitythatisanindependentsetisatmost tkŠt=kek tt. bealargeconstant.WenowuseTheorem5.7toboundtheprobabilitythatarandomsubsetofsizehasanindependentsetofsize�s.TheresultisthefollowingCorollary5.8,whichwillbeusedinsection5.2toproveTheorem3.11.Insection5.3were“neourprooftechniquesandgetridoftheparameter.Thatis,weboundtheprobabilitythatarandomsubsetofsizehasanindependentsetofsize�sCorollary5.8.Letbea,-connectedgraph(pairwiseornot).LetasinLemma.Letbearandomsampleofofsize.Let�e,andletasucientlylargeconstant.Iflog(1 ,thentheprobabilitythat�satmost sProof.Lets.UsingTheorem5.7andthefactthatasubsetrandomin,theprobabilitythatthereisanindependentsetofsizeisat GRAPHSWI

17 THTINYVECTORCHROMATICNUMBERSbeanindepend
THTINYVECTORCHROMATICNUMBERSbeanindependentset,let,andlet,HI)bethepartition(asde“nedinsection5.1)correspondingto.Roughlyspeaking,insection5.1,everytimeavertexwaschosen,thesubsetwasupdated.waschosenin,thengrewsubstantially,andifwaschoseninthesubsetwasonlyslightlychanged.Wewouldliketochangethede“nitionofthepartition(,HI)correspondingtotoensurethatisalwayssub-stantiallysmallerthan.Thiscannotbedoneunlesswerelaxthede“nitionofInournewde“nition,willnolongerrepresenttheentiresetofverticesadja-centto;rather,willincludeonlyasubsetofverticesadjacentto(asubsetwhichissubstantiallysmallerthan).Namely,inournewde“nitionofthepartition,HI)thesetischangedonlyifwaschosenin.Inthecaseinwhich,wedonotchangeatall.Aswewillsee,suchade“nitionwillimplythat,whichwillnowsuceforourproof.Anewpartition.beasubsetof.Letbeasubsetofofsize.Eachsuchsubsetde“nesapartition(,HI)of.Asbefore,let1.Initiallyistheverticesinofminimaldegree(in,and.Intheabove,tiesarebrokenbyanassumedorderingontheverticesin2.Let(,HI)

18 bethepartitioncorrespondingto,andletbean
bethepartitioncorrespondingto,andletbeanewrandomvertex.Let;thenwede“nethepartition,HI).Let)betheneighborsof.Weconsiderthefollowingcases:,thenthepartitioncorrespondingtowillbeexactlythepartitioncorrespondingto,namely,.Noticethatthisimpliesthatnolongerrepresentsallneighborsof.Theremaybeverticesadjacenttowhichare,thenweconsidertwosubcases:,then,andarede“nedasinsection5.1.Namely,isde“nedtoisde“nedtobetheverticesofminimaldegree(inthesubgraphinducedby),andde“nedtobetheremainingverticesof.Tiesarebrokenbytheassumedorderingon,thenlet)bethe“rst(accordingtotheassumedorderingon)(1verticesinandset).Furthermore,settobetheverticesof,andtobeempty.Noticethatinthiscase,isofsizeexactly(1then,onceagain,thepartitioncorrespondingtobeexactlythepartitioncorrespondingtoAfewremarksareinorder.First,itisnothardtoverifythatthede“nitionaboveimpliesthefollowingclaim.Claim5.9.Let.Thepartitions,HIcorrespondingtoasde“nedabovesatisfythatthesetistheverticesofminimaldegreeinSecond,duetotheiterativede“ni

19 tionofournewpartition,thepartitions()cor
tionofournewpartition,thepartitions()correspondingtothesubsetsdependstronglyonthespeci“corderingof GRAPHSWITHTINYVECTORCHROMATICNUMBERSWenowaddresstheprobabilitythatarandomsubsetisamaximumfreeset.Wewillthenusetheunionboundonallsubsetsofsize�stoobtainourresults.Lemma5.14.Letbea,-connectedgraph(pairwiseornot).LetbeasinLemma.Let.LetbeanorderedrandomsampleofofsizeTheprobabilitythatagivensubsetisamaximumfreesetisatmost Proof.Let(orderedbytheorderinginducedby).Thesetisamaximumfreesetinonlyif(a)isfreeand(b)foreachvertexwhichisnotin,theorderedset,h,risnotfree.Heretheissuchthatappearsbeforeintheorderingof,andappearsafterisorderedaccordingtotheorderingofTheprobabilitythatisfreehasbeenanalyzedinLemma5.13.Itislefttoanalyzetheprobabilitythatisnotfreeforeveryvertex,giventhatisfree.Consideravertexwhichisnotin,andlet,h,rClaim5.15.Letbeafreesetand,h,rLetthepartitioncorrespondingto,HI.Ifisalsoafreeset.Proof.Wewillusethefollowingnotation.Letdenotetheverticesof,andlet(,HI)beit

20 scorrespondingpartition.For,h,rdenotethe
scorrespondingpartition.For,h,rdenotethe“rst+1verticesof,andlet,HI)beitscorrespondingpartition.Finally,letdenotethesubsetand(,HI)beitscorrespondingpartition.Wewouldliketoprovethatisfree.Thatis,wewouldliketoshow(a)thatforeach,(b)that,(c)that,and(d)that+2.Recallthatisfree,andthusforallThe“rstassertionfollowsfromthefactthatthe“rstverticesofidentical.Thesecondfollowsfromtheassumptionthat.Forthethirdas-sumption,notice(as)thatthepartitioncorrespondingtoisequaltothepartitioncorrespondingto.Thisfollowsfromourde“nitionofthepartition(,HI).As,weconcludethatForthe“nalassertion,observethatforany+1,thepartitioncorrespondingisequaltothepartitioncorrespondingto.Thiscanbeseenbyinduction).Westartwiththepartitionscorrespondingto.Thepartition,HI)isde“neduniquelybythepartitioncorrespondingtoandthevertex.Similarly,thepartition(,HI)isde“neduniquelybythepartitioncorrespondingtoandthevertex.Asthepartitioncorrespondingisequaltothepartitioncorrespondingto,weconcludethatthesameholdforthepartiti

21 onscorrespondingto.Theinductivestepisdon
onscorrespondingto.Theinductivestepisdonesimilarly.Thepartitioncorrespondingto)isde“neduniquelybythepartitioncorrespondingto)andthevertex.Asthepartitioncorrespondingtoequalsthatcorrespondingto,weconcludeourclaim.Asisfree,forevery+2.Thisimpliesalsothat,whichprovesthe“nalasser- Claim5.15impliesthattheprobabilitythat,h,rnotfree,giventhatisfree,isatmost(1)(recallthatthesetisofsize).Thisholdsindependentlyforeveryvertex.Weconcludethat GRAPHSWITHTINYVECTORCHROMATICNUMBERSsucientlylargeconstant.If 2log thentheprobabilitythathasanindependentsetofsize�sisatmostProof.ByLemma5.17,isalso 42), -connected(pairwiseornot). )and .Wewouldliketoboundtheprobabilitythatdoesnothaveanyindependentsetsofsizegreaterthan.Let=1+ .Notice.Hence,itsucestoboundtheprobabilitythat�.Thisprobability,inturn,isatmosttheprobabilitythathasamaximumfreesetofsizegreaterthan(Claim5.11).Let=ln( .Itisnothardtoverifythat= )forourvalueof.Byourassumption,isgreaterthanorequalto 2log   c1

22 t (Š1)2 log1 +log (Š1)2 c2t lo
t (Š1)2 log1 +log (Š1)2 c2t log1 +log whereintheabove,areconstantscloselyrelatedto.Now,byCorol-lary5.16,forourchoiceof,theprobabilitythathasamaximumfreesetofsizegreaterthanisatmost e(s)eŠ(t). Roughlyspeaking,Theorem5.4statesthat,givena,-connectedgrapharandomsampleofsizeproportionalto (orlarger)willnothaveanindependentsetofsize(withhighprobability).Thisimprovesuponthebound presentedin[GGR98]bothinthedependenceon1)andinthedependenceon.Moreover,wepresentafurtherimprovementto ifourgraphsareconsideredtobepairwise,-connected.Insection6wecontinuetostudytheminimalvalueofforwhichswithhighprobability,andpresentalowerboundonthesizeofwhichisproportionalto 6.LowerboundsforthetestingofInthissectionwepresentgraphswhichare,-connected,butwithsomeconstantprobabilityarandomsampleofsizeislikelytohaveanindependentsetofsizegreaterthanLemma6.1.Letbeasmallconstantand.Forlargeenough,thereexistsagraphverticesforwhich,connected,andwithconstantprobability(independentof)a

23 randomsetofsize willhaveanindependentset
randomsetofsize willhaveanindependentsetofsizeProof.ConsiderthegraphV,E)inwhich,andconsistsoftwodisjointsets,whereisanindependentsetofsize(1 inducesaclique,andeveryvertexinisadjacenttoeveryvertexin.Ononehand,everysubsetofsizeinducesasubgraphwithatleast2edges(implyingthat,-connected).Ontheotherhand,letbearandomsubsetofobtainedbypickingeachvertexindependentlywithprobability .Theexpectedsizeof .Inthefollowingweassumethatisexactlyofsize;minormodi“cationsintheproofareneededifthisassumptionisnotmade.Thesetisanindependentsetinthesubgraphinducedby.Theexpectedsizeof .Let1)denoteastandardnormalvariable.Itcanbeseenusingthecentrallimittheorem(forexample,[Fel66])that,forourchoiceofparameters,theprobabilitythatdeviatesfromitsexpectationbymorethanasquarerootof GRAPHSWITHTINYVECTORCHROMATICNUMBERSTheorem7.2.Leta,k,beasde“nedinTheorem.Thegraphispairwise-connected.Proof.Letbesubsets(in)ofsize.Thecorrespondingsubsetsarealsoofmeasure)(Lemma7.1).ByCorollary3.10,).WeconcludethatA,B Lem

24 ma7.3.Thegraphisvector -colorableforsome
ma7.3.Thegraphisvector -colorableforsomeconstantProof.Recallthateachcellinhasdiameteratmost2.Hence,twoverticesareconnectedonlyiftheirinnerproductislessthan1)+ k(1+(k) 2d)Š1. Byde“nition,thecontinuousgraphisvector-colorable.InLemma7.3weshowedthatthe“niteapproximationvector-colorable.Ingeneral,thisdoesnotsucefortheproofofTheorem1.2,asweareinterestedingraphswhicharevector-colorable(ratherthanalmostvector-colorableŽ).Thiscanbe“xedbystartingwithacontinuousgraphwithvectorcoloringnumberslightlylessthan ).Inordertosimplifyourpresentation,weignorethispointandconsiderthegraphtobeexactlyvector-colorable.Thisispossibleduetothefactthatthepropertiesofcontinuous.Namely,choosinglargeenough,itcanbeseenthatthemultiplicativeerrorof(1+ )inthevalueofdoesnotaecttheanalysisappearingthroughoutthissection.Lemma7.4.Let bethemeasureofa -cap.Everyvertexinthegraphhasdegree poly n,poly Proof.Consideravertexanditscorrespondingcell.Thedegreeofisthenumberofcellsinthatshareapositivemeasureofedges

25 withthecellThetotalmeasureofthesecellsis
withthecellThetotalmeasureofthesecellsisatleastthemeasureofa( ))-capandatmostthemeasureofa( ))-cap.Hence,byLemma7.1,weconcludeour Wenowprovethe“rstpartofTheorem1.2byconsideringthegraphbyrandomlysamplingtheedgesofTheorem7.5.Foreveryconstantandconstant,therearein“nitelymanygraphsthatarevector-colorableandsatisfy ,whereisthenumberofverticesinisthemaximumdegreeinProof.Let2beconstant.Let0beanarbitrarilysmallconstant.Let /cforasucientlylargeconstant.LetV,E)bethediscretegraphde“nedabove.Letbethesizeofthevertexset,andletbethemaximumdegreeof.Recallthat,whereisthedimensioninwhichthecorrespondinggraphwasde“ned.Wewillassumethatthedimensionisaverylargeconstantdeterminedafter“xing.Finally,letByLemma7.4,allverticesinareofdegreeintherange[ poly],wherepoly .ByTheorem7.2andtheproofofClaim4.1,everysubsetofverticesofsizehasatleast kŠ2+nedges.Letp(k ).Letbethesubgraphofobtainedbydeletingeachedgeofindependentlywithprobability(1Lemma7.6.Withprobability,allverticeswillhavedegreeinthe

26 range poly kŠ2Š2,2Šk kŠ2Š2. GRAPHSWI
range poly kŠ2Š2,2Šk kŠ2Š2. GRAPHSWITHTINYVECTORCHROMATICNUMBERSsubgraphsofhavebeenusedinthepastinthecontextunderdiscussion(see,e.g.,[KMS98,Fei97,GK98,Cha02]).Usingourprooftechniqueonsuchgraphsinvolvestheanalysisofcertainedgeisoperimetricinequalities(analogoustothosepresentedinTheorem3.5).Unfortunately,littleisknownregardingtheedgeisoperimetricinequalitiesoftheabovegraphs.Suchinequalitieshavebeenstudiedinthepast[Bez02,KKL88],yieldingpartialresults.However,theseresultsdonotsucetoextendourprooftechniques.Abetterunderstandingofedgeisoperimetricinequalitiesofthesegraphsisofgreatinterest,regardlessoftheirapplicationtothevectorcoloringPropertytesting.Insections5and6westudythepropertytestingparadigmwithrespecttotheindependentsetproblem.Wepresentimprovedresultsonthesamplesizeneededwhentestinggraphswhicharefromhavinglargeindependentsets.Namely,inTheorem5.4weprovethatifagraphofsize,thenwithhighprobabilityarandominducedsubgraphofofsizewillnothaveanindependentsetofsize.(T

27 hisimprovesuponthesamplesizeofpresentedi
hisimprovesuponthesamplesizeofpresentedin[GGR98].)Moreover,inLemma6.1weshowthatthesamplesizemustbeofsizeatleastifwewishtheprobabilityoffailuretobenonconstant.Itwouldbeinterestingifthefactorgapbetweentheupperandlowerboundspresentedabovecouldbesettled.9.Proofofclaims.Claim9.1.For,wehavethat Proof.Itiswellknownthatforanyreal.Hence, +p2y2 1ŠpyeŠp(y+py2 1Špy)(1Šp)y+py2 Asfortheotherdirection,forevery dp((1Šp)yŠ(1Š(1Šp)yŠ1)0. Claim9.2.Forall x1 e1Š1 xx1 Proof.Itisknownthatforall xx1 e1Š1 xxŠ1. Claim9.3.Let�a�suchthat2log(;then Proof.Recallthat  d1Ša2dŠ1 2(a)1Ša2dŠ1 ,forsomeconstantThus, 2(1Ša2)(1Š2a)dŠ1 21Ša2dŠ1 22 d2(a) d. GRAPHSWITHTINYVECTORCHROMATICNUMBERS (a)(b)(c) x-x Fig.2Threecasesof,andarepresented.Thesetarepresentedbytheletter.Thesetarepresentedbytheletter.Apointin)ispresentedby.Apointinneitherisrepresentedbyasoliddot.Theedgesetisdepictedbysolidlines.Finally,thehyperplaneisrepresentedasahorizontalline.Eachcon“gurationi

28 spresentedbefore(above)andafter(below)th
spresentedbefore(above)andafter(below)thesymmetrizationprocedure.Incasethesetisclosedunderthesymmetrizationprocedure.Insuchcasesitholdsthat.Incasesnoticethatthereisadierencebetweenthevalueofandthenumberofundirectededgesbetweenthesets(forexample,incaseisofsizeConsiderthecaseinwhichconsistsoftheedges()and()only,thesubsetisequalto,andthesubsetisequalto.ThiscaseindepictedinFigure2(a).Inthisspeci“ccasewehavethatimplyingthat)=1.Noticethat,asare“nitesets,wemeasuretheamountofedgesbetweenusingthediscreteanalogueof)de“nedinDe“nition5.1ofsection5(thesamegoesforThereare,ofcourse,severalothercasestoconsider(12edgecon“gurationsand256casesofdierentsubsets).SomeofthesecasesaredepictedinFigure2.Thislargecaseanalysismaybesigni“cantlyreducedusingvariousobservations(in-volvingtheequivalenceofmanydierentcases).Wehavecheckedourassertiononthefullcaseanalysis(usingacomputerprogram).Asimilarproofholdswhenarein(detailsomitted). Lemma9.5.isclosedinProof.Let()beasequenceintendingto(,)(inth

29 eHausdortopol-ogy).Wewillshowthat(,.F
eHausdortopol-ogy).Wewillshowthat(,.Forevery,�0wehaveforlargeenoughvaluestozeroandusingthefactthatforallclosedsets),weconcludethesecondpropertyof,namelythat)andForthe“rstproperty,sendingtozero,wehaveononehandthat).Fortheotherdirectionobservethat)and)forany0,providedthatislargeenough. GRAPHSWITHTINYVECTORCHROMATICNUMBERSUsingClaims9.2and9.3,weconclude(forsucientlylarge)that 1000Šz+2 10001 2zŠ2 10001 31Šz2dŠ1 beaconstantsuchthat �/10.Considerthesetz,u.Denotethe200neighborhoodof.Usingsphericalsymmetry,onecanupperboundthemeasureofthesetthemeasureofthecap ,whichisat z2+ 2Š2 2002 dŠ1 21Šz2dŠ1 betheunionofthesets,/10+,/10+2 .Weconcludethatthemeasureofisatmost Finally,eachhzŠ2/1000,z+2/1000]andandŠ/10,/10]andthusisin.Hence\R ,implyingthatthemeasureisatleast 2µ(S)(1Šz2)dŠ1 2. 3.7(restated)Leta,kbeasinTheorem.Let beavertexontheboundaryof.Letbethesetofneighborsof.Let a2+(1/(kŠ1)+a2)2 .Finallylet log( forasucientlylargeconstant.The

30 measureofverticesin 2(1Šz2)dŠ1 2µ(N(v))
measureofverticesin 2(1Šz2)dŠ1 2µ(N(v))(1Šz2)dŠ1 Proof.Thesetisequalto1)+ 1Ša2.Denote1/(kŠ1)+a2  ).Let .Bysphericalsymmetry,itcanbeseenthattheabovesetisofmeasureatmost(1 ,andofmeasuregreaterorequaltothemeasureof=and0where1 )(foranyy,1/2],cisintherange(11)).Hence,itsucestoboundthemeasureofbybelow. log( forasucientlylargeconstant.Thesetaboveisofmeasurelargerthanthemeasureoftheneighborhoodof asabove.(Theneighborhoodofisde“nedasinClaim9.7.)Wedenotethissetas.ByClaim9.7,themeasureofisatleastofvalue(1 (Noticethat,whichinturnisindependentof;thusClaim9.7canbeappliedinourcase.)Hence,themeasureofisatleast(1 2(1Šz2)dŠ1 whichconcludesourproof. GRAPHSWITHTINYVECTORCHROMATICNUMBERS d+xŠ d+xz2(1+c2Šc2z2)  1Šz2(1Šc2z2)andB= .Itisnothardtoverifythatforourvalueofitisthecasethatmin(.Thus 4Pr z2d 1Šz2r1 +1) and0 2wr1R1eŠr21 2 AdAdr2=0r2eŠr22 2=wr1R1eŠr21 2 Ad(1ŠeŠA2d 2)wr1R1AdeŠr21 2w1x=0AdeŠz2(d+x) 2(1Šz2)z 2 1Šz2 d+xdxwz2 d(1Šz2)(1Šc2z2)eŠdz2 2(1Šz2)1x

31 =0xeŠz2x 2(1Šz2)wz2 d(1Šz2)(1Šc2z2)eŠdz
=0xeŠz2x 2(1Šz2)wz2 d(1Šz2)(1Šc2z2)eŠdz2 2(1Šz2)wz2 d(1Šz2)(1Šc2z2)1Šz2 1Šz2dŠ1 2wz2 d(1Šz2)(1Šc2z2)1Šz2dŠ1 21Š2z4dŠ1 istherange[ z2d 1Šz2, z2(d+1) ],andissomeconstantindependentof(thevalueofmaychangefromlinetoline).Aboveweusethefactthatandthefactthatisboundedbyabovebyaconstantindependentof.Inthe“nalinequalitiesweuseachangeofvariables z2(d+x) andthefactthat1+ 2for3.As poly (log(),weconcludeourassertion. FortheproofofTheorem3.8,let a2+(1/(kŠ1)+a2)2 (asinClaim9.8);thus(log().Fortheupperbound,useaboundonthemeasureofandtheupperboundinClaim9.8.Asforthelowerbound,let=2(log( d)3 .Suchachoicewillsatisfylog( ,and(log(with“rstcoordinateofvalue.Consideravertexwith“rstcoordinateofvaluelessthanByClaim9.8,itisnothardtoverifythatthemeasureofisgreaterthanthemeasureof,whichisgreaterthan polycz 2(1Šz2)dŠ1 21 poly forsomeconstant.(WeuseClaim9.2andthefactthat(log().)As2log(,weconclude,usingCorollary9.3,thatthemeasureofedgesin)isatleast poly 2(a) poly 21 poly 21Šz2dŠ1 2.